IPQDS对实验性心肌缺血的影响及腺病毒介导的AM基因对大鼠心肌肥大的预防作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性心肌梗死是严重危害人类健康的常见多发病,溶栓及PCI是最有效的治疗方法,可使缺血心肌得到再灌注,改善心肌梗死的预后。然而,越来越多的证据显示,缺血心肌再灌注后一段时间内心肌常出现再灌注损伤,表现为心律失常、无复流现象、心肌顿抑及细胞坏死等。开发安全有效的抗心肌缺血药物是一项重要的课题。
     五加科人参属植物西洋参(Panax Quinquefolium L.)历来以根入药,茎叶则多弃之山岭不作药用。化学成分分析表明:西洋参皂苷在叶部的含量(9.05~10.45%)明显高于根部(3.89~6.49%)。西洋参叶总皂苷含有20s-原人参二醇组皂苷(PQDS)及20s-原人参三醇皂苷(PQTS),我们以PQDS为原料研制出洋参二醇皂苷注射液(IPQDS)按治疗急性心肌缺血的中药五类新药进行开发。
     本文建立大鼠心肌缺血再灌注损伤模型及犬急性心肌梗死模型,从形态学、心肌酶学、心外膜心电图、血液生化学、心功能血流动力学、冠脉循环及心肌氧代谢等方面观察了IPQDS对实验性心肌缺血的保护作用及其机制。结果表明,IPQDS可明显缩小心肌梗死面积,降低心肌缺血程度及缺血范围,抑制心肌三酶活性,并纠正急性心肌梗死时的泵衰竭。可能通过减轻氧自由基的堆积,提高内源性抗氧化酶活性,降低血小板粘附及聚集功能,纠正心梗死血时FFA代谢紊乱及血液高粘滞状态,保持血管活性因子(NO/ET及PGI2/TXA2)及心肌供氧与需氧平衡,改善心肌舒缩功能等多种途径发挥抗心肌缺血作用。此外,IPQDS能抑制心肌缺血再灌注损伤时原癌基因c-myc、c-fos及c-jun mRNA的表达,并明显降低血浆ET及AngⅡ水平,提示其可能具有防治急性心肌缺血后心室重构的作用。
     心肌肥大(Myocardial Hypertrophy,MH)是对心肌工作负荷增加的一种代偿,已成为导致心衰、心肌梗死及心源性猝死的独立危险因素。预防或逆转潜在的MH是治疗慢性高血压和心衰患者的主要目标。寻找有效的治疗方法是医学界面临的主要任务之一。
     许多证据显示,心肌局部产生的肾上腺髓质素(AM)具有减弱心脏肥大/重构以及对抗心肌缺血再灌注损伤等心脏保护作用。通过腺病毒靶向性递送AM基因至心脏,补充外源性AM是否能预防或逆转肥大心肌的结构及功能改变是一项有意义的研究工作。为探讨补充外源性AM的应用潜能,本研究采用给大鼠饮用NOS抑制剂L-NAME 8周建立心肌肥大模型,在巨细胞病毒(CMV)启动子的调控下,用腺病毒(Ad)递送外源性AM基因—Ad.CMV-AM对模型大鼠进行干预,检测相关指标,评价其作用及可能的机制。
     实验①进行重组基因腺病毒扩增、纯化并测定滴度;②尾静脉注射Ad.CMV-GFP,以荧光倒置显微镜检测心肌细胞GFP的存在,对Ad.CMV-AM在体研究进行靶向性预测;③大鼠饮用L-NAME(35mg/kg/d)8周,饮用L-NAME当天及第5周分别尾静脉注射Ad.CMV-AM 2×1010 pfu,观察外源性AM基因靶向性递送对大鼠心肌肥大的预防作用。
     结果显示:①重组腺病毒经过扩增、纯化,滴度达到1×1012 pfu/mL,可用于在体动物实验;②通过Ad.CMV-GFP感染大鼠,在心肌细胞检测到GFP,预测Ad.CMV-AM能靶向定位到心肌细胞;③大鼠心肌肥大预防作用的研究表明,与对照组比较,L-NAME可引起收缩压(SBP)明显升高;心肌细胞宽度、心重与体重比(HW/BW)、心钠素(ANP)及骨骼型α-actin(sk-α-actin)表达均明显增加;NADPH氧化酶、抗氧化酶SOD3和GPx基因表达及心肌细胞膜蛋白氧化均明显增加;内源性AM基因表达亦明显增加。与模型组比较,Ad.CMV-AM除了可明显对抗心肌细胞宽度增加,对上述各项指标均无明显对抗作用。没有检测到外源性AM基因的表达。
     实验未观察到AM基因对大鼠心肌肥大的预防作用,考虑可能与携带外源目的基因的腺病毒载体在动物体内递送过程及靶向定位不稳定,CMV启动子调控不稳定以及腺病毒递送的外源目的基因在体内表达不稳定等因素有关。对此实验模型体系中递送外源性AM基因的可行性仍需进一步探讨及评估。
Part 1 Effects of IPQDS on experimentaL myocardial ischemia Background:
     Myocardial ischemia, which is caused by coronary atherosclerosis in most casses, is a clinical state with coronary blood flow decrease, myocardial oxygen supply deficiency and less removal of metabolic products.Myocardial ischemia is a higher incidence cardiovascular disease, its mortality is high when acute attack. Present therapeutic measure, such as thrombolylic drug treatment, interventional therapy and surgical treatment, have get good clinical efficacy in usual cases. But after applying them, the myocardial ischemia reperfusion injury which easily cause arrhythmia or heart failure have become new disadvantages. Therefore, looking for safe and effective drug for the prevention and treatment of ischemic heart disease is one of the important issues.
     Panax quinquefolius L. is one of the special local products of the east region of Changbai Mountain. Its main root and fibrous root are recorded in China Pharmacopeia, while its stem and leaves are not sufficiently used. Therefore, exploitation the overground part of Panax quinquefolius L. is meaningful to systematically utilize the medical resource of Panax quinquefolius L. We have been studying the overground part of Panax quinquefolius L. and confirmed with systemic reseach in chemistry, pharmacology and toxicology that panaxsaponins derived from stem and leaves of Panax quinquefolius L. (PQS) are main effective parts. Panaxsaponin-Rb2,-Rb3,-Rd,-Re,-Rg1,-F2 and para-panaxsaponin-F11,-RT5 were separated from PQS. Panax quinquefolium 20-sprotopanaxdiolsaponins (PQDS) were separated by us from PQS and confirmed that PQDS mainly contain panaxsaponin-Rb2,-Rb3, -Rd and -Rc and they have not haemolysis. Therefore, by means of raw material of PQDS derived from PQS, we reseached and exploited IPQDS which a new drug of traditional Chinese drug about treatment of acute myocardial ischemia diseases with patent technique and got the supporting of country 863 plan.
