蛋白O-乙酰葡糖胺糖基化在心肌细胞和内皮细胞的高糖损害中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病心血管损害是糖尿病并发症中最主要的致死和致残原因。其中糖尿病心肌病是来自于心肌细胞自身的损害,独立于冠状动脉粥样硬化性心脏病、高血压和其他心脏结构性变化而存在的心功能不全。心肌病变在糖尿病早期即可存在,并伴随糖尿病病程始终,晚期伴随的心力衰竭将大大降低病人的生活质量,并增加死亡率。糖尿病病人的动脉粥样硬化性病变,可导致多种缺血事件包括脑卒中、心肌梗死、下肢坏死等。闭塞性动脉病变部位的血管新生和侧枝循环形成可促进受累缺血组织和器官的修复和改善预后,而糖尿病却抑制了这种成血管能力。糖尿病心血管系统损害影响范围广泛,形式多样,可导致极为严重的后果,一直以来极为受到重视。对于其发病机制的研究一直以来都是热点。近年高糖及随后的氧化应激诱导的己糖胺通路激活和蛋白O-乙酰葡糖胺糖基化修饰吸引了研究者们的注意,越来越多证据支持这种蛋白转录后调控机制可直接和间接的调控了很多信号传导和病理生理过程。
     本研究试图在既往研究的基础上,寻找高糖诱导的O-乙酰葡糖胺糖基化在糖尿病心血管病变,尤其在心肌细胞和血管内皮细胞中的作用,从而为糖尿病心肌病变和血管并发症找到新的视点和治疗靶点。
     1.O-乙酰葡糖胺糖基化通过激活ERK1/2和上调cyclin D2介导高糖诱导的新生大鼠心肌细胞肥大
     持续性高血糖是最重要的糖尿病心肌病的致病原因。糖尿病主要表现为心脏肥大及随后的心力衰竭。过去10几年O-乙酰葡糖胺糖基化作为一种蛋白转录后修饰受到关注,而其在高糖诱导的心肌细胞肥大过程中的作用还不明确。因此我们研究了高糖环境下培养新生大鼠心肌细胞内O-乙酰葡糖胺糖基化的作用。结果发现高糖(30mM)孵育72小时可导致心肌细胞增大2倍余,伴随肥大基因表达增加和O-乙酰葡糖胺糖基化水平升高。它同时激活ERK1/2,也上调cyclin D2表达,但不影响p38和JNK活性。乙酰葡糖胺糖苷酶PUGNac在增加细胞O-乙酰葡糖胺糖基化水平同时,模拟了高糖的上述效应。通过siRNA干扰O-乙酰葡糖胺转移酶来降低O-乙酰葡糖胺糖基化水平及以PD98059抑制ERK1/2激活均可降低心肌细胞肥大反应和cyclin D2上调。O-乙酰葡糖胺转移酶干扰也可阻止ERK1/2激活。以上结果揭示升高的O-乙酰葡糖胺糖基化水平通过激活ERK1/2和上调cyclin D2参与调控高糖诱导的心肌细胞肥大过程。
     2.糖尿病大鼠早期病变心肌组织中O-乙酰葡糖胺糖基化水平、ERK1/2和cyclinD2的变化
     我们发现高糖诱导的新生大鼠心肌细胞肥大过程中,O-乙酰葡糖胺糖基化通过激活ERK1/2和上调cyclin D2参与调控。为了证实这种调控作用的在体生理意义,我们用链脲佐霉素建立糖尿病大鼠模型,4周后即处死进行超声检测、病理切片及蛋白和mRNA检测,结果显示糖尿病组心室肌呈向心性肥大,心肌细胞有肥大性改变,心肌组织肥大基因mRNA表达增加,蛋白O-乙酰葡糖胺糖基化水平升高伴ERK1/2激活和cyclin D2表达上调,与心肌细胞实验结果一致,证实了O-乙酰葡糖胺糖基化通过激活ERK1/2和上调cyclin D2参与调控心肌肥大的机制参与糖尿病大鼠在体心肌病变进程。
     3.O-乙酰葡糖胺糖基化在高糖抑制人脐静脉内皮细胞增殖迁移过程中的作用
     既往体外和体内实验均证实高糖抑制了内皮细胞的成血管能力,而内皮细胞的增殖和迁移是成血管过程的基础。高糖诱导的O-乙酰葡糖胺糖基化水平升高在高糖诱导的内皮细胞损害中的作用仍在探索中。基于心肌细胞中O-乙酰葡糖胺糖基化的调控作用,我们研究了高糖环境下人脐静脉内皮细胞的增殖迁移受到的影响,及O-乙酰葡糖胺糖基化水平对其的调控作用。结果显示高糖抑制了内皮细胞的增殖和迁移,O-乙酰葡糖胺糖基化的增加和抑制可相应抑制和恢复内皮细胞的增殖和迁移,虽然ERK1/2和cyclin D2仍可被高糖上调,但并不能发挥其本应有的促有丝分裂作用。抑制ERK1/2及伴随的cyclin D2下调也没有调控作用,提示ERK1/2激活及随之上调的cyclin D2在血管内皮细胞的高糖效应中的作用被其他通路掩盖。
Diabetic cardiovascular disease is the most important cause of disabling and death in diabetic complications. Diabetic cardiomyopathy is defined as ventricular dysfunction occurring independently of a recognized cause, such as coronary artery disease or hypertension, which manifests as cardiac hypertrophy and subsequent heart failure. The lesion of myocardium occurs at the beginning and in the whole process of diabetes. The cardiac failure of end stage damages