用户名: 密码: 验证码:
SOCS3调控JAK2/STAT3信号通路在心肌慢性缺氧适应中意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     紫绀型先心病是临床常见的先天性畸形,心肌慢性缺氧是此类患者共同的病理生理过程。紫绀型先心病的手术时机的选择往往会对患者预后产生重要的作用。但相对而言,紫绀型先心病的手术死亡率仍较高。在我国,紫绀型先心病的手术死亡率约为10%,而且1岁以内及低体重紫绀型先心病患儿手术死亡率高已成为不可忽视的现象。基于以上思考,国家科技部已将先心病心肌缺氧适应机制研究纳入“十二五”医学科技发展的目标中,目的是更有效的降低我国先心病治疗的死亡率。心肌慢性缺氧适应是维持先心病患儿心肌细胞存活和生长的关键,但是心肌慢性缺氧适应的确切机制尚不清楚。因此深入研究紫绀型先心病的病理生理改变以及慢性缺氧条件下心肌细胞的自我调节和适应机制,将有望提高紫绀型复杂性先心病的临床治疗水平。对于心肌细胞缺氧适应,我们既往已做过系列性研究,分别从缺氧心肌细胞中线粒体合成改变、缺氧自噬体形成、内质网应激(ER stress)、未折叠蛋白反应(UPR)改变、促红细胞生成素受体(EPOR)表达改变以及腺苷酸活化蛋白激酶(AMPK)改变等方面阐述心肌细胞适应过程中产生的胞内相关结构蛋白、功能蛋白(酶)活性及代谢机能等等方面产生的适应性调整,进而重塑细胞的结构稳态,能量供求平衡,以增加氧气的释放,并减低能量的消耗,使心肌重新获得细胞稳态,保证细胞自身的存活和生长,对抗缺氧诱导的心肌细胞凋亡,实现心肌细胞对慢性缺氧的适应。作为最直接及最快速的细胞反应机制中,细胞信号通路的改变往往是一切适应性改变的开始环节,其活化或持续性活化必然会导致其下游的信号通路的级联反应,进而影响细胞接下来的适应性改变,如形态、代谢、凋亡等等方面,且一旦这种适应性调节稳态形成后,何种机制可以打断它的稳定运行,何时何种生物学指标可以提示缺氧适应平衡稳态已崩溃是目前紫绀型先心病病理生理机制研究的重点。因为对这些适应稳态的改变的掌握往往决定着紫绀型先心病患儿的疾病的转归,手术时机的选择及术后患者的预后。目前对于慢性缺氧心肌细胞内部信号分子系统产生怎样的适应性改变,如何产生这种适应调整的机制尚不清楚。
     细胞因子信号抑制家族(supressors of cytokine signaling , SOCS)有SOCS1- SOCS7和CIS共8种成员。SOCS3蛋白家族是Janus激酶/信号转导和转录激活子STAT( Janus kinase/signal transducer and activator)信号通路激活的靶基因产物,特异性地负反馈抑制的JAK/STAT通路活化。JAK/STAT信号通路受细胞因子(如IL-6及TNF-a)激活后,积极参与心肌自我适应性调整的各个环节如:早期缺血预处理的心肌保护、心肌重构及终末期扩张型心肌病的心肌功能维持,是心肌细胞中重要的内环境稳定因子。但正常的心肌细胞中