     In this paper, after the establishment of rat and dog myocardial ischima model, we analyse protective effects of PQDS on experimental myocardial ischemia and its mechanism on morphology, enzymes, blood biochemistry, epicar dial ECG, cardiac function, hemodynamics, myocardial oxygen metabolism and molecular levels to provide pharmaco dynamic basis for the development of five new Chinese medicine to the treatment of acute myocardial ischima.
     Methods:
     1. Establish a rat model of myocardial ischemia reperfusion injury and measure the following indicators:
     (1)Determinate serum the activities of aspartate aminotransferase enzyme (AST), creatine phosphate kinase (CK) and lactate dehydro genase (LDH) By COBAS-FARA automatic analyzer ;
     (2)Draw blood from abdominal aorta, detect serum the content of nitric oxide (NO) and malondial dehyde (MDA), activities of superoxide dismutase (SOD) and glutath ione peroxidase (GSH-Px) by kit;
     (3)Draw 1ml Blood from the abdominal aorta, anticoagulate with 3.8% sodium citrate by ratio of 1:9, add the blood into platelet adhesion LBY-F5 Miriam ball, count the number of platelets after adhesion in the light microscope, calculate platelet adhesion rate (PAR) ;
     (4)Draw 3mL blood from the abdominal aorta, anticoagulate with 3.8% sodium citrate by ratio of 1:9, utilize LBY-NJ2 to measure platelet aggregation rate(PAG)and maximum platelet aggregation rate (MPAG) ;
     (5)Stain organizations with chlorination NBT (NB-T) to calculate myocardial infarct size (MIS) with the ratio of myocardial ischemia and ventricular wet weight and myocardial histopathology was observed under light and electron microscope;
     (6)The levels of plasma endothelin (ET), angiotensinⅡ(AngⅡ) and PGI2 and TXA2 were detected by Radioimmunoassay;
     (7)mRNA expression of cardiac proto-oncogene c-fos, c-myc and c-jun were detected by RT-PCR.
     2. Establish canine myocardial infarction model, determinate the following indicators:
     (1)Separate the right common carotid artery, connecte pressure transducer after intubation, measure systolic blood pressure (SBP) and diastolic blood pressure (DBP) by carrier amplifiers (AP-601G);
     (2)Separate the left femoral artery, insert the catheter to the left ventricle, connecte carrier amplifier (AP-601G) to detect left ventricular pressure (LVP), left ventricular end diastolic pressure (LVEDP) and the maximum change rate of left ventricular pressure (±dp/dtmax);
     (3)Separate the aortic root, place the suitable electromagne tic flowmeter probe, measure cardiac output (CO) and compute cardiac index(CI) ;
     (4)Separate LCX, place the suitable diameter electromagnetic flowmeter probe to measure coronary flow (CBF) and compute myocardial blood flow (MBF) and coronary vascular resistance (CVR) ;
     (5)Connect ECG electrodes, recordⅡ-lead ECG and heart rate (HR) by AB-601 bioel- ectrical amplifier ;
     (6)Map the epicardial electrocardiogram in normal, the edge of infarction zone and the central area of infarction by wet-type multi-point adsorption ;
     (7)Draw blood from the left femoral artery at the different time, measure the content of serum free fatty acid (FFA) with one abstraction colorimetry ;
     (8)Draw blood from the coronary sinus and the left femoral artery at the same time, measure arterial and venous blood oxygen by the CORNIHG 178 blood gas analyzer, calculate myocardial oxygen consumption (COC), myocardial oxygen utilization (MOUR) and myocardial oxygen consumption index (MOCI) ;
     (9)Draw Blood from the femoral artery, determinate activities of serum aspartate aminotransferase enzyme (AST), creatine phosphor kinase (CK) and lactate dehydrogenase (LDH) by COBAS-FAARA automatic biochemical analyzer ;
     (10)Blood from the femoral artery, anticoagulate with heparin, utilize LBY-N6A to measure viscosity of blood and plasma ;
     (11)Stain tissues with chlorination NBT (NB-T) to calculate myocardial infarct size (MIS) with the ratio of myocardial ischemia and ventricular wet weight.
     Results
     (1)IPQDS have significant protective effects on myocardial ischemia reperfusion injury in rats and acute myocardial infarction in dogs, which relate to l as the extent of myocardial ischemia in dogs and ischemic area,and can alleviate the level of the acute myocardial ischemic electrocardiogram and decrease activities of serum CK, LDH and AST ;
     (2)IPQDS can significantly reduce the content of serum MDA, increase activities of serum SOD and GSH-Px in myocardial ischemia reperfusion injury rats and acute myocardial infarction dogs ;
     (3)IPQDS can significantly reduce PAR, PAG and MPAG in myocardial ischemia reperfusion injury rats,as well as decrease the viscosity of blood and plasma in acute myocardial infarction dogs ;
     (4)IPQDS can significantly reduce the level of FFA in myocardial infarction dogs ;
     (5)IPQDS can significantly reduce levels of serum NO, plasma ET, AngⅡand TXA2, increase plasma levels of PGI2 and PGI2/TXA2 ratio in rats with myocardial ischemia reperfusion injury ;
     (6)IPQDS could inhibit the expression of proto-nocogene c-myc,c-fos and c-jun after myocardial ischemia reperfusion injury ;
     (7)IPQDS can significantly reduce oxygen utilization, reduce oxygen consumption in dogs with acute myocardial infarction ;
     (8)IPQDS can significantly prevent blood pressure (SBP, DBP and MAP) from decreasing, markly increase MBF, LVP,±dp/dtmax, CO and CI, and decrease LVEDP ;
     Conclusion
     IPQDS have protective effects on myocardial ischemia reperfusion injury in rats and acute myocardial infaction in dogs, which maybe relate to elevating the activities of endogenous antioxidase,decreasing function of platelet adhesion and aggregation,improving metabolic disorder of myocardial FFA, keeping physiologic equilibrium of vasoactive substance (NO/ET and PGI2/TXA2), reducing cardiac work,decreasing myocardial oxygen consumption and improving heart diastolic and systolic funtion, as well as apposing pump failure under myocardial ischemia,et al, which indicate protective effects of IPQDS on myocardial ischemia should be the result from many synthetic path action. In addition, IPQDS could inhibit the expression of proto-nocogene c-myc,c-fos and c-jun after myocardial ischemia reperfusion injury and significantly decrease levels of plasma ET and AngⅡ,which indicate it maybe prevent and treat ventricular remodelling after acute myocardial ischima.
     Part 2 Prevention of Ad.CMV-AM on myocardial hypertrophic rats
     Background:
     AS one major type of cardiac hypertrophy, Left ventricular hypertrophy (LVH) is a compen-satory response to increased cardiac workload and is an independent risk factor for heart failure, myocardial infarction and sudden cardiac death. Prevention of underlying LVH is a major goal in the management of patients with chronic hypertension and heart failure and understanding its mechanistic basis is one of the most important tasks facing medicine and science.
     Chronic administration of the pharmacological inhibitor of NOS, (L-NAME) into normotensive rats, results in hypertension accompanied by myocardial remodelling, cardiac ischemia and necrosis, and mechanical dysfunction. Reports of prevention or regression of increased LV mass by ACE inhibitors and Ca2+ channel antagonists but not by blood pressure reduction per se indicate that NOS inhibition may have direct consequences for the myocardium.