quality of life and increase mortality. Atherosclerosis in diabetes causes multiple ischemic events including stroke, myocardium infarction and lower extremity amputation. Angiogenesis and collateral vessel formation repair ischemic tissues and organs involved and improve prognosis. Diabetic complications of cardiovascular system act on wide range of organs and induced fatal consequences, therefore researchers kept enthusiasm on the mechanism of diabetic cardiovascular disease. Recent decade, increased hexosamine pathway and O-GlcNAcylation level induced by high glucose and subsequent oxidative stress attracted attention. The post-transcription modulation of proteins was shown mediated a seris of signaling transduction and physiology/pathology process. We aimed to disclose the role of O-GlcNAcylation induced by high glucose in diabetic cardiovascular disease, especially in cardiomyocytes and endothelial cells, and get a new sight and therapeutic target.
     Part Ⅰ O-GlcNAcylation Involvement in High Glucose-Induced Cardiomyocyte Hypertrophy via ERK1/2and Cyclin D2
     Continuous hyperglycemia is considered to be the most significant pathogenesis of diabetic cardiomyopathy, which manifests as cardiac hypertrophy and subsequent heart failure. O-GlcNAcylation has attracted attention as a post-translational protein modification in the past decade. The role of O-GlcNAcylation in high glucose-induced cardiomyocyte hypertrophy remains unclear. Therefore, we studied the effect of O-GlcNAcylation on neonatal rat cardiomyocytes (NRCMs) that were exposed to high glucose. High glucose (30mM) incubation for72hours induced a greater than2-fold increase in cell size and increased hypertrophy marker gene expression accompanied by elevated O-GlcNAcylation protein levels. High glucose increased ERK1/2but not p38MAPK or JNK activity, and cyclin D2expression was also increased. PUGNac, an inhibitor of β-N-acetylglucosaminidase, enhanced O-GlcNAcylation and imitated the effects of high glucose. OGT siRNA and ERK1/2inhibition with PD98059treatment blunted the hypertrophic response and cyclin D2upregulation. OGT inhibition also prevented ERK1/2activation. In conclusion, O-GlcNAcylation plays a role in high glucose-induced cardiac hypertrophy via ERK1/2and cyclin D2.
