β受体阻滞剂对阿霉素心肌病小鼠的疗效观察及对嗜铬粒蛋白A表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:慢性心力衰竭(chronic heart failure, CHF)是常见的临床综合征,伴有较高的发病率和致死率。β受体阻滞在治疗慢性心力衰竭中发挥有益作用。选择性β1受体阻滞剂美托洛尔和比索洛尔和非选择性β1受体阻滞剂卡维地络不仅能够改善心功能,还能降低慢性心力衰竭患者的致残率和致死率。但是,上述三种药物改善能力是否相同还有争议。在一项直接比较卡维地络和美托洛尔的临床试验中,卡维地络显示出了在改善生存率方面优于美托洛尔。美托洛尔、比索洛尔和卡维地络在治疗慢性心力衰竭有效性已经被广泛接受,但是现在还不明确这三种药物是否具有相同的疗效,还没有实验直接比较三种药物在慢性心力衰竭的作用及疗效。
     嗜铬粒蛋白A(chromogranin A, CgA)是一个由439个氨基酸组成的分子量为49千道尔顿的可溶性酸性蛋白质,在神经内分泌系统中广泛存在并发挥作用。研究发现外周血CgA水平在慢性心力衰竭及心肌梗死后心力衰竭患者中明显升高,与心功能不全的严重程度相关,并且是慢性心力衰竭病人死亡的一个独立预测因子。目前己明确导致心力衰竭发生发展的基本机制是心肌重塑,而神经内分泌的过度激活在心肌重塑的发生发展中具有重要作用,心力衰竭患者交感神经的过度激活导致疾病的进展和不良的预后。许多学者认为外周循环的CgA水平可能代表了机体神经内分泌活性。而β受体阻滞剂能够降低交感神经张力,但β受体阻滞剂是否可影响CgA的表达,目前尚未探索。
     本研究比较了卡维地络、美托洛尔和比索洛尔在慢性心力衰竭小鼠中的疗效以及三种药物对外周血及心肌CgA表达的影响。
     第一部分小鼠阿霉素心肌病心力衰竭模型的建立
     目的:探讨一种理想的建立小鼠阿霉素心肌病心力衰竭模型的方法。方法:20只C57BL/6小鼠和20只BALB/C小鼠分成四组。A组:C57BL/6(n=10),长期给药法;B组:C57BL/6(n=10),短期给药法;C组:BALB/C (n=10),短期给药法;D组:BALB/C (n=10),长期给药法。长期给药法:给予阿霉素2.0mg/kg腹腔注射,隔日一次,连续四次后改为一周一次,连续6周,总剂量为20mg/kg,总时间为8周;短期给药法:给予阿霉素2.5mg/kg腹腔注射,隔日一次连续6次,总剂量为15mg/kg,末次注射后再观察4周,总时间为6周。记录各组死亡的小鼠,实验前及结束时行心脏彩超检查。
     结果:在长期给药方法中(A组和D组),在C57BL/6小鼠成功诱导心力衰竭模型,并且死亡率较低(10%),而BALB/C小鼠虽然也成功的建立了阿霉素心肌病模型,但是死亡率较高(70%),难以接受。在短期给药组(B组和C组),两组死亡率没有明显差异,但是BALB/C小鼠在注射前后EF和LVIDD没有明显变化,意味着建模的失败。而C57BL/6小鼠短期给药法死亡率与长期给药法无明显区别,建模后心脏射血分数及左心室舒张末内径无明显区别,同时节约了2周时间。
     结论:C57BL/6小鼠比BALB/C小鼠更适合建立阿霉素心肌病心力衰竭模型,C57BL/6小鼠腹腔注射阿霉素,2.5mg/kg,隔日一次,连续6次,总量15mg/kg,连续观察4周是一种较为理想的建立阿霉素心肌病心力衰竭模型的方法。
     第二部分不同β受体阻滞剂在心力衰竭小鼠中的疗效比较
     目的:比较卡维地络、美托洛尔及比索洛尔对心力衰竭小鼠的疗效。
     方法:82只C57BL/6小鼠中7只作为对照组(CON)。剩下的75只腹腔注射阿霉素(2.5mg/kg,隔日一次,连续6次,总剂量15mg/kg)建立阿霉素心肌病心力衰竭模型。成功建立模型的60只小鼠随机分为5组:卡维地络(CAR)、美托洛尔(MET)、培哚普利(PER)、比索洛尔(BIS)及阿霉素组(DOX)。CAR,卡维地络,靶剂量8mg/kg/d,每日分两次给予;MET,美托洛尔,靶剂量20mg/kg/d,每日分两次给予;PER,培哚普利,靶剂量1.5mg/kg/d,每日一次给予;BIS,比索洛尔,靶剂量1.5mg/kg/d,每日一次给予。以上4种药物均溶于羧甲基纤维素钠中,DOX和CON组小鼠给予羧甲基纤维素钠。6组小鼠分别给予上述药物灌胃,从小剂量开始,隔日增加一次剂量,4次后达到靶剂量,再维持6周。建模前、建模后及干预后分别行心脏超声检查,实验结束时经尾动脉测量血压及心率,心肌切片行心脏病理检查。
     结果:DOX组2只小鼠死亡,其他组小鼠均存活。卡维地络、美托洛尔、比索洛尔在提高左心室射血分数,缩小左心室舒张末内径,减轻心肌病变程度具有相似的作用。
     结论:卡维地络、美托洛尔、比索洛尔在慢性心力衰竭小鼠中疗效类似。
     第三部分不同β受体阻滞剂对外周血及心肌嗜铬粒蛋白A表达的影响
     目的:比较卡维地络、美托洛尔及比索洛尔对心力衰竭小鼠外周血及心肌嗜铬粒蛋白A表达的影响。
     方法:动物模型同第二部分。实验结束前眼球取血用于ELISA检测外周血CgA的浓度,处死小鼠后截取心脏组织利用免疫组化及Western免疫印迹法检测心肌中CgA的表达。
     结果:DOX组外周血及心肌CgA表达较CON组升高,卡维地络、美托洛尔、比索洛尔没有明显降低外周血CgA的表达,只有卡维地络减少了心肌CgA的表达。
     结论:CgA尚不能作为慢性心力衰竭理想的标记物,不能根据其表达水平的变化来调整β受体阻滞剂的剂量。
Chronic heart failure is a common clinical syndrome with a high morbidity and mortality rate. Chronic beta-adrenergic receptor blockade is effective in treating heart failure. The beta-adrenergic receptor-selective blockers, metoprolol and bisoprolol, as well as carvedilol, a nonselective beta-adrenergic receptor antagonist with alpha1adrenergic receptor blocking and potent antioxidant activities, not only increase left ventricular systolic function but also reduce cardiac mortality and morbidity in patients with chronic heart failure. However, the extent of improvements produced by these agents varies. In a direct comparison study, carvedilol was shown to produce a greater survival benefit in patients with chronic heart failure when compared to metoprolol. There is broad consensus that these three drugs are effective in treating chronic heart failure. However, we do not know if one of them is superior to the others. There has not been a direct comparison of the three beta-blockers now widely used in clinical practice.