     Many evidences support a direct role of Adrenomedullin (AM) produced locally within the heart, in the attenuation of cardiac growth/remodelling and protection against ischemia-reperfusion injury. However, the necessity for intravenous infusion may limit the therapeutic potential of this peptide. Such limitations could conceivably be overcome by delivery of the AM gene. Adenovirus Ad.CMV-AM, in which human AM cDNA is under the control of cytomegalovirus (CMV) promoter, will be administered to Sprague-Dawley rats treated with the inhibitor of nitric oxide synthase, L-NAME (35mg/kg/day in drinking water), which normally exhibit increased oxidative stress, hypertension, left ventricular hypertrophy and myocardial ischemia. Ad.Null injected rats age-matched SD rats given L-NAME (35mg/kg/day in drinking water) and untreated SD rats will serve as controls for treatment, disease and normal ageing, respectively. We measured SBP、parameters of hypertrophy、indicators of oxidative stress in cardiomyocytes and mRNA expression of endogenous AM and the foreign gene. These findings should provide a basis for ethical approval for small pilot studies to be undertaken to assess the feasibility of administration of such a treatment to patients with clinically significant abnormal thickening of heart muscle, in order to reverse this structural change and thereby reduce these patients’cardiovascular risk. Hope to attain the objectives: obtain a supply of Ad.CMV-AM and knowledge of its use for in vivo studies; ascertain the feasibility of delivery of the human AM gene into a novel experimental model system; investigate if increased levels of AM attenuate development or regress established ventricular of AM attenuate development or regress established ventricular remodeling, oxidative stress and ischemia; provide the rationale for pilot clinical studies.
     1. Large scale production,purification and amplication, as well as titer detection for recombinant Adenovirus.
     (1)Culture, passage HKE293T cells, furthermore culture the cells in large scale.
     (2)Amplication of recombinant Adenovirus in cultured HEK293T via infecting the cells with virus at a MOI of 10.
     (3)Generate cesium chloride ( CsCl ) gradient, spin the virus solution by Optima L-90K ultra low temperature high speed centrifugation to purify and recombinant adenovirus at two steps. Determinate the titer of purified virus by VP and TCID50.
     2. Ad.CMV-GFP transfect cardiomyocyte in vivo.
     (1)Ad.CMV-GFP was administered to SD rats by tail intravenous injection.
     (2) Isolation of ventricular cardiomyocytes was taken by Perfusion of excised hearts with a solution of collagenase in calcium-free Krebs Ringer solution using a Langendorff perfusion apparatus.
     (3)Observe the infected cardiomyocyte using Axiovert IM35 phase-contrast invert microscope and take pictures using WV BL600 camera.
     3. Establish cardiomyocyte hypertrophy Model, determinate the following parameters:
     (1)SD rats at 8 weeks will receive a single intravenous injection of Ad.CMV-AM at a dose of 2x1010 plaque-forming units/rat via the tail vain at 4-weekly intervals concurrently with L-NAME (35mg/kg/day in drinking water) for 8 weeks prior to isolation of left, and for comparison right, ventricular cardiomyocytes at 16 weeks.
     (2)Isolate ventricular cardiomyocytes by the same way as the second experiment.
     (3)Measure the systolic blood pressure (SBP) at weekly intervals in each animal during its lifetime by tail cuff sphygmomanometry .
     (4)Weigh the heart mass before perfusion and calculate the HW/BW ratio.
     (5)Cell was visualised using an inverted phase contrast microscope and width(μm) was detected.
     (6)Oxidative status of membrane proteins was assess via OxyblotProtein Oxidation Detection Kit and ECL Advance Western Blotting Detection Kit, and quantified by densitometry, compared to the signal intensity of the molecular weight protein standards provided.
     (7)Total RNA will be extracted from cardiomyocytes by standard acid guanidinium thiocyanate-phenol-chloroform extraction. Genes expression of c-fos ANP, BNP, sk-α-actin, NADPH oxidase, SOD3, GPx, human-AM and rat-AM were all performed by real-time RT-PCR: reported sequences for each gene will be used to design on Primer Express software, rat and human specific primers adapted to RT-PCR conditions, synthesised by Invitrogen. RT-PCR will be performed in duplicate using Roche FastStart Universal SYBR Green Master (Rox) in a 2:1 reaction, and an ABI Prism Sequence Detector (PE Applied Biosystems). Analysis will be performed using ABI 7000 Prism software and normalised to GAPDH.
     (8)Detect the expression of exogenous AM by imunofluorescence technique.
     Results
     (1)Adequate level of titer of purified recombinant Adenovirus were obtained.
     (2)Greenfluorescent was visible in infected cardiomyocyte using Ad.CMV-GFP weekly after treatment.
     (3)SBP was Elevated, Ad.CMV-AM can not prevent this effect.
     (4)Ad.CMV-AM did not prevent the increase of heart weight and HW/BW ratio under current condition, indicate not to prevent cardiac hypertrophy at organ level.
     (5)Width of cardiomyocyte was not widened too much with the effect of Ad.CMV-AM, indicate not to prevent cardiac hypertrophy at cell level.
     (6)Ad.CMV-AM did not appear preventative effect mRNA expression of hypertrophic genes, sk-α-actin and promote increase of ANP level.
     (7)Ad.CMV-AM did not affect elevated mRNA expression of NADPH oxidase and increased expression of SOD3 and GPx mRNA.
     (8)Ad.CMV-AM seems not to affect increased oxidation status of cardiomyocyte membrane protein.
     (9)Exogenous AM seems no expressed and Ad.CMV-AM seem not to promote mRNA expression of endogenous AM.
     (10)Peptide of exogenous AM was not expressed in cardiomyocyte cells.
     Conclusion
     Under the current experiment conditions, AM gene delivery did not obviously attenuate manifestation of parameters of ventricular cell hypertrophy and oxidative stress in these parameters besides the width of cardiomyocyte in a model of pressure overload and cardiac ischemia induced by chronic nitric oxide deficiency.
     Expected result that an exogenous supply of AM, acting with elevated levels of the endogenous peptide could potentially prevent or reverse the phenotypic changes occurring in hypertrophying cardiomyocytes seems not to be attained. The close reasons are considered perhaps relevant to titer and activity stability of and necessary targeting confirmation and stability of exogenous genes delivered by Adenovirus.
引文
[1] Soloviev A, Stefanov A, Parshikov A, et al. Arrhythmogenic peoxynitrite-induced alterations in mammalian heart contractili and its prevention with quereetin-filled liposomes [J]. Cardivase Toxieol, 2002, 2(2):129-139.
    [2] Olafsson B, et al. Reduction of reperfusion injury in the canine preparation, byintracoronary adenosine: Importance of the endothelium and the no-reflow phenomenon[J]. Circulation, 1987, 76:1135.