     Part Ⅱ Modification O-GlcNAcylation, ERK1/2and cyclin D2in myocardium of diabetic rats in early stage
     Rat model of diabetes was induced by injecting streptozocin to confirm the effect of O-GlcNAcylation in diabetic cardiomyopathy. Pathological observation and protein and mRNA analysis of the cardium tissue from diabetic rats4weeks later indicated concentric hypertrophy of heart, hypertrophic cardiomyocytes, upregulated hypertrophic genes, accompanied by elevated O-GlcNAcylation protein levels, activated ERK1/2and increased expression of cyclin D2. The results supported the conclusion from cell culture study.
     Part Ⅲ O-GlcNAcylation Involvement in dysfunction of Human Umbilical Vein Endothelial Cells exposed to high glucose
     High glucose inhibited angiogenesis in vivo and vitro which was based on proliferation and migration of endothelial cells. We observed proliferation and migration of human umbilical vein endothelial cells exposed to high glucose and effect of O-GlcNAcylation in the process. It was shown that high glucose inhibited the proliferation and migration, with was imitated by PUGNac and reverted by siRNA of OGT. Whereas activated ERK1/2and upregulated cyclin D2didn't play a major role in the effect of high glucose on endothelial cells. Therefore, O-GlcNAcylation regulated the high glucose induced-dysfunction of endothelial cells, and the effect of activate EKR1/2and upregulated cyclin D2was covered.
引文
[1]Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol.1972.30(6):595-602.
    [2]Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure:the Framingham study. Am J Cardiol.1974.34(1):29-34.
    [3]Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ.2000.321(7258):405-12.
    [4]Gottdiener JS, Arnold AM, Aurigemma GP, et al. Predictors of congestive heart failure in the elderly:the Cardiovascular Health Study. J Am Coll Cardiol. 2000.35(6):1628-37.
    [5]Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS Ⅱ):a survey on hospitalized acute heart failure patients:description of population. Eur Heart J.2006.27(22):2725-36.
    [6]Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol.1991.68(1):85-9.
    [7]Devereux RB, Roman MJ, Paranicas M, et al. Impact of diabetes on cardiac structure and function:the strong heart study. Circulation.2000.101(19): 2271-6.
    [8]Bella JN, Devereux RB, Roman MJ, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol.2001.87(11):1260-5.
    [9]Liu JE, Palmieri V, Roman MJ, et al. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults:the Strong Heart Study. J Am Coll Cardiol.2001.37(7):1943-9.
    [10]Murarka S, Movahed MR. Diabetic cardiomyopathy. J Card Fail.2010.16(12): 971-9.
    [11]Rolo AP, Palmeira CM. Diabetes and mitochondrial function:role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol.2006.212(2): 167-78.
    [12]Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation:roles in signaling, transcription, and chronic disease. Annu Rev Biochem.2011.80:825-58.
    [13]Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem.1984.259(5):3308-17.
    [14]Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circ Res.2010.107(2):171-85.
    [15]Kamemura K, Hayes BK, Comer FI, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem.2002. 277(21):19229-35.
    [16]Chou CF, Omary MB. Mitotic arrest-associated enhancement of O-linked glycosylation and phosphorylation of human keratins 8 and 18. J Biol Chem. 1993.268(6):4465-72.
    [17]Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A. YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem.2003.278(16):14046-52.
    [18]Slawson C, Lakshmanan T, Knapp S, Hart GW. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol Biol Cell.2008.19(10):4130-40.
    [19]Fong JJ, Nguyen BL, Bridger R, et al. beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem.2012.287(15):12195-203.
    [20]Clerk A, Sugden PH. Untangling the Web:specific signaling from PKC isoforms to MAPK cascades. Circ Res.2001.89(10):847-9.
    [21]LaMorte VJ, Thorburn J, Absher D, et al. Gq-and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem.1994.269(18):13490-6.
    [22]Wang Y. Signal transduction in cardiac hypertrophy--dissecting compensatory versus pathological pathways utilizing a transgenic approach. Curr Opin Pharmacol.2001.1(2):134-40.
    [23]Busk PK, Hinrichsen R, Bartkova J, et al. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Exp Cell Res.2005.304(1): 149-61.