     Chromogranin A (CgA) is a49-kDa protein with439amino acids, and it has been identified as playing a role in the endocrine and nervous systems. Circulating CgA has been shown to increase in proportion to clinical severity and to be associated with prognosis in patients with chronic or postinfarction heart failure. It has been widely accepted that ventricle remodeling plays an important part in the development of heart failure. The overactivation of neuroendocrine system plays a detrimental role in ventricle remodeling. The overactivation of the sympathetic nerves in chronic heart failure results in the progression of the disease and poor progonosis. Markedly elevated plasma levels of CgA have been observed in patients with neuroendocrine tumors. Many scientists believe that circulating CgA may integrate neuroendocrine signals from various sources and thus represent an index of overall neuroendocrine activity. If beta-blockers influence the expression of CgA in the circulation and myocardium, circulating CgA may be a good marker for heart failure and may be used to adjust beta-blocker doses to achieve the best beta-blockade.
     In this study, we sought to explore the therapeutic effects of carvedilol, metoprolol and bisoprolol on doxorubicin-induced chronic heart failure in mice. Meanwhile, we examined their influence on the CgA expression in the myocardium and circulation.
     PART1:The induction of chronic heart failure in mice
     Objective:To develop an appropriate method to induce the model of chronic heart failure in mice with doxorubicin.
     Methods:Twenty C57BL/6mice and twenty BALB/C mice were divided into four groups. GROUP A:C57BL/6(n=10), long-term method; GROUP B:C57BL/6(n=10), short-term method; GROUP C:BALB/C (n=10), short-term method; GROUP D: BALB/C (n=10), long-term method. The long-term method:doxorubicin2.0mg/kg, every other day for4times, then once a week for6times, for a total cumulative dose of20mg/kg, total time is8weeks; the short-term method:doxorubicin2.5mg/kg, every other day for6times for a total cumulative dose of15mg/kg, then observe for another4weeks after the last injection, total time is6weeks. Record every death of the mouse in each group. Echocardiography was done before and after the study. Results:In the long-term method groups (GROUP A and GROUP D), chronic heart failure was successfully induced in C57BL/6mice and with a low death rate (30%).Though BALB/C mice also presented with chronic heart failure, the death rate (70%) was too high to accept. In the short-term method groups (GROUP B and GROUP C), there is no significant difference in survival rate between GROUP B and GROUP C (90%vs80%). But there were no obvious changes in efection fraction and left ventricular internal diameter during diastole after the doxorubicin injection in BALB/C mice, which mean the failure to induce heart failure. As far as C57BL/6was concerned, the short term method shared similar death rate, ejection fraction and left ventricular internal diameter during diastole with the long term method. Meanwhile, the short term method saved2weeks than the long-term method. Conclusions:C57BL/6mice are more appropriate than BALB/C mice to be used to induce chronic heart failure with doxorubicin.Intraperitoneal injection of doxorubicin in C57BL/6mice (2.5mg/kg, every other day for6times for a total cumulative dose of15mg/kg, then another4weeks) is a reliable method to induce chronic heart failure.
     PART2:Comparison of different beta-blockers on the therapeutic effects in chronic heart failure mice
     Objective:To compare the therapeutic effects of carvedilol, metoprolol and bisoprolol in mice with chronic heart failure.
     Methods:Seven mice were kept as controls (CON group) out of82C57BL/6mice. Seventy-five were injected intraperitoneally with doxorubicin,2.5mg/kg every other day6total times for a cumulative dose of15mg/kg. Before the first injection and4weeks after the last injection, echocardiography was performed to evaluate for systolic heart failure. Then, the mice with systolic heart failure were randomly assigned to one of the following groups:CAR, MET, PED, BIS and DOX. For the CAR group, carvedilol was administered twice a day at a target dose of8mg/kg/d. For the MET group, metoprolol was administered twice a day at a target dose of20mg/kg/d. For the PER group, perindopril was administered daily with a target dose of1.5mg/kg/d. For the BIS group, bisoprolol was administered daily with a target dose of1.5mg/kg/d. The DOX group did not receive any additional treatment. All drugs were dissolved in CMC (carboxymethyl cellulose) and administered intragastrically each day. The mice in the DOX and CON groups were given CMC daily. All drugs were initially given low doses, titrated to the target doses within a week, and then maintained at this dose for6weeks. At the end of the study, echocardiography, noninvasive measurement of the tail blood pressure and rate and histological analyses were done.
     Results:Two mice in the DOX group died, the others survived. Carvedilol, metoprolol and bisoprolol shared the same ability in improving the left ventricle ejection fraction and decreasing the enlarged left ventricular internal diameter during diastole and ameliorating the extent of injury of the heart.
     Conclusions:Our study suggests that carvedilol, metoprolol and bisoprolol share the same therapeutic ability.
     PART3:Comparison of different beta-blockers on the expression of chromogranin A in chronic heart failure mice
     Objective:To compare influences of carvedilol, metoprolol and bisoprolol on the expression of chromogranin A both in circulation and myocardium in mice with chronic heart failure.
     Methods:Animal study was the same as was shown in the second part of the study. Serum chromogranin A (CgA) concentrations were detected by enzyme-linked immunosorbent assay. Myocardial expressions of CgA were detected by Immunohistochemistry and Western Blot.
     Results:Although circulating CgA was elevated in heart failure mice, the three beta-blockers failed to lower it and circulating CgA failed to show a good correlation with ejection fraction. The myocardial expression of CgA was elevated about50%percent in the DOX group compared to the CON group. Carvedilol was the only drug among the four that was successful in lowering the myocardial expression of CgA.