    [3] Kurzelewski, Met al. Endothelin in the mechanism of endothelial injury and neutrophil adhesion in the post-ischemic guinea-pig heart[J]. Eur J Phamracol, 2002, 434(1-2):95-107.
    [4] Bajaj AK, et al. Limitation of myocardial reperfusion injury by intravenous perfluochemicals: Role of neutrophil activation[J]. Circulation, 1989, 79:645.
    [5] Chatelain, et al. Neutrophil accumulation in experimental myocardial infants: relation with extent of injury and effect of reperfution[J]. Circulation, 1987, 75 (5):1083-1090.
    [6] James TN. Normal and abnormal consequences of spoptosis in the human heart:From postnatal morphogenersis to paroxymal arrhythmias[J].Circulation, 2001, 90(1):556.
    [7] Braunwald E, et al. The stunned myocardium: Prolonged Postischemicventricular dysfunction[J]. Circulation, 1982, 66:1146.
    [8]徐有秋.缺血、再灌注损伤的心肌电生理及防治研究[M].心血管疾病-基础临床.北京:北医大、中国协和医科大学联合出版社,1990,189-190.
    [9]杨跃进.通心络、卡维地洛及缬沙坦等药物对兔急性心肌梗死晚期再灌注心肌超微结构的影响.络病与心脑血管疾病相关性治疗研究进展学术研讨会论文集[M].中华医学会杂志社,2004,12:43.
    [10]刘铁城.中国西洋参[M].北京:人民卫生出版社,1995.
    [11]裴鉴.中国药用植物志[M].北京:科学出版社,1985:282.
    [12]赵树青,载新荣.西洋参研究进展[J].广东药学,2005,15(6):63-65.
    [13]张崇禧,等.人参研究[M].1993.
    [14]翟丽杰,于小风,曲绍春,等.西洋参叶20s-原人参二醇组皂苷对小鼠心肌营养性血流量的影响[J].人参研究,2004,4:2-5.
    [15]武淑芳,睢大员,于晓风,等.西洋参叶20s-原人参二醇组皂苷抗实验性心肌缺血作用及其机制[J].中国药学杂志,2002,37(2):200-203.
    [16]安钢力,于小风,曲绍春,等.西洋参叶20s-原人参二醇组皂苷对鼠实验性心肌缺血的保护作用[J].吉林中医药,2005,25(1):48-49.
    [17]孙桂波,徐惠波,温富春,等.洋参叶二醇组皂苷粉针抗急性心肌缺血作用研究[J].中药新药与临床药理,2002,13(2):82-84.
    [18]王绚卉,徐华丽,于晓风,等.洋参二醇皂苷注射液对犬实验性心肌梗死的保护作用及其机制[J].中国药学杂志,2008,43(10):754-757.
    [19]睢大员,于晓风,曲绍春,等.西洋参叶20s-原人参二醇组皂苷对犬急性心肌梗死的保护作用[J].中国中药杂志,2001,26(6):416-419.
    [20]刘尚裕,睢大员,于小风,等.西洋参叶20S2原人参二醇组皂苷对急性心肌梗死犬血流动力学和氧代谢的影响[J].中国药学杂志,2001,36(1):25-29.
    [21]陆丰,睢大员,于晓凤,等.西洋参叶20S-原人参二醇组皂苷对急性心肌梗死大鼠交感神经递质及肾素-血管紧张素系统的影响[J].中草药, 2001,32(7):619-621.
    [22]卢应,董均树,刘娅,等.西洋参叶20S-原人参二醇组皂苷对大鼠实验性心室重构的影响[J].中草药,2009,40(11):1785-1787.
    [23]柳海滨,赵洪序,张秀和,等.西洋参二醇组皂甙对心肌缺血与再灌注损伤保护效果的临床观察[J].白求恩医科大学学报,1999,25(1):47.
    [24]孙承军,屈大望,段淑梅,等.西洋参二醇组皂苷对鼠心异位移植后心肌缺血再灌注损伤的保护作用[J].中国中西医结合外科杂志,1999,5(4):262-264.
    [25]睢大员,于晓风,曲绍春,等.西洋参叶20s-原人参二醇组皂苷对大鼠实验性心室重构的影响[J].中国药学杂志,2007,42(2):108-112.
    [26]鞠传静,张志国,赵学忠,等.西洋参叶二醇组皂苷对大鼠实验性心室重构的保护作用[J].吉林大学学报(医学版),2007,27(11):2173-2175.
    [27]张志国,赵学忠,曲绍春,等.西洋参叶二醇组皂苷抗大鼠心室重构的作用机制[J].吉林大学学报(医学版),2008,34(1):112-116.
    [28]杜键,张治国,李洋,等.西洋参叶二醇组皂苷对血管平滑肌细胞增殖及凋亡的作用[J].中国老年学杂志,2007,27(11):2085-2088.
    [29]臧晓峰,谢湘林,吴轶川,等.西洋参二醇皂苷对糖尿病肾病大鼠血常规的影响[J].时珍国医国药,2007,18(10):2466-2467.
    [30]臧晓峰,谢湘林,吴轶川,等.西洋参二醇组皂苷对糖尿病肾病大鼠肾脏葡萄糖转运蛋白、尿β2-微球蛋白的影响[J].中国病理生理杂志,2008,24(6):1237-1239.
    [31] Gradman AN, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: Management of hypertensive heart disease[J]. Prog Cardiovase Dis, 2006, 48: 326-341.
    [32] Das M, Aronow WS, McClung JA, et al. Increased prevalence of coronary artery disease, silent myocardial ischemia, complex ventricular arrhythmias , atrial fibrillation, left ventricular hypertroph, mitral annular calcium, and aortic valve calcium in patients with chronic renal insufficiency[J]. Cardiol Rev, 2006, 14:14-17.
    [33] Kuwahara F, Kai H, Tokuda K, et al. Transforminggrowth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rat. Circulation, 2002, 106:130-135.
    [34] Anversa P, Leri A, Kaitura J. Cardiac regeneration [J]. J Am Coll Cardiol, 2000, 47: 1769-1776.
    [35] Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis[J]. Circulation, 2000, 102:470-479.
    [36] Schluter KD, Millar BC, McDermott BJ, et al. Regulation of protein synthesis and degradation in adult ventricular cardiomyocytes[J]. Am J Physiol, 1995, 269:C1347-55.
    [37] Takemoto O, Tomimoto H, Yanagihara T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral iachemia in gerbile [J]. Stroke, 1995, 26:1639-1648.
    [38] Pollack PS. Proto-oncogenes and the cardiovascular system[J]. Chest, 1995, 107: 826-835.
    [39] Dalton GR, Jones JV, Levi AJ, et al. Changes in contractile protein gene expression with ageing and with captopril-induced regression of hypertrophy in the spontaneously hypertensive rats[J]. J Hypertens, 2000, 18:1297-1306.
    [40] Jeong MY, Kinugawa, Vinson C, et al. AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program[J]. Circulation, 2005, 111:1645-1651.
    [41] McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart[J]. Trends Endocrinol metab, 2005, 16:469-477.