    [24]Angelis E, Garcia A, Chan SS, et al. A cyclin D2-Rb pathway regulates cardiac myocyte size and RNA polymerase III after biomechanical stress in adult myocardium. Circ Res.2008.102(10):1222-9.
    [25]Dey A, She H, Kim L, et al. Colony-stimulating factor-1 receptor utilizes multiple signaling pathways to induce cyclin D2 expression. Mol Biol Cell. 2000.11(11):3835-48.
    [26]Piatelli MJ, Doughty C, Chiles TC. Requirement for a hsp90 chaperone-dependent MEK1/2-ERK pathway for B cell antigen receptor-induced cyclin D2 expression in mature B lymphocytes. J Biol Chem. 2002.277(14):12144-50.
    [27]Suzuki YJ, Day RM, Tan CC, et al. Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. J Biol Chem.2003.278(19):17525-31.
    [28]Kayampilly PP, Menon KM. Inhibition of extracellular signal-regulated protein kinase-2 phosphorylation by dihydrotestosterone reduces follicle-stimulating hormone-mediated cyclin D2 messenger ribonucleic acid expression in rat granulosa cells. Endocrinology.2004.145(4):1786-93.
    [29]Matsumoto T, Hosono-Nishiyama K, Guo YJ, Ikejima T, Yamada H. A possible signal transduction pathway for cyclin D2 expression by a pectic polysaccharide from the roots of bupleurum falcatum L. in murine B cell. Int Immunopharmacol. 2005.5(9):1373-86.
    [30]Kayampilly PP, Menon KM. Dihydrotestosterone inhibits insulin-stimulated cyclin D2 messenger ribonucleic acid expression in rat ovarian granulosa cells by reducing the phosphorylation of insulin receptor substrate-1. Endocrinology. 2006.147(1):464-71.
    [31]Kayampilly PP, Menon KM. AMPK activation by dihydrotestosterone reduces FSH-stimulated cell proliferation in rat granulosa cells by inhibiting ERK signaling pathway. Endocrinology.2012.153(6):2831-8.
    [32]Singh AB, Guleria RS, Nizamutdinova IT, Baker KM, Pan J. High glucose-induced repression of RAR/RXR in cardiomyocytes is mediated through oxidative stress/JNK signaling. J Cell Physiol.2012.227(6):2632-44.
    [33]Chen S, Khan ZA, Karmazyn M, Chakrabarti S. Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab Res Rev.2007. 23(5):356-67.
    [34]Tsai KH, Wang WJ, Lin CW, et al. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-kappaB in cardiomyocytes exposed to high glucose. J Cell Physiol.2012. 227(4):1347-57.
    [35]Busk PK, Hinrichsen R. Cyclin D in left ventricle hypertrophy. Cell Cycle.2003. 2(2):91-5.
    [36]Shen E, Diao X, Wang X, Chen R, Hu B. MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol.2011.179(2):639-50.
    [37]Hu Y, Suarez J, Fricovsky E, et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem.2009.284(1):547-55.
    [38]Marsh SA, Dell'Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids. 2011.40(3):819-28.
    [39]Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol.2008. 294(6):C1509-20.
    [40]Zou L, Yang S, Champattanachai V, et al. Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol. 2009.296(2):H515-23.
    [41]Yokoe S, Asahi M, Takeda T, et al. Inhibition of phospholamban phosphorylation by O-GlcNAcylation:implications for diabetic cardiomyopathy. Glycobiology.2010.20(10):1217-26.
    [42]Gong J, Jing L. Glutamine induces heat shock protein 70 expression via O-GlcNAc modification and subsequent increased expression and transcriptional activity of heat shock factor-1. Minerva Anestesiol.2011.77(5): 488-95.
    [43]Ngoh GA, Watson LJ, Facundo HT, Jones SP. Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes. Amino Acids.2011.40(3):895-911.
    [44]Marshall S, Nadeau O, Yamasaki K. Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes:differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem.2004.279(34):35313-9.
    [45]Virkamaki A, Yki-Jarvinen H. Allosteric regulation of glycogen synthase and hexokinase by glucosamine-6-phosphate during glucosamine-induced insulin resistance in skeletal muscle and heart. Diabetes.1999.48(5):1101-7.