     Conclusion:Circulating CgA may not be a good marker for heart failure or the best choice in adjusting beta-blocker doses to achieve the best beta-blockade.
引文
[1]DIEZ J, ERTL G. A translational approach to myocardial remodelling[J]. Cardiovasc Res,2009,81 (3):409-411.
    [2]KAYE D M, LEFKOVITS J, JENNINGS G L, et al. Adverse consequences of high sympathetic nervous activity in the failing human heart[J]. J Am Coll Cardiol, 1995,26(5):1257-1263.
    [3]FLORAS J S. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure[J]. J Am Coll Cardiol,1993,22(4 Suppl A):72A-84A.
    [4]COHN J N, LEVINE T B, OLIVARI M T, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure[J]. N Engl J Med, 1984,311(13):819-823.
    [5]SWYANHEDAUW B. Molecular mechanisms of myocardial remodeling[J]. Physiol Rev,1999,79(1):215-262.
    [6]CLELAND J G, MCGOWAN J, CLARK A, et al. The evidence for beta blockers in heart failure[J]. BMJ,1999,318(7187):824-825.
    [7]PACKER M, ANTONOPOULOS G V, BERLIN J A, et al. Comparative effects of carvedilol and metoprolol on left ventricular ejection fraction in heart failure: results of a meta-analysis[J]. Am Heart J,2001,141(6):899-907.
    [8]METRA M, GIUBBINI R, NODARI S, et al. Differential effects of beta-blockers in patients with heart failure:A prospective, randomized, double-blind comparison of the long-term effects of metoprolol versus carvedilol [J]. Circulation,2000,102(5):546-551.
    [9]DI LENARDA A, SABBANINI G, SALVATORE L, et al. Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. The Heart-Muscle Disease Study Group[J]. J Am Coll Cardiol,1999,33(7):1926-1934.
    [10]SANDERSON J E, CHAN S K, YIP G, et al. Beta-blockade in heart failure:a comparison of carvedilol with metoprolol[J]. J Am Coll Cardiol, 1999,34(5):1522-1528.
    [11]POOLE-WILSON P A, SWEDBERG K, CLELAND J G, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET):randomised controlled trial[J]. Lancet,2003,362(9377):7-13.
    [12]SCHERUBL H, GRABOWSKI P. The chromogranin-secretogranin family.[J]. N Engl J Med,2003,348(25):2579-2580,2579-2580.
    [13]BANKS P, HELLE K. The release of protein from the stimulated adrenal medulla.[J]. Biochem J,1965,97(3):40C-41C.
    [14]HELLE K B. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system:comparative and functional aspects.[J]. Biol Rev Camb Philos Soc,2004,79(4):769-794.
    [15]PIERONI M, CORTI A, TOTA B, et al. Myocardial production of chromogranin A in human heart:a new regulatory peptide of cardiac function.[J]. Eur Heart J, 2007,28(9):1117-1127.
    [16]CECONI C, FERRARI R, BACHETTI T, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.[J]. Eur Heart J, 2002,23(12):967-974.
    [17]ESTENSEN M E, HOGNESTAD A, SYVERSEN U, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction.[J]. Am Heart J,2006,152(5):921-927.
    [18]CECONI C, FERRARI R, BACHETTI T, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.[J]. Eur Heart J, 2002,23(12):967-974.
    [19]WOHLSCHLAEGER J, VON WINTERFELD M, MILTING H, et al. Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading.[J]. J Heart Lung Transplant,2008,27(4):442-449.
    [20]PIERONI M, CORTI A, TOTA B, et al. Myocardial production of chromogranin A in human heart:a new regulatory peptide of cardiac function.[J]. Eur Heart J, 2007,28(9):1117-1127.
    [21]O'CONNOR D T, PANDLAN M R, CARLTON E, et al. Rapid radioimmunoassay of circulating chromogranin A:in vitro stability, exploration of the neuroendocrine character of neoplasia, and assessment of the effects of organ failure.[J]. Clin Chem,1989,35(8):1631-1637.
    [1]汪玉杰.扩张型心肌病的诊断与治疗[J].中国社区医师:医学专业,2010(31):36.
    [2]王旭芳.扩张型心肌病的诊断与治疗临床探讨[J].中国医药指南:学术版,2009,7(7):64.
    [3]HERSHBERGER R E, KUSHNER J D, PARKS S B. Dilated Cardiomyopathy Overview[J].1993.
    [4]亢晓冬,陈河,等.阿霉素对兔心功能及心肌一氧化氮合酶表达的影响[J].实用癌症杂志,2001,16(4):377-378.
    [5]SINGAL P K, ILISKOVIC N. Doxorubicin-induced cardiomyopathy.[J]. N Engl J Med,1998,339(13):900-905.
    [6]CHRISTIANSEN S, STYPMANN J J, JAHN U R, et al. Partial left ventriculectomy in modified adriamycin-induced cardiomyopathy in the dog.[J]. J Heart Lung Transplant,2003,22(3):301-308.
    [7]KONISHI M, HARAGUCHI G, OHIGASHI H, et al. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation.[J]. Cardiovasc Res,2011,89(2):309-319.
    [8]DELGADO R R, NAWAR M A, ZEWAIL A M, et al. Cyclooxygenase-2 inhibitor treatment improves left ventricular function and mortality in a murine model of doxorubicin-induced heart failure.[J]. Circulation,2004,109(11):1428-1433.
    [9]YALCIN E, ORUC E, CAVUSOGLU K, et al. Protective role of grape seed extract against doxorubicin-induced cardiotoxicity and genotoxicity in albino mice.[J]. J Med Food,2010,13(4):917-925.
    [10]李玉玲,杨建业,唐俊明,等.阿霉素诱导大鼠心衰模型不同方案的比较[J].中国比较医学杂志,2006,16(2):93-96.
    [11]KALYANARAMAN B, JOSEPH J, KALIVENDI S, et al. Doxorubicin-induced apoptosis:implications in cardiotoxicity.[J]. Mol Cell Biochem, 2002,234-235(1-2):119-124.
    [12]TAKEMURA G, FUJIWARA H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management.[J]. Prog Cardiovasc Dis, 2007,49(5):330-352.