    [42] Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling function[J]. Endocr Rev, 2006, 27:47-72.
    [43] Zhang Q, Modlem J, Scholz PM, et al. Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling[J]. Eur J Pharmacol, 2005, 510: 209-215.
    [44] Hayashi D, Kudoh S, Shiojima I, et al. Atrial natriuretic peptide inhibits cardiomyocyte hypertrophy through mitogen-activated protein kinase phosphatase-1[J]. Biochem Biophys Res Commun, 2004, 322:310-319.
    [45] Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in hum an hypertension: Causes and consequences[J]. J Hypertens, 1990, Suppl 8:S53-7.
    [46] Amin JK, Xiao L, Pimental DR, et al. Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes[J]. J Mol Cell Cardiol, 2001, 33:131-139.
    [47]胡文养,陈达光,苏津自,等.卡托普利治疗自发性高血压大鼠对循环和局部肾素-血管紧张素系统的长期影响[J].高血压杂志,1998,6(2):83-88.
    [48] Danser AH, Saris JJ, Schuijt MP, et al. Is there a local rennin-angiotensin system in the heart[J]. Cardiovase Res, 1999, 44:252-265.
    [49] Cook JL, Bhandaru S, Giardina JF, et al. Identification and antisense inhibition of a rennin-angiotensis system in transgenic cardiomyocytes[J]. Am J Physiol, 1995, 268: H1471-82.
    [50] Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensinⅡmediates stretch-induced hypertrophy of cardiac myocytes in vitro[J]. Cell, 1993, 75:977-984.
    [51] Gosse P. Left ventricular hypertrophy-the problem and possible solution[J]. J Int Med Res, 2005, Suppl 1:3A-11A.
    [52] Lips DJ, DeWindt LJ, Van Kraaij DJ, et al. Molecular determinants of myocardial hypertrophy and failure: Alternative pathways for beneficial and maladaptive hypertrophy[J]. Eur Heart J, 2003, 24:883-896.
    [53] Tsuruda T, Kato J, Kitamura K, et al. Roles of protein kinase C and Ca2+-dependent signaling in angiotensin II-induced adrenomedullin production in rat cardiac myocytes[J]. J Hypertens, 2001, 19:757-763.
    [54] Skulachev V P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Quart Rev Biophys, 1996, 29(1): 169-202.
    [55] Giordano FJ. Oxidative stress, hypoxia, and heart failure[J]. J Clin Invest, 2005, 115: 500-508.
    [56] Pimentel DR, Amin JK, Xiao L, et al. Reactive oxygen species mediate amplitude- dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes[J]. Circ Res, 2001, 89:453-460.
    [57] Cheng TH, Cheng SY, Shih NL, et al. Involvement of reactive oxygen species in angiotensinⅡ-induced endothelin-1 gene expression in rat cardiac fibroblasts[J]. J Am Coll Cardiol, 2003, 42:1845-1854.
    [58] Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertophy induced by tumor necrosis factor-alpha and angiotensinⅡ[J]. Circulation, 1998, 98:794-799.
    [59] Tanaka K, Honda M, Takabatake T. Redox regulation of MARK pathways and cardiac hypertrophy in adult rat cardiac myocyte[J]. J Am Coll Cardiol, 2001, 37:676-685.
    [60] Siwik DA, Tzortzis JD, Pimental DR, et al. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro[J]. Circ Res, 1999, 85:147-153.
    [61] Li JM, Gall NP, Grieve DJ, et al. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure[J]. Hypertension, 2002, 40:477-484.
    [62] Byme JA, Grieve DJ, Bendall JK, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensinⅡ-induced cardiac hypertrophy [J]. Circ Res, 2003, 93:802-805.
    [63] Mark KS, Burroughs AR, Brown RC, et al. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature[J]. Am J Physiol Heart Cire Physiol, 2003, 286:H174-80.
    [64] Matsuoka H, Nakata M, Kohno K, et al. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats[J]. Hypertension, 1996, 27:14-18.
    [65] Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts[J]. J Clin Investt, 1998, 101:812-818.
    [66] Ritchie RH, Schiebinger RJ, Lapointe MC, et al. AngiotensinⅡ-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide[J]. Am J Physiol, 1998, 275:H1370-4.
    [67] Lushcher TF. Imbalance of endothelium derived relaxing and contracting factors: A new concept in hypertension[J]. Am J hypertens, 1990, 3:317-3181.
    [68]高连如,赵云涛,石湘芸,等.左旋硝基精氨酸诱导大鼠持续性高血压[J].基础医学与临床,1995,15(3):491.
    [69] Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric synthase isoforms[J]. Nature, 2002, 416:339.
    [70] Mungrue IN, Gros R, You X, et al. Cardiomyocyte overexpression of Inos in miceresults in peroxynitrite generation, heart block, and sudden death[J]. J Clin Invest, 2002, 109: 735-743.
    [71] Forte P, Copland M, Smith LM, et al. Bassal nitric oxide synthesis in essential hypertension[J]. Lancet, 1997, 349:837-842.
    [72] Zalba G, San Jose G, Moreno MU, et al. Oxidative stress in arterial hypertension: Role of NAD(P)H oxidase[J]. Hypertension, 2001, 38:1395-1399.
    [73] Hong HJ, Loh SH, Yen MH. Suppression of the development of hypertension by the inhibitor of inducible nitric oxide synthase[J]. Br J Pharmacol, 2000, 13:631-637.
    [74] Kitamura K, Kato J, Kawamoto M, et al. The intermediate form of glycine-extended adrenomedullin is the major circulating molecular form in human plasma[J]. Biochem Biophys Res Commun, 1998, 244:551-555.
    [75] Sakata J, Shimokubo T, Kitamura K, et al. Distribution and characterization of immunoreactive rat adrenomedullin in tissue and plasma[J]. FEBS Left, 1993, 352:105-108.
    [76] Nakamura M, Yoshida H, Makita S, et al. Potent and long-lasting vasodilatory effects of adrenomedullin in humans. Comparisons between normal subjects and patients with chronic heart failure[J]. Circulation, 1997, 95:1214-1221.
    [77] McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor[J]. Nature, 1998, 393:333-339.
    [78] Husmann K, Born W, Fischer JA, et al. Three receptor-activity-modifying proteins define calcitonin gene-related peptide or adrenomedullin selectivity of the mouse calcitonin-like receptor in COS-7 cells[J]. Biochem Pharmacol, 2003, 66:2107-2115.
    [79] Ishizaka,Y,Tanaka M,KitmuraK..et al.Adrenomedullin stimulate cyclic AMP formation in rat vascular smooth muscle cells. Biochem BioPhys Res Comrnun, 1994, 200:642-646
    [80] Shimekake Y, Nagata K, Ohata S. et al. Adrenomedullin stimulates two signal Transduction pathways, CAMP accumulation and Ca2+ mobilization,in bovine aortic endothelial cell. J Biol Chem, 1995, 270:4412-4417.