    [46]Ciaraldi TP, Carter L, Nikoulina S, Mudaliar S, McClain DA, Henry RR. Glucosamine regulation of glucose metabolism in cultured human skeletal muscle cells:divergent effects on glucose transport/phosphorylation and glycogen synthase in non-diabetic and type 2 diabetic subjects. Endocrinology. 1999.140(9):3971-80.
    [47]Laczy B, Hill BG, Wang K, et al. Protein O-GlcNAcylation:a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol.2009. 296(1):H13-28.
    [48]Young ME, Yan J, Razeghi P, et al. Proposed regulation of gene expression by glucose in rodent heart. Gene Regul Syst Bio.2007.1:251-62.
    [49]Lunde IG, Aronsen JM, Kvaloy H, et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics.2012.44(2): 162-72.
    [50]Facundo HT, Brainard RE, Watson LJ, et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol.2012.302(10):H2122-30.
    [51]Nagy T, Champattanachai V, Marchase RB, Chatham JC. Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2+elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol. 2006.290(1):C57-65.
    [52]Darley-Usmar VM, Ball LE, Chatham JC. Protein O-linked beta-N-acetylglucosamine:a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol.2012.52(3):538-49.
    [53]Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Spl glycosylation. Proc Natl Acad Sci U S A.2000.97(22):12222-6.
    [54]Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia.1999.42(11):1271-81.
    [55]Xin X, Khan ZA, Chen S, Chakrabarti S. Extracellular signal-regulated kinase (ERK) in glucose-induced and endothelin-mediated fibronectin synthesis. Lab Invest.2004.84(11):1451-9.
    [56]Clerk A, Aggeli IK, Stathopoulou K, Sugden PH. Peptide growth factors signal differentially through protein kinase C to extracellular signal-regulated kinases in neonatal cardiomyocytes. Cell Signal.2006.18(2):225-35.
    [57]Kennedy RA, Kemp TJ, Sugden PH, Clerk A. Using U0126 to dissect the role of the extracellular signal-regulated kinase 1/2 (ERK 1/2) cascade in the regulation of gene expression by endothelin-1 in cardiac myocytes. J Mol Cell Cardiol.2006.41(2):236-47.
    [58]Bueno OF, De Windt LJ, Tymitz KM, et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J.2000.19(23):6341-50.
    [59]Li JM, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. Am J Physiol.1998. 275(3Pt2):H814-22.
    [60]Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin Ⅱ-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res.2011.108(3):305-13.
    [61]Zhong W, Mao S, Tobis S, et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J.2006. 25(16):3869-79.
    [62]Busk PK, Bartkova J, Strom CC, et al. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res.2002.56(1):64-75.
    [1]Thrainsdottir IS, Aspelund T, Thorgeirsson G, et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care.2005.28(3):612-6.
    [2]Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care.2004.27(3):699-703.
    [3]Cohen-Solal A, Beauvais F, Logeart D. Heart failure and diabetes mellitus: epidemiology and management of an alarming association. J Card Fail.2008. 14(7):615-25.
    [4]Akbarzadeh A, Norouzian D, Mehrabi MR, et al. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem.2007.22(2):60-4.
    [5]Hu Y, Suarez J, Fricovsky E, et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J Biol Chem.2009.284(1):547-55.
    [6]Marsh SA, Dell'Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids. 2011.40(3):819-28.
    [7]Lunde IG, Aronsen JM, Kvaloy H, et al. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics.2012.44(2): 162-72.
    [8]Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res.2001.50(6):537-46.
    [9]Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res.2002. 512(2-3):121-34.
    [10]Wautier JL, Guillausseau PJ. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab.2001.27(5 Pt 1):535-42.
    [11]Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull.2005.28(7):1172-6.
    [12]Facundo HT, Brainard RE, Watson LJ, et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol.2012.302(10):H2122-30.
    [1]Rask-Madsen C, King GL. Mechanisms of Disease:endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab.2007.3(1): 46-56.