    [13]AROLA O J, SARASTE A, PULKKI K, et al. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis.[J]. Cancer Res,2000,60(7):1789-1792.
    [14]李世红,王绍军.阿霉素心脏毒性中的细胞凋亡[J].心血管病学进展,2005,26(2):206-209.
    [15]MINOTTI G, MENNA P, SALVATORELLI E, et al. Anthracyclines:molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity.[J]. Pharmacol Rev,2004,56(2):185-229.
    [16]李书国,毛小波,张峰,等.阿霉素诱导慢性充血性心力衰竭模型制作的改良方案[J].中国比较医学杂志,2006,16(7):415-418.
    [17]TERAOKA K, HIRANO M, YAMAGUCHI K, et al. Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats.[J]. Eur J Heart Fail, 2000,2(4):373-378.
    [18]曾志羽,马国添,钟国强.扩张型心肌病动物模型的研究进展[J].中国比较医学杂志,2009,19(1):59-61.
    [19]BRECKENRIDGE R. Heart failure and mouse models.[J]. Dis Model Mech, 2010,3(3-4):138-143.
    [20]KIM K H, OUDIT G Y, BACKX P H. Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway.[J]. J Pharmacol Exp Ther,2008,324(1):160-169.
    [21]FISHER P W, SALLOUM F, DAS A, et al. Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity.[J]. Circulation, 2005,111(13):1601-1610.
    [22]SUN X, ZHOU Z, KANG Y J. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart.[J]. Cancer Res, 2001,61(8):3382-3387.
    [23]BILLINGHAM M E, MASON J W, BRISTOW M R, et al. Anthracycline cardiomyopathy monitored by morphologic changes.[J]. Cancer Treat Rep, 1978,62(6):865-872.
    [24]MAJNO G, JORIS I. Apoptosis, oncosis, and necrosis. An overview of cell death.[J]. Am J Pathol,1995,146(1):3-15.
    [25]PODESTA A, DELLA T P, PINCIROLI G, et al. Evaluation of 4'-iodo-4'-deoxydoxorubicin-induced cardiotoxicity in two experimental rat models.[J]. Toxicol Pathol,1994,22(1):68-71.
    [26]CHENG H, WANG S, Jo Y I, et al. Overexpression of cyclooxygenase-2 predisposes to podocyte injury.[J]. J Am Soc Nephrol,2007,18(2):551-559.
    [27]FOGO A B. Animal models of FSGS:lessons for pathogenesis and treatment.[J]. Semin Nephrol,2003,23(2):161-171.
    [28]支勇,曹式丽.阿霉素肾病动物模型的国外研究进展[J].中国中西医结合肾病杂志,2008,9(10):933-935.
    [1]刘俊松,王瑞淦,施文兴.β受体阻滞剂治疗慢性心力衰竭作用机制规律的探讨[J].医学与哲学:临床决策论坛版,2007,28(5):28-30.
    [2]DIEZ J, ERTL G. A translational approach to myocardial remodelling[J]. Cardiovasc Res,2009,81 (3):409-411.
    [3]KAYE D M, LEFKOVITS J, JENNINGS G L, et al. Adverse consequences of high sympathetic nervous activity in the failing human heart[J]. J Am Coll Cardiol, 1995,26(5):1257-1263.
    [4]FLORAS J S. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure[J]. J Am Coll Cardiol,1993,22(4 Suppl A):72A-84A.
    [5]COHN J N, LEVINE T B, OLIVARI M T, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure[J]. N Engl J Med, 1984,311(13):819-823.
    [6]REMME W J, SWEDBERG K. Guidelines for the diagnosis and treatment of chronic heart failure[J]. Eur Heart J,2001,22(17):1527-1560.
    [7]CLELAND J G, MCGOWAN J, CLARK A, et al. The evidence for beta blockers in heart failure[J]. BMJ,1999,318(7187):824-825.
    [8]PACKER M, COATS A J, FOWLER M B, et al. Effect of carvedilol on survival in severe chronic heart failure[J]. N Engl J Med,2001,344(22):1651-1658.
    [9]SHIBATA M C, FLATHERr M D, WANG D. Systematic review of the impact of beta blockers on mortality and hospital admissions in heart failure[J]. Eur J Heart Fail, 2001,3(3):351-357.
    [10]The Cardiac Insufficiency Bisoprolol Study Ⅱ (CIBIS-Ⅱ):a randomised trial[J]. Lancet,1999,353(9146):9-13.
    [11]Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF)[J]. Lancet,1999,353(9169):2001-2007.
    [12]PACKER M, BRISTOW M R, COHN J N, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group[J]. N Engl J Med,1996,334(21):1349-1355.
    [13]WAAGSTEIN F, HJALMARSON A, VARNAUSKAS E, et al. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy[J]. Br Heart J, 1975,37(10):1022-1036.
    [14]GILBERT E M, ABRAHAM W T, OLSEN S, et al. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart[J]. Circulation, 1996,94(11):2817-2825.
    [15]PACKER M, ANTONOPOULOS G V, BERLIN J A, et al. Comparative effects of carvedilol and metoprolol on left ventricular ejection fraction in heart failure: results of a meta-analysis[J]. Am Heart J,2001,141(6):899-907.
    [16]METRA M, GIUBBINI R, NODARI S, et al. Differential effects of beta-blockers in patients with heart failure:A prospective, randomized, double-blind comparison of the long-term effects of metoprolol versus carvedilol [J]. Circulation, 2000,102(5):546-551.
    [17]DI LENARDA A, SABBADINI G, SALVATORE L, et al. Long-term effects of carvedilol in idiopathic dilated cardiomyopathy with persistent left ventricular dysfunction despite chronic metoprolol. The Heart-Muscle Disease Study Group[J]. J Am Coll Cardiol,1999,33(7):1926-1934.
    [18]SANDERSON J E, CHAN S K, YIP G, et al. Beta-blockade in heart failure:a comparison of carvedilol with metoprolol[J]. J Am Coll Cardiol, 1999,34(5):1522-1528.
    [19]POOLE-WILSON P A, SWEDBERG K, CLELAND J G, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET):randomised controlled trial[J]. Lancet,2003,362(9377):7-13.
    [20]ZINGARELLI B, SALZMAN A L, SZABO C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury.[J]. Circ Res, 1998,83(1):85-94.