    [81] Ikenonchi H,Kangawa K, Matsuo H, et al. Negative inotropic effect of adrenomedullin in isolated adult rabbit cardiac ventricular myocytes[J]. Circulation, 1997, 95:2318-2324.
    [82] Kim W, Moon SO, Sung MJ, et al. Protective effect of adrenomedullin in manitol-induced apoptosis[J]. Apoptosis, 2002, 7:527-536.
    [83] Samson WK. Adrenomedullin and the control of fluid and electrolyte homeostasis.Annu Rev Physiol, 1999, 61:363-389.
    [84] Nishimatsu H, Suzuki E, Nagata D, et al. Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta[J]. Circ Res, 2001, 89:63-70.
    [85] Lang MG, Paterno R, Faraci FM, et al. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles[J]. Stroke, 1997, 28:181-185.
    [86] Sata M, kakoki M, Nagata D, et al. Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism[J]. Hypertension, 2000, 36:83-88.
    [87] Miyashita K, Itoh H, Sawada N, et al. Adrenomedullin provokes endothelial akt activation and promotes vascular regeneration both in vitro and in vivo[J]. FEBS Lett, 2003, 544:86-92.
    [88] Yoshimoto T, Fukai N, Sato R, et al. Antioxidant effect of adrenomedullin on angiotensin II-induced reactive oxygen species generation in vascular smooth muscle cells[J]. Endocrinology, 2004, 145:3331-3337.
    [89] Szokodi I, Kinnunen P, Tavi p, et al. Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide[J]. Circulation, 1998, 97: 1062-1070.
    [90] Nishikimi T, Wang X, Akimoto K, et al. Alteration of renal adrenomedullin and its receptor system in the severely hypertensive rat: Effect of diuretic[J]. Regul Pept, 2005, 124: 89-98.
    [91] Cormier-Regard S, Nguyen SV, Claycomb WC. Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes[J]. J Biol Chem, 1998, 273:17787-17792.
    [92] Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedullin and HIF-1 genes in cultured HL-1 cardiomyocytes[J]. Biochem Biophys Res Commun, 1999, 265:382-386.
    [93] Rahman M, Nishiyama A, Guo P, et al. Effects of adrenomedullin on oxidative stress and collagen accumulation in aldosterone-dependent malignant hypertensive rats[J]. J Pharmacol Exp Ther, 2006, 318:1323-1329.
    [94] Tsuruda T, Kato J, Kitamura K, et al. Adrenomedullin: A possible autocrine or paracrine inhibitor of hypertrophy of cardiomyocytes[J]. Hypertension, 1998, 31:505-510.
    [95] Luodonpaa M, Vuolteenaho O, Eskelinen S, et al. Effects of adrenomedullin on hypertrophic responses induced by angiotensinⅡ, endothelin-1 and phenylephrine[J].Peptides, 2001, 22:1859-1866.
    [96] Autelitano DJ. Cardiac expression of genes encoding putative adrenomedullin/ calcitionin gene related peptide receptors [J]. Biochem Biophy Res Commun, 2001, 250: 689-693.
    [97] Tsuruda T, Kato J, Kitamura K, et al. An autocrine or a paracrine role of adrenomedullin in modulating cardiac fibroblast growth[J]. Cardiovase Res, 1999, 43:958-967.
    [98] Shimosawa T, Shibagaki Y, Ishibashi K, et al. Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage[J]. Circulation, 2002, 105:106-111.
    [99] Niu P, Shindo T, Iwata H, et al. Protective effects of endogenous adrenomedullin on cardiac hypertrophy, fibrosis, and renal damage[J]. Circulation, 2004, 109:1789-1794.
    [100] Nishikimi T, Mori Y, Kobayashi N, et al. Renoprotective effect of chronic adrenomedullin infusion in dah1 salt-sensitive rats[J]. Hypertension, 2002, 39:1077-1082.
    [101] Yoshihara F, Nishikimi T, Horio T, et al. Ventricular adrenomedullin concentration is a sensitive biochemical marker for volume and pressure overload in rats[J]. Am J Physiol Heart Circ Physiol, 2000, 278:H633-42.
    [102] Diamond JA, Phillips RA. Antihypertensive drugs and the heart[J]. Minerva Med, 2005, 96(4):247-260.
    [103]李小鹰,陈兰英.心血管疾病分子生物学[M].2000,253-256.
    [104] Zhao C, Wang P, Xiao X, et al. Gene therapy with human tissue kallikrein reduces hypertension and hypednsulinemia in fructose-induced hypertensive rats[J]. Hypertension, 2003, 42(5):1026-1033.
    [105]陈改玲,党爱民,张宇清,等.中国汉族原发性高血压患者缓激肽B2受体和内皮型一氧化氮合酶基因多态性与血管紧张素转换酶抑制剂降压疗效的关系[J].中国临床康复,2006,10(4):19-22.
    [106] Ishimitsu T, Ono H,Minami J, et al. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders[J]. Pharmacol Ther, 2006, 111(3):909-927.
    [107] Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke.induced mortality rate in DaM salt.sensitive rats[J]. Hypertension, 1999, 33(1Pt2):219.
    [108] Chao J, Kato K, Zhang JJ, et al. Human adrenomedullin gene delivery protects against cardiovascular remodeling and renal injury[J]. Peptide, 2001, 22(11):1731-1737.
    [109]徐志利,早川尧夫.基因治疗用新病毒载体.广东医学,2000:10:1-5.
    [110]崔德深,高镇生.西洋参[M].北京:科学出版社,1984,171.
    [111]孟勤,孙平,赵俊艳.西洋参皂甙溶血作用的观察[J].中国药学杂志,1996,31(12):755.
    [112]徐景达,邵春杰.四种五加科药用植物皂甙的化学研究[J].人参研究,1991,3(1):2.
    [113]李元建,邓汉武,陈修.人参皂甙及其组分对心肌细胞缺氧、再给氧和心肌缺血再灌注损伤的保护作用[J].药学学报,1987,22(1):1.
    [114]陈修,方云祥.人参皂甙抗心肌缺血与再灌注损伤的实验研究[J].中华医学杂志,1987,67(10):581.
    [115]王绚卉,于晓风,曲绍春,等.洋参二醇皂苷注射液对大鼠急性心肌梗死的影响及其机制研究[J].中国中药杂志,2009,34(24):3281-3285.
    [116]睢大筼,曲绍春,于小风,等.刺五加叶皂苷对大鼠心肌缺血再灌注损伤的保护作用[J].中国中药杂志,2004,9(1):71-73.
    [117]翁维良,王怡.临床常用血液流变学指标含义与评价[J].微循环学杂志,1994,4(3):43-45.
    [118] Gauduel Y. Role of oxygen radicals in cardiac injury due to reoxygenation [J]. J Mol Cell Cardiol, 1985, 16:459-463.
    [119]董子明.临床病理生理学(第1版)[M].高等教育出版社,2004,169.
    [120]刘芳,邢启崇.心肌肌钙蛋白I与急性ST段抬高型心肌梗死体积的定量研究[J].江西医学院学报,2007,47(4):23-25.