    [2]Ding H, Triggle CR. Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes:assessing the health of the endothelium. Vasc Health Risk Manag.2005.1(1):55-71.
    [3]Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes.2004.53(1):195-9.
    [4]Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ. Endothelial progenitor cell dysfunction in type 1 diabetes:another consequence of oxidative stress. Antioxid Redox Signal.2005.7(11-12):1468-75.
    [5]Tamarat R, Silvestre JS, Le RS, et al. Impairment in ischemia-induced neovascularization in diabetes:bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol.2004. 164(2):457-66.
    [6]Martin A, Komada MR, Sane DC. Abnormal angiogenesis in diabetes mellitus. Med Res Rev.2003.23(2):117-45.
    [7]Simons M. Angiogenesis, arteriogenesis, and diabetes:paradigm reassessed. J Am Coll Cardiol.2005.46(5):835-7.
    [8]Hochberg I, Hoffman A, Levy AP. Regulation of VEGF in diabetic patients with critical limb ischemia. Ann Vasc Surg.2001.15(3):388-92.
    [9]He Z, Opland DM, Way KJ, et al. Regulation of vascular endothelial growth factor expression and vascularization in the myocardium by insulin receptor and PI3K/Akt pathways in insulin resistance and ischemia. Arterioscler Thromb Vasc Biol.2006.26(4):787-93.
    [10]Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation.1999.100(10):1134-46.
    [11]Roguin A, Nitecki S, Rubinstein I, et al. Vascular endothelial growth factor (VEGF) fails to improve blood flow and to promote collateralization in a diabetic mouse ischemic hindlimb model. Cardiovasc Diabetol.2003.2:18.
    [12]Chou E, Suzuma I, Way KJ, et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation.2002.105(3):373-9.
    [13]Jesmin S, Zaedi S, Shimojo N, et al. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab.2007.292(4):E1030-40.
    [14]Luo B, Soesanto Y, McClain DA. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol.2008.28(4):651-7.
    [15]Love DC, Hanover JA. The hexosamine signaling pathway:deciphering the "O-GlcNAc code". Sci STKE.2005.2005(312):re13.
    [16]Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991.266(8):4706-12.
    [17]Zachara NE, Hart GW. O-GlcNAc a sensor of cellular state:the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta.2004.1673(1-2):13-28.
    [18]Cooksey RC, Hebert LF Jr, Zhu JH, Wofford P, Garvey WT, McClain DA. Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase:decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology.1999.140(3):1151-7.
    [19]Akimoto Y, Kreppel LK, Hirano H, Hart GW. Hyperglycemia and the O-GlcNAc transferase in rat aortic smooth muscle cells:elevated expression and altered patterns of O-GlcNAcylation. Arch Biochem Biophys.2001.389(2): 166-75.
    [20]Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation.2002.106(4):466-72.
    [21]Cao L, Arany PR, Kim J, et al. Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. Biomaterials.2010.31(34): 9048-56.
    [22]Lima VV, Giachini FR, Choi H, et al. Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation. Hypertension.2009.53(2):166-74.
    [23]Beleznai T, Bagi Z. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascul Pharmacol.2012.56(3-4):115-21.
    [24]Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest.2001.108(9):1341-8.
    [25]Komura K, Ise H, Akaike T. Dynamic behaviors of vimentin induced by interaction with GlcNAc molecules. Glycobiology.2012.22(12):1741-59.
    [26]Wang S, Huang X, Sun D, et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates Akt signaling. PLoS One.2012.7(5):e37427.
    [27]Manning BD, Cantley LC. AKT/PKB signaling:navigating downstream. Cell. 2007.129(7):1261-74.
    [28]Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov.2005.4(12): 988-1004.
    [29]Wang Z, Udeshi ND, Slawson C, et al. Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal.2010. 3(104):ra2.
    [30]Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem.1996.271(34):20608-16.
    [31]Albanese C, Johnson J, Watanabe G, et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem.1995.270(40):23589-97.