    [21]李雄文.慢性心力衰竭患者1296例临床流行病学分析[J].实用心脑肺血管病杂志,2008,16(6):71-72.
    [22]无.中国部分地区1980、1990、2000年慢性心力衰竭住院病例回顾性调查[J].中华心血管病杂志,2002,30(8):450-454.
    [23]SWEDBERG K, CLELAND J, DERGIE H, et al. Guidelines for the diagnosis and treatment of chronic heart failure:executive summary (update 2005):The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology [J]. Eur Heart J,2005,26(11):1115-1140.
    [24]CONSTANT J. A review of why and how we may use beta-blockers in congestive heart failure[J]. Chest,1998,113(3):800-808.
    [25]DI LENARDA A, DE MARIA R, GAVAZZI A, et al. Long-term survival effect of metoprolol in dilated cardiomyopathy. The SPIC (Italian Multicentre Cardiomyopathy Study) Group[J]. Heart,1998,79(4):337-344.
    [26]WAAGSTEIN F, BRISTOW M R, SWEDBERG K, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group [J]. Lancet, 1993,342(8885):1441-1446.
    [27]马宏,陈桂芳,许新春.β受体阻滞剂治疗充血性心力衰竭临床观察[J].中国心血管杂志,2003,8(4):279-280.
    [28]纪宝华.心力衰竭治疗的进展[J].中华内科杂志,2000,39(1):66-68.
    [29]杨顺昱,麦炜颐.卡维地洛与比索洛尔治疗慢性心力衰竭的疗效比较研究[J].中国实用内科杂志,2007,27(18):1451-1453.
    [30]MEHTA P A, MCDONAGH S, POOLE-WILSON P A, et al. Heart failure in a district general hospital:are target doses of beta-blockers realistic?[J]. QJM, 2004,97(3):133-139.
    [31]陈晖.β-阻滞剂在慢性心力衰竭患者中的应用[J].医药论坛杂志,2009,30(2):38-40.
    [32]戴闺柱.心力衰竭治疗的新问题:神经内分泌不协调[J].中华心血管病杂志,2003,31(1):1-2.
    [33]PACKER M, FOWLER M B, ROECKER E B, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure:results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study [J]. Circulation,2002,106(17):2194-2199.
    [34]呼日乐巴特尔,付强,梁晓光.卡维地洛的特性及其在扩张型心肌病心力衰竭中的应用[J].中西医结合心脑血管病杂志,2007,5(4):336-338.
    [35]ARUOMA O I. Scavenging of hypochlorous acid by carvedilol and ebselen in vitro[J]. Gen Pharmacol,1997,28(2):269-272.
    [36]FRISHMAN W H. Carvedilol[J].N Engl J Med,1998,339(24):1759-1765.
    [37]RUFFOLO R J, FEUERSTEIN G Z. Carvedilol:preclinical profile and mechanisms of action in preventing the progression of congestive heart failure[J]. Eur Heart J, 1998,19 Suppl B:B19-B24.
    [38]YUE T L, WANG X, GU J L, et al. Carvedilol prevents low-density lipoprotein (LDL)-enhanced monocyte adhesion to endothelial cells by inhibition of LDL oxidation[J]. Eur J Pharmacol,1995,294(2-3):585-591.
    [39]YUE T L, MCKENNA P J, Gu J L, et al. Carvedilol, a new antihypertensive agent, prevents lipid peroxidation and oxidative injury to endothelial cells[J]. Hypertension,1993,22(6):922-928.
    [40]OHLSTEIN E H, DOUGLAS S A, SUNG C P, et al. Carvedilol, a cardiovascular drug, prevents vascular smooth muscle cell proliferation, migration, and neointimal formation following vascular injury [J]. Proc Natl Acad Sci U S A, 1993,90(13):6189-6193.
    [41]CHEN J W, LI N F Y, CHEN Y H, et al. Carvedilol inhibits tumor necrosis factor-alpha-induced endothelial transcription factor activation, adhesion molecule expression, and adhesiveness to human mononuclear cells[J]. Arterioscler Thromb Vasc Biol,2004,24(11):2075-2081.
    [42]LEWIS R, MACLEAN D, IOANNIDES C, et al. A comparison of bisoprolol and atenolol in the treatment of mild to moderate hypertension [J]. Br J Clin Pharmacol,1988,26(1):53-59.
    [43]NAKAMURA K, KUSANO K, NAKAMURA Y, et al. Carvedilol decreases elevated oxidative stress in human failing myocardium[J]. Circulation, 2002,105(24):2867-2871.
    [44]KAWAI K, QIN F, SHITE J, et al. Importance of antioxidant and antiapoptotic effects of beta-receptor blockers in heart failure therapy[J]. Am J Physiol Heart Circ Physiol,2004,287(3):H1003-H1012.
    [45]OKAFOR C C, PERREAULT-MICALE C, HAJJAR R J, et al. Chronic treatment with carvedilol improves ventricular function and reduces myocyte apoptosis in an animal model of heart failure[J]. BMC Physiol,2003,3:6.
    [46]BRISTOW M R, FELDMAN A M, ADAMS K J, et al. Selective versus nonselective beta-blockade for heart failure therapy:are there lessons to be learned from the COMET trial?[J]. J Card Fail,2003,9(6):444-453.
    [47]万元春,安平.比索洛尔和卡维地洛治疗慢性心力衰竭疗效比较[J].中国实用医药,2009,4(24):54-56.
    [48]杨璇,王旭.比索洛尔与卡维地络治疗慢性充血性心力衰竭的疗效观察[J].现代中西医结合杂志,2009,18(30):3689-3690.
    [49]贺汉军,吕和平,何运昉.卡维地洛与美托洛尔治疗慢性充血性心力衰竭的疗效对比[J].中国药业,2010,19(9):66-67.
    [50]叶胜桢.美托洛尔与卡维地络治疗慢性心力衰竭疗效的对比观察[J].中国医药指南,2010,8(24):55-57.
    [51]BAKRIS G L, FONSECA V, KATHOLI R E, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension:a randomized controlled trial[J]. JAMA,2004,292(18):2227-2236.
    [52]BARTHOLOMEU J B, VANZELLI A S, ROLIM N P, et al. Intracellular mechanisms of specific beta-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure[J]. J Mol Cell Cardiol, 2008,45(2):240-249.