    [121]杨军,胡跃年,丁艾玲,等. 213例患者血清SOD与MDA测定的探讨[J].放射免疫学杂志,1993,6(4):230-231.
    [122]吴立玲.心血管病理生理学(第1版)[M].北京医科大学出版社,2000,3:12-28.
    [123] Yoshida T, Watanabe M, Engelman, et al. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury[J]. J Mol Cell Cardial, 1996, 28(8):1759-67.
    [124]陈瑗,周玫.自由基医学[M].北京:人民军医出版社,1991,30-31.
    [125]贾俊海,陈素仙,苏一星,等.灯盏花素对大鼠心肌缺血再灌注损伤的保护作用[J].江苏大学学报(医学版),2006,16(6):480.
    [126]魏星,沈炳玲,张真,等.薯蓣皂苷对心肌缺血再灌血小板活化的影响[J].天津医科大学学报,2009,15(1):7-9.
    [127]尹一子,李子健,睢大筼,等.碟脉灵注射液对大鼠急性心肌梗塞面积及血液流变学影响[J].中成药,1999,21(4):191-193.
    [128] Pala R. Curtis MJ. Effects of NO modulation on cardial arrhythmias in the rat solated heart[J]. Circ Res, 1995, 77(5):984-92.
    [129] Vanden TL, Shao Z, Lic. et al. Mitochondrial electron transport can be a significant source of oxidative injury in cardiomyocytes [J]. Mol Cell Cardiol, 1997, 29(9):2441-2450.
    [130] Pernow J, Wang QD. Endothelin in myocardial ischemia and reperfusion[J]. Cardiovasc Res, 1997, 33:518-526.
    [131] Pernow J. Endothelin in myocardial ischemia and reperfusion [J]. Cardiovasc Res, 1997, 33(3):518-526.
    [132]陈修.心血管药理学[M].北京:人民卫生出版社,1997,260-261.
    [133]金树梅,赵桂峰,范英昌.丹酚酸B对大鼠心肌缺血再灌注损伤内皮素及TXA2/PGI2系统的影响[J].中国老年学杂志,2004,24(2):127-128.
    [134]石湘云,姚松朝,杨哗.血管活性物质与临床[M].北京:北京医科大学,中国协和医科大学联合出版社,1993,42:145-146.
    [135] Sadoshima JI, lzumo S. Molecular characterization of angiotensinⅡ-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts [J]. Circ Res, 1993, 73(3):413-418.
    [136] TanigawaN, MatsumuraM, AmayaH, et al. Tumor vascularity correlateswith the prognosis ofpatientswith esophageal Squamous cell carci-noma[J]. Cancer, 1997, 79(2): 220-225.
    [137]徐淑云,卞如濂,陈修.药理实验方法学第二版[M].北京:北京人民卫生出版社, 1999,933-935.
    [138]李仪奎主编.中药药理实验方法学[M].上海:上海科技出版社,1991:120-121.
    [139]吕忠智,于晓风,金毅.国产西洋参茎叶总皂甙对犬心肌血流量及氧代谢影响[J].中国药学杂志,1992,(5):272.
    [140]刘芳,邢启崇.心肌肌钙蛋白I与急性ST段抬高型心肌梗死体积的定量研究[J].江西医学院学报,2007,47(4):23-25.
    [141] Miller TD, Christian TF, Hopfenspirger MR, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts sub- sequent mortality[J]. Circulation, 1995, 92:334-341.
    [142]王迎平,陈玉华,徐端正.丹参酮ⅡA磺酸钠对心肌梗塞犬血流动力学及心梗范围的作用[J].上海第一医学院学报,1980,7(5):347-350.
    [143]刘丽,张慧敏,张密林.估测急性心肌梗死面积的方法及其临床应用[J].临床荟萃,2006,21(7):527-528.
    [144] Clemmensen P, Grande P, Aldrich HR, et al. Evaluation of formulas for estimating the final size of acute myocardial infarcts from quantitative ST-segment elevation on the initial standard12-lead ECG[J]. J Electrocardiol, 1991, 24(1):77-83.
    [145] Differentiation muscle damage frommyocardial injury by means of the serum creating NSnase (CK) isoenzyme MB mass measure total CK activity ratio [J]. Clin Chem, 1986, 32:91-97.
    [146]王波,陈修.抗心肌缺血药实验方法述评[J].药学通报,1987,(10):583-585.
    [147]吴春夏.病理生理学(第二版)[M].研究生教学用书,2003,7:419-420.
    [148]李庆友,杨春珍.心肌梗死血液流变学分析[J]. PJCCPVD,2005,13(4):230-231.
    [149]饶曼人.药理学研究进展(心血管药理学分册)[M].北京:人民卫生出版社,1980,77-79.
    [150] Pepine C, Chon P, et al. -blocker or calcium antagonists in silent ischemia? [J]. Eur Heart J, 1997, 4 (suppl F):7-14.
    [151]李洪坤,于晓凤,曲绍春.碟脉灵注射液对大鼠实验性心肌梗护作用及其机制[J].吉林大学学报(医学版),2006,32(2):295-297.
    [152] Hui W K, Gibson D G. The dynamics of rapid left ventricular filling in man[J]. Adv Cardiol, 1985, 32:7-35.
    [153]张莉,傅向华,李俊峡,等.左室造影对不同程度冠心病患者的心功能影响[J].实用医学杂志,2008,24(3):370.
    [154]文秀英,杨静,贺敬波,等.哈特口服液防治大鼠缺血再灌注损伤及抗凝血作用的研究[J].中国中西医结合杂志,1995年基础理论研究特集,1995,16-18.
    [155]司宗勋,李优义.核素心肌显像左室心肌梗死面积、部位对心功能影响的研究[J].邯郸医学高等专科学校学报,2003,16(6):99-100.
    [156] Chalfie M, Tu YT, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263:802-805.
    [157] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thoicyanate-phenol-chloroform extraction[J]. Anal Biochem, 1987, 162(2):156-159.
    [158] Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol, 1995, 27:133~140.
    [159] Crozatier B. Stretch-induced modifications of myocardial performance: from ventricular function to cellular and molecular mechanisms[J]. Cardiovasc Res, 1996, 32:25-37.
    [160] Schluter KD, Zhou XJ, Piper HM. Induction of hypertrophic responsiveness to isoproterenol by TGF-beta in adult rat cardiomyocytes[J]. Am J Physiol, 1995, 269:C1311-6.
    [161] Clark WA, Rudnick SJ, Simpson DG, et al. Cultured adult cardiac myocytes maintain protein synthetic capacity of intact adult hearts[J]. Am J Physiol, 1993, 264:H573-82.
    [162] Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: From goldblatt to genetic engineering[J]. Cardiovasc Res, 1998, 39:77-88.
    [163] Mercadier JJ, LompréAM, Wisnewsky C, et al. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res, 1981, 49 (2):525-532
    [164] Doering CW, Jalil JE, Janicki JS, et al. Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res, 1988, 22 (10):686-695
    [165] Kunes J, Hojna S, Kadlecova M, et al. Altered balance of vasoactive systems in experimental hypertension: The role of relative NO deficiency[J]. Physiol Res, 2004, 53 Suppl 1:S23-34.