    [32]Watanabe G, Lee RJ, Albanese C, Rainey WE, Batlle D, Pestell RG Angiotensin Ⅱ activation of cyclin D1-dependent kinase activity. J Biol Chem.1996.271(37): 22570-7.
    [33]Watanabe G, Howe A, Lee RJ, et al. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A.1996.93(23):12861-6.
    [34]Vadiveloo PK, Vairo G, Royston AK, Novak U, Hamilton JA. Proliferation-independent induction of macrophage cyclin D2, and repression of cyclin D1, by lipopolysaccharide. J Biol Chem.1998.273(36):23104-9.
    [35]Caporali A, Meloni M, Vollenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation.2011.123(3): 282-91.
    [36]Varma S, Lal BK, Zheng R, et al. Hyperglycemia alters PI3k and Akt signaling and leads to endothelial cell proliferative dysfunction. Am J Physiol Heart Circ Physiol.2005.289(4):H1744-51.
    [37]Song Q, An X, Li D, et al. Hyperglycemia attenuates angiogenic capability of survivin in endothelial cells. Microvasc Res.2009.78(3):257-64.
    [38]Hamuro M, Polan J, Natarajan M, Mohan S. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis. 2002.162(2):277-87.
    [39]Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ. MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun.2009. 381(1):81-3.
    [40]Zheng ZZ, Liu ZX. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol.2007.39(2):340-8.
    [41]Zhang H, Han Y, Tao J, Liu S, Yan C, Li S. Cellular repressor of E1A-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway. Exp Cell Res.2011.317(20): 2904-13.
    [42]Hasmim M, Bieler G, Ruegg C. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. J Thromb Haemost.2007.5(1): 166-73.
    [1]King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025: prevalence, numerical estimates, and projections. Diabetes Care.1998.21(9): 1414-31.
    [2]Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy:evidence, mechanisms, and therapeutic implications. Endocr Rev.2004.25(4):543-67.
    [3]Rolo AP, Palmeira CM. Diabetes and mitochondrial function:role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol.2006.212(2): 167-78.
    [4]Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation:roles in signaling, transcription, and chronic disease. Annu Rev Biochem.2011.80:825-58.
    [5]Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem.1984.259(5):3308-17.
    [6]Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circ Res.2010.107(2):171-85.
    [7]Paterson AJ, Kudlow JE. Regulation of glutamine:fructose-6-phosphate amidotransferase gene transcription by epidermal growth factor and glucose. Endocrinology.1995.136(7):2809-16.
    [8]Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE. Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biol Chem.2000. 275(29):21981-7.
    [9]Hu Y, Riesland L, Paterson AJ, Kudlow JE. Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem. 2004.279(29):29988-93.
    [10]Ren J, Davidoff AJ. Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol.1997.272(1 Pt 2):H148-58.
    [11]Davidoff AJ, Ren J. Low insulin and high glucose induce abnormal relaxation in cultured adult rat ventricular myocytes. Am J Physiol.1997.272(1 Pt 2): H159-67.
    [12]Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem.2003.278(45):44230-7.
    [13]Hu Y, Belke D, Suarez J, et al. Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res.2005. 96(9):1006-13.
    [14]Pang Y, Bounelis P, Chatham JC, Marchase RB. Hexosamine pathway is responsible for inhibition by diabetes of phenylephrine-induced inotropy. Diabetes.2004.53(4):1074-81.
    [15]Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res.2000.87(12):1123-32.
    [16]Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induce,d diabetes in rats in angiotensin II-dependent. Lab Invest.2000.80(4):513-27.
    [17]Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes.2001.50(10): 2363-75.
    [18]Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia modulates angiotensinogen gene expression. Am J Physiol Regul Integr Comp Physiol.2001.281(3):R795-802.
    [19]Facundo HT, Brainard RE, Watson LJ, et al. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol.2012.302(10):H2122-30.
    [20]Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW. Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem.2005. 280(38):32944-56.
    [21]Busk PK, Bartkova J, Strom CC, et al. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res.2002.56(1):64-75.
    [22]De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol.2000.130(5):963-74.