    [53]ALBERT N M. Switching to once-daily evidence-based [beta]-blockers in patients with systolic heart failure or left ventricular dysfunction after myocardial infarction[J]. Crit Care Nurse,2007,27(6):62-72.
    [54]TENERO D M, HENDERSON L S, BAIDOO C A, et al. Pharmacokinetic properties of a new controlled-release formulation of carvedilol [J]. Am J Cardiol, 2006,98(7A):5L-16L.
    [55]TENERO D M, HENDERSON L S, CAMPANILE A M, et al. Development of a pharmacokinetic/pharmacodynamic model for carvedilol to predict beta1-blockade in patients with congestive heart failure[J]. Am J Cardiol, 2006,98(7A):27L-31L.
    [56]PACKER M, LUKAS M A, TENERO D M, et al. Pharmacokinetic profile of controlled-release carvedilol in patients with left ventricular dysfunction associated with chronic heart failure or after myocardial infarction[J]. Am J Cardiol,2006,98(7A):39L-45L.
    [57]ZHAN D Y, MORIMOTO S, Du CK, et al. Therapeutic effect of {beta}-adrenoceptor blockers using a mouse model of dilated cardiomyopathy with a troponin mutation[J]. Cardiovasc Res,2009,84(1):64-71.
    [58]杨英珍,王齐兵.扩张型心肌病的诊断和治疗研究进展[J].中华心血管病杂志,2003,31(9):645-649.
    [1]DIEZ J, ERTL G. A translational approach to myocardial remodelling[J]. Cardiovasc Res,2009,81 (3):409-411.
    [2]SCHERUBL H, GRABOWSKI P. The chromogranin-secretogranin family.[J]. N Engl J Med,2003,348(25):2579-2580,2579-2580.
    [3]TAUPENOTL, HARPER K L, O'CONNOR D T. The chromogranin-secretogranin family.[J]. N Engl J Med,2003,348(12):1134-1149.
    [4]BANKS P, HELLE K. The release of protein from the stimulated adrenal medulla.[J]. Biochem J,1965,97(3):40C-41C.
    [5]HELLE K B. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system:comparative and functional aspects.[J]. Biol Rev Camb Philos Soc,2004,79(4):769-794.
    [6]MAHAPATRA N R, TAUPENOT L, COUREL M, et al. The trans-Golgi proteins SCLIP and SCG10 interact with chromogranin A to regulate neuroendocrine secretion[J]. Biochemistry,2008,47(27):7167-7178.
    [7]HELLE K B, AUNIS D. A physiological role for the granins as prohormones for homeostatically important regulatory peptides? A working hypothesis for future research.[J]. Adv Exp Med Biol,2000,482:389-397.
    [8]PIERONI M, CORTI A, TOTA B, et al. Myocardial production of chromogranin A in human heart:a new regulatory peptide of cardiac function.[J]. Eur Heart J, 2007,28(9):1117-1127.
    [9]CECONI C, FERRARI R, BACHETTI T, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.[J]. Eur Heart J, 2002,23(12):967-974.
    [10]ESTENSEN M E, HOGNESTAD A, SYVERSEN U, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction.[J]. Am Heart J,2006,152(5):921-927.
    [11]CECONI C, FERRARI R, BACHETTI T, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.[J]. Eur Heart J, 2002,23(12):967-974.
    [12]WOHLSCHLAEGER J, VON WINTERFELDM, MILTING H, et al. Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. [J].J Heart Lung Transplant,2008,27(4):442-449.
    [13]PIERONI M, CORTI A, TOTA B, et al. Myocardial production of chromogranin A in human heart:a new regulatory peptide of cardiac function.[J]. Eur Heart J, 2007,28(9):1117-1127.
    [14]谢烨卿,陈瑞珍.嗜铬粒蛋白A的基础研究与临床意义[J].中国病理生理杂志,2010,26(7):1440-1443.
    [15]谢烨卿,陈瑞珍,虞勇,等.扩张型心肌病中嗜铬粒蛋白A的表达及其与心肌纤维化的关系[J].中华心血管病杂志,2009,37(12):1081-1084.
    [16]谢烨卿,陈瑞珍,陈萍,等.嗜铬粒蛋白A在扩张型心肌病中的表达[J].中国分子心脏病学杂志,2009,9(1):7-10.
    [17]CAMPANA D, NORI F, PISCITELLI L, et al. Chromogranin A:is it a useful marker of neuroendocrine tumors?[J]. J Clin Oncol,2007,25(15):1967-1973.
    [18]ERIKSSON B, OBERG K, STRIDSBERG M. Tumor markers in neuroendocrine tumors[J]. Digestion,2000,62 Suppl 1:33-38.
    [19]OBERG K. Biochemical diagnosis of neuroendocrine GEP tumor[J]. Yale J Biol Med,1997,70(5-6):501-508.
    [20]MODLIN I M, LATICH I, ZIKUSOKA M, et al. Gastrointestinal carcinoids:the evolution of diagnostic strategies [J]. J Clin Gastroenterol,2006,40(7):572-582.
    [21]ARDILL J E, ERIKKSON B. The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut[J]. Endocr Relat Cancer,2003,10(4):459-462.
    [22]杨晓鸥,钱家鸣,李景南.血浆嗜铬粒蛋白A对胃肠胰腺内分泌肿瘤的诊断价值[J].胃肠病学,2008,13(4):205-208.
    [23]李刚,韩毅,李凯,等.嗜铬粒蛋白A在前列腺癌诊断中的意义[J].中华泌尿外科杂志,2003,24(5):329-330.
    [24]O'CONNOR D T, PANDLAN M R, CARLTON E, et al. Rapid radioimmunoassay of circulating chromogranin A:in vitro stability, exploration of the neuroendocrine character of neoplasia, and assessment of the effects of organ failure. [J]. Clin Chem,1989,35(8):1631-1637.
    [25]FROMOWITZ F B, VIOLA M V, CHAO S, et al. ras p21 expression in the progression of breast cancer[J]. Hum Pathol,1987,18(12):1268-1275.
    [26]ESTENSEN M E, HOGNESTAD A, SYVERSEN U, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction.[J]. Am Heart J,2006,152(5):921-927.