    [166] Dananberg J , Sider RS , Grekin RJ1. Sustained hypertension induced by orally administered nitro-L-arginine[J]. Hypertens, 1993, 21:359-360.
    [167]郭国庆,沈伟哉,查彩慧. Nω-硝基-L-精氨酸和谷氨酸单氨钠对高血压大鼠血浆血管紧张素Ⅱ的影响[J].暨南大学学报(医学版),2004,25(2):150-152.
    [168] Pereira LM, Mandarim-de-Lacerda CA. Stereology of cardiac hypertrophy induced by NO blockade in rats treated with enalapril and verapamil[J]. Anal Quant Cytol Histol, 2001, 23:330-338.
    [169] Sanada S, Kitakaze M, Node K, et al. Differential subcellular actions of ACE inhibitors and AT(1) receptor antagonists on cardiac remodeling induced by chronic inhibition of NO synthesis in rats[J]. Hypertension, 2001, 38:404-411.
    [170] Zicha J, Pechanova O, Dobesova Z, et al. Hypertensive response to chronic NG-nitro-L-arginine methyI ester (L-NAME) treatment is similar in immature and adult wistar rats[J]. Clin Sci (Lond), 2003, 105:483-489.
    [171] Pechanova O, Bernatova I, Pelouch V, et al. Protein remodeling of the heart in NO-deficient hypertension: The effect of captopril[J]. J Mol Cell Cardiol, 1997, 29: 3365-3374.
    [172] De Oliveira CF, Cintra KA, Teixeira SA, et al. Development of cardiomyocyte hypotrophy in rats under prolonged treatment with a low dose of a nitric oxide synthesis inhibitor[J]. Eur J Pharmacol, 2000, 391:121-126.
    [173] Bell D, Zhao YY, Kelso EJ, et al. Upregulation of adrenomedullin and its receptor components during cardiomyocyte hypertrophy induced by chronic inhibition of nitric oxide synthesis in rats [J]. Am J Physiol Heart Circ Physiol, 2006, 290:H904-14.
    [174] Sanada S, Node K, Asanuma H, et al. Opening of the adenosine triphosphate-sensitive potassium channel attenuates cardiac remodeling induced by long-term inhibition of nitric oxide synthesisL Role of 70-kDa S6 kinase and extracellular signal-regulated kinase[J]. J Am Coll Cardiol, 2002, 40:991-997.
    [175] Dalton GR, Jones JV, Levi AJ, et al. Changes in contractile protein gene expression with ageing and with captopril-induced regression of hypertrophy in the spontaneously hypertensive rats[J]. J Hypertens, 2000, 18:1297-1306.
    [176] Hampl V, Archer SL, Nelson DP, et al. Chronic EDRF inhibition and hypoxia:effects on pulmonary circulation and systemic blood pressure[J]. J Appl Physiol, 1993, 75:1748- 1757.
    [177] Mertens MJ, Mathy MJ, Pfaffendorf, et al. Depressed inotropic response to beta-adrenoceptor agonists in the presence of advanced cardiac hypertrophy in hearts from rats with induced aortic stenosis and from spontaneously hypertensive rats[J]. J Hypertens, 1992, 10:1361-1368.
    [178] Quadrilatero J, Rush JW. Increased DNA fragmentation and altered apoptotic protein levels in skeletal muscle of spontaneously hypertensive rats[J]. J Appl Physiol, 2006, 101: 1149-1161.
    [179] Rainer RS, Eldridge CS, Gillilank GK, et al. Antisense oligonu-cleotide to c-fos blocks the angiotensinⅡ-induced stimulation of protein sythesis in rat aortic smooth muscle cells [J]. Hypertension, 1990, 16(2):326-332.
    [180] Sadoshima JI, lzumo S. Signal transduction pathways of angiotensinⅡ-induced c-fos gene expression in cardiac myocytes in vitro [J]. Circ Res, 1993, 73(3):424-429.
    [181] Bell D, Kelso EJ, Argent CC, et al. Temporal characteristics of cardiomyocyte hypertrophy in the spontaneously [J]. Cardiovase Pathol, 2004, 13:71-78.
    [182] Nakao K, Ogawa Y, Suga S, et al. Molecular biology and biochemistry of the natriuretic peptide systemⅡ: Natriuretic peptide receptors[J]. J Hypertens, 1992, 10: 1111-1114.
    [183] Harada M, Saito Y, Nakkagawa O, et al. Role of cardiac nonmyocytes in cyclic mechanical stretch-induced myocyte hypertrophy[J]. Heart Vessels, 1997, Suppl 12:198-200.
    [184] Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the nox family NAD(P)H oxidased[J]. Biochem Biophys Res Commun, 2005, 338:677-686.
    [185] Toussaint O, Houbion A, Remacle J. Relationship between the critical level of oxidative stresses and the glutathione peroxidase activity[J]. Toxicology, 1993, 81:89-101.
    [186] Yamashita N, Hoshida S, Nishida M, et al. Heat shock-induced manganese superoxide dismutase enhances the tolerance of cardiac myocytes to hypoxia-reoxygenation injury[J]. J Mol Cell Cardiol, 1997, 29:1805-1813.
    [187] Chandrasekar B, Colston JT, Freeman GL. Induction of proinflammatory cytokine and antioxidant enzyme gene expression following brief myocardial ischaemia[J]. Clin Exp Immunol, 1997, 108:346-351.
    [188] Tanito M, Nakamura H, Kwon YW, et al. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats[J]. Antioxid Redox Signal, 2004, 6: 89-97.
    [189] David Bell, YouYou Zhao, Francis P.G. McCoy, et al. Differential Effects of an Anti-Oxidant Intervention on Cardiomyocyte Expression of Adrenomedullin and Intermedin and their Receptor Components in Chronic Nitric Oxide Deficiency. Cellular Physiology and Biochemistry, 2007, 20(2):269-282.
    [190] Asada Y, Hara S, Marutsuka K, et al. Novel distribution of adrenomedullin-immuno- reacive cells in human tissues [J]. Histochem Cell Biol, 1999, 112:185-191.
    [191] Jalili T, Takeishi Y, Walsh RA. Signal transduction during cardiac hypertrophy: The role of G alpha q, PLC beta, and PKC[J]. Cardiovasc Res, 1999, 44:5-9.
    [192] Tsuruda T, Kato J, Kitamura K, et al. An autocrine or a paracrine role of adrenome- dullin in modulating cardiac fibroblast growth[J]. Cardiovase Res, 1999, 43:958-967.
    [193] Schafer M, Ponicke K, Heinroth-Hoffmann I, et al. Beta-adrenoceptor stimulation attenuates the hypertrophic effect of alpha-adrenoceptor stimulation attenuates the hyper- trophic effect of alpha-adrenoceptor stimulation in adult rat ventricular cardiomyocytes[J]. JACC, 2001, 37:300-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700