    [23]Oyama Y, Kawasaki H, Hattori Y, Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol. 1986.132(1):75-8.
    [24]Meraji S, Jayakody L, Senaratne MP, Thomson AB, Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes.1987.36(8): 978-81.
    [25]Cosentino F, Luscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol.1998.32 Suppl 3:S54-61.
    [26]Caballero AE, Arora S, Saouaf R, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes.1999.48(9): 1856-62.
    [27]Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction:a clinical perspective. Endocr Rev.2001.22(1):36-52.
    [28]Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis.2006.16 Suppl 1:S39-45.
    [29]Federici M, Menghini R, Mauriello A, et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation.2002.106(4):466-72.
    [30]Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest.2001.108(9):1341-8.
    [31]Beleznai T, Bagi Z. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation. Vascul Pharmacol.2012.56(3-4):115-21.
    [32]Lima VV, Giachini FR, Cameiro FS, et al. Increased vascular O-GlcNAcylation augments reactivity to constrictor stimuli-VASOACTIVE PEPTIDE SYMPOSIUM. J Am Soc Hypertens.2008.2(6):410-7.
    [33]Lima VV, Giachini FR, Choi H, et al. Impaired vasodilator activity in deoxycorticosterone acetate-salt hypertension is associated with increased protein O-GlcNAcylation. Hypertension.2009.53(2):166-74.
    [34]Luo B, Soesanto Y, McClain DA. Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol.2008.28(4):651-7.
    [35]Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res.2002.90(3):251-62.
    [36]Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Spl glycosylation. Proc Natl Acad Sci U S A.2000.97(22):12222-6.
    [37]Di MU, Pugliese G 15th Golgi lecture:from hyperglycaemia to the dysregulation of vascular remodelling in diabetes. Diabetologia.2001.44(6): 674-92.
    [38]Duh E, Aiello LP. Vascular endothelial growth factor and diabetes:the agonist versus antagonist paradox. Diabetes.1999.48(10):1899-906.
    [39]Abaci A, Oguzhan A, Kahraman S, et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation.1999.99(17):2239-42.
    [40]Waltenberger J. Impaired collateral vessel development in diabetes:potential cellular mechanisms and therapeutic implications. Cardiovasc Res.2001.49(3): 554-60.
    [41]Rask-Madsen C, King GL. More sugar, less blood vessels:another piece in the puzzle of increased cardiovascular risk in diabetes. Arterioscler Thromb Vasc Biol.2008.28(4):608-10.
    [42]Potente M, Urbich C, Sasaki K, et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest.2005.115(9): 2382-92.
    [43]Paik JH. FOXOs in the maintenance of vascular homoeostasis. Biochem Soc Trans.2006.34(Pt 5):731-4.
    [44]Kuo M, Zilberfarb V, Gangneux N, ChristefF N, Issad T. O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene. FEBS Lett.2008.582(5):829-34.
    [45]Degrell P, Cseh J, Mohas M, et al. Evidence of O-linked N-acetylglucosamine in diabetic nephropathy. Life Sci.2009.84(13-14):389-93.
    [46]Nerlich AG, Sauer U, Kolm-Litty V, Wagner E, Koch M, Schleicher ED. Expression of glutamine:fructose-6-phosphate amidotransferase in human tissues:evidence for high variability and distinct regulation in diabetes. Diabetes. 1998.47(2):170-8.
    [47]Masson E, Wiernsperger N, Lagarde M, El BS. Glucosamine induces cell-cycle arrest and hypertrophy of mesangial cells:implication of gangliosides. Biochem J.2005.388(Pt 2):537-44.
    [48]Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci U S A.1996.93(10):4851-6.
    [49]Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997.46(9):1473-80.
    [50]Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation.1994.89(5):2183-9.
    [51]Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med. 1995.1(10):1085-9.
    [52]Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol.1996.270(5 Pt 2): H1791-802.
    [53]Rivard A, Silver M, Chen D, et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol. 1999.154(2):355-63.
    [54]Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest.1994. 93(2):662-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700