    [27]ROSJO H, MASSON S, LATINI R, et al. Prognostic value of chromogranin A in chronic heart failure:data from the GISSI-Heart Failure trial.[J]. Eur J Heart Fail, 2010,12(6):549-556.
    [28]OMLAND T, DICKSTEIN K, SYVERSEN U. Association between plasma chromogranin A concentration and long-term mortality after myocardial infarction.[J]. Am J Med,2003,114(1):25-30.
    [29]DIMSDALE J E, O'CONNOR D T, ZIEGLER M, et al. Chromogranin A correlates with norepinephrine release rate.[J]. Life Sci,1992,51 (7):519-525.
    [30]CRYER P E, WORTSMAN J, SHAH S D, et al. Plasma chromogranin A as a marker of sympathochromaffin activity in humans.[J]. Am J Physiol,1991,260(2 Pt 1):E243-E246.
    [31]TAKIYYUDDIN M A, CERVENKA J H, SULLIVAN P A, et al. Is physiologic sympathoadrenal catecholamine release exocytotic in humans?[J]. Circulation, 1990,81(1):185-195.
    [32]CORTI A, FERRARI R, CECONI C. Chromogranin A and tumor necrosis factor-alpha (TNF) in chronic heart failure.[J]. Adv Exp Med Biol, 2000,482:351-359.
    [1]SCHERUBL H, GRABOWSKI P. The chromogranin-secretogranin family.[J]. N Engl J Med,2003,348(25):2579-2580,2579-2580.
    [2]BANKS P, HELLE K. The release of protein from the stimulated adrenal medulla.[J]. Biochem J,1965,97(3):40C-41C.
    [3]HELLE K B. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system:comparative and functional aspects.[J]. Biol Rev Camb Philos Soc,2004,79(4):769-794.
    [4]IACANGELO A, OKAYAMA H, EIDEN L E. Primary structure of rat chromogranin A and distribution of its mRNA.[J]. FEBS Lett,1988,227(2):115-121.
    [5]PEERONI M, CORTI A, TOTA B, et al. Myocardial production of chromogranin A in human heart:a new regulatory peptide of cardiac function.[J]. Eur Heart J, 2007,28(9):1117-1127.
    [6]MAHAPATRA N R, TAUPENOT L, COUREL M, et al. The trans-Golgi proteins SCLIP and SCG10 interact with chromogranin A to regulate neuroendocrine secretion.[J]. Biochemistry,2008,47(27):7167-7178.
    [7]TANG K, Wu H, MAHATA S K, et al. Stimulus-transcription coupling in pheochromocytoma cells. Promoter region-specific activation of chromogranin a biosynthesis.[J]. J Biol Chem,1996,271(45):28382-28390.
    [8]HUH Y H, KIM K D, Yoo S H. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels.[J]. Biochemistry, 2007,46(49):14032-14043.
    [9]KIM T, TAO-CHENG J H, EIDEN L E, et al. Chromogranin A, an "on/off switch controlling dense-core secretory granule biogenesis.[J]. Cell, 2001,106(4):499-509.
    [10]STETTLER H, BEURET N, PRESCIANOTTO-BASCHONG C, et al. Determinants for chromogranin A sorting into the regulated secretory pathway are also sufficient to generate granule-like structures in non-endocrine cells.[J]. Biochem J, 2009,418(1):81-91.
    [11]MONTERO-HADJADJE M, ELIAS S, CHEVALIER L, et al. Chromogranin a promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells:Role of conserved N- and C-terminal peptides.[J]. J Biol Chem, 2009.
    [12]STRUB J M, SOROKINE O, VAN DORSSELAER A, et al. Phosphorylation and O-glycosylation sites of bovine chromogranin A from adrenal medullary chromaffin granules and their relationship with biological activities.[J]. J Biol Chem,1997,272(18):11928-11936.
    [13]TAUPENOT L, HAPPER K L, O'CONNOR D T. The chromogranin-secretogranin family.[J]. N Engl J Med,2003,348(12):1134-1149.
    [14]HUH Y H, JEON S H, Yoo S H. Chromogranin B-induced secretory granule biogenesis:comparison with the similar role of chromogranin A.[J]. J Biol Chem,2003,278(42):40581-40589.
    [15]FERRERO E, SCABINI S, MAGNI E, et al. Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage.[J]. FASEB J, 2004,18(3):554-556.
    [16]FERRERO E, MAGNI E, CURNIS F, et al. Regulation of endothelial cell shape and barrier function by chromogranin A.[J]. Ann N Y Acad Sci,2002,971:355-358.
    [17]LILLIE E O, MAHATA M, KHANDRIKA S, et al. Heredity of endothelin secretion: human twin studies reveal the influence of polymorphism at the chromogranin A locus, a novel determinant of endothelial function.[J]. Circulation, 2007,115(17):2282-2291.
    [18]GLATTARD E, ANGELONE T, STRUB J M, et al. Characterization of natural vasostatin-containing peptides in rat heart.[J]. FEBS J,2006,273(14):3311-3321.
    [19]SCHOBER M, HOWE P R, SPERK G, et al. An increased pool of secretory hormones and peptides in adrenal medulla of stroke-prone spontaneously hypertensive rats.[J]. Hypertension,1989,13(5):469-474.
    [20]TAKIYYUBBIN M A, DE NICOLA L, GABBAI F B, et al. Catecholamine secretory vesicles. Augmented chromogranins and amines in secondary hypertension.[J]. Hypertension,1993,21(5):674-679.
    [21]MAHAPATRA N R, O'CONNOR D T, VAINGANKAR S M, et al. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog.[J]. J Clin Invest,2005,115(7):1942-1952.
    [22]MONTESINOS M S, MACHADO J D, CAMACHO M, et al. The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse.[J]. J Neurosci,2008,28(13):3350-3358.
    [23]MAHATA S K, MAHAPATRA N R, MAHATA M, et al. Catecholamine secretory vesicle stimulus-transcription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin. [J]. J Biol Chem, 2003,278(34):32058-32067.
    [24]MAHATA S K, MAHATA M, WEN G, et al. The catecholamine release-inhibitory "catestatin" fragment of chromogranin a:naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses.[J]. Mol Pharmacol,2004,66(5):1180-1191.
    [25]TAKIYYUDDIN M A, PARMER R J, KAILASAM M T, et al. Chromogranin A in human hypertension. Influence of heredity.[J]. Hypertension, 1995,26(1):213-220.
    [26]O'CONNOR D T, KAILASAM M T, KENNEDY B P, et al. Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension.[J]. J Hypertens,2002,20(7):1335-1345.
    [27]O'CONNOR D T, ZHU G, RAO F, et al. Heritability and genome-wide linkage in US and australian twins identify novel genomic regions controlling chromogranin a: implications for secretion and blood pressure.[J]. Circulation, 2008,118(3):247-257.
    [28]BILEK R, SAFARIK L, CIPROVA V, et al. Chromogranin A, a member of neuroendocrine secretory proteins as a selective marker for laboratory diagnosis of pheochromocytoma.[J]. Physiol Res,2008,57 Suppl 1:S171-S179.
    [29]RAO F, WEN G, GAYEN J R, et al. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352-372)):naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension.[J]. Circulation,2007,115(17):2271-2281.
    [30]BISWAS N, VAINGANKAR S M, MAHATA M, et al. Proteolytic cleavage of human chromogranin a containing naturally occurring catestatin variants:differential processing at catestatin region by plasmin.[J]. Endocrinology, 2008,149(2):749-757.
    [31]CHEN Y, RAO F, RODRIGUEZ-FLORES J L, et al. Naturally occurring human genetic variation in the 3'-untranslated region of the secretory protein chromogranin A is associated with autonomic blood pressure regulation and hypertension in a sex-dependent fashion.[J]. J Am Coll Cardiol, 2008,52(18):1468-1481.
    [32]JANSSON A M, ROSJO H, OMLAND T, et al. Prognostic value of circulating chromogranin A levels in acute coronary syndromes.[J]. Eur Heart J, 2009,30(1):25-32.
    [33]OMLAND T, DICKSTEIN K, SYVERSEN U. Association between plasma chromogranin A concentration and long-term mortality after myocardial infarction.[J]. Am J Med,2003,114(1):25-30.
    [34]ESTENSEN M E, HOGNESTAD A, SYVERSEN U, et al. Prognostic value of plasma chromogranin A levels in patients with complicated myocardial infarction. [J]. Am Heart J,2006,152(5):921-927.
    [35]CECONI C, FERRARI R, BACHETTI T, et al. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality.[J]. Eur Heart J, 2002,23(12):967-974.
    [36]DIEPLINGER B, GEGENHUBER A, STRUCK J, et al. Chromogranin A and C-terminal endothelin-1 precursor fragment add independent prognostic information to amino-terminal proBNP in patients with acute destabilized heart failure.[J]. Clin Chim Acta,2009,400(1-2):91-96.
    [37]WOHLSCHLAEGER J, VON WINTERFELD M, MILTING H, et al. Decreased myocardial chromogranin a expression and colocalization with brain natriuretic peptide during reverse cardiac remodeling after ventricular unloading. [J]. J Heart Lung Transplant,2008,27(4):442-449.
    [38]MAHAPATRA N R. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure.[J]. Cardiovasc Res,2008,80(3):330-338.
    [39]MAHATA S K, O'CONNOR D T, MAHATA M, et al. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist.[J]. J Clin Invest, 1997,100(6):1623-1633.
    [40]MAHATA S K, MAHATA M, PARMER R J, et al. Desensitization of catecholamine release. The novel catecholamine release-inhibitory peptide catestatin (chromogranin a344-364) acts at the receptor to prevent nicotinic cholinergic tolerance.[J]. J Biol Chem,1999,274(5):2920-2928.
    [41]KRUGER P G, MAHATA S K, HELLE K B. Catestatin (CgA344-364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides.[J]. Regul Pept,2003,114(1):29-35.
    [42]TSIGELNY I, MAHATA S K, TAUPENOT L, et al. Mechanism of action of chromogranin A on catecholamine release:molecular modeling of the catestatin region reveals a beta-strand/loop/beta-strand structure secured by hydrophobic interactions and predictive of activity. [J]. Regul Pept,1998,77(1-3):43-53.
    [43]MAHATA S K, MAHATA M, WALADE A R, et al. Primary structure and function of the catecholamine release inhibitory peptide catestatin (chromogranin A(344-364)):identification of amino acid residues crucial for activity.[J]. Mol Endocrinol,2000,14(10):1525-1535.
    [44]ANGELONE T, QUINTIERI A M, BRAR B K, et al. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism.[J]. Endocrinology, 2008,149(10):4780-4793.
    [45]TOTA B, QUINTIERI A M, DI FELICE V, et al. New biological aspects of chromogranin A-derived peptides:focus on vasostatins.[J]. Comp Biochem Physiol A Mol Integr Physiol,2007,147(1):11-18.
    [46]AARDAL S, HELLE K B. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. [J]. Regul Pept,1992,41(1):9-18.
    [47]IMBROGNO S, ANGELONE T, CORTI A, et al. Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla):negative inotropy and mechanism of action.[J]. Gen Comp Endocrinol, 2004,139(1):20-28.
    [48]CORTI A, MANNARINO C, MAZZA R, et al. Vasostatins exert negative inotropism in the working heart of the frog.[J]. Ann N Y Acad Sci,2002,971:362-365.
    [49]TOTA B, ANGELONE T, MAZZA R, et al. The chromogranin A-derived vasostatins: new players in the endocrine heart.[J]. Curr Med Chem,2008,15(14):1444-1451.
    [50]CERRA M C, GALLO M P, ANGELONE T, et al. The homologous rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide.[J]. FASEB J,2008,22(11):3992-4004.
    [51]CAPPELLO S, ANGELONE T, TOTA B, et al. Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism.[J]. Am J Physiol Heart Circ Physiol, 2007,293(1):H719-H727.
    [52]DI FELICE V, CAPPILLO F, MONTALBANO A, et al. Human recombinant vasostatin-1 may interfere with cell-extracellular matrix interactions. [J]. Ann N Y Acad Sci,2006,1090:305-310.
    [53]BLOIS A, SREBRO B, MANDALA M, et al. The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells.[J]. Regul Pept,2006,135(1-2):78-84.
    [54]BELLONI D, SCABINI S, FOGLIENI C, et al. The vasostatin-Ⅰ fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration.[J]. FASEB J,2007,21(12):3052-3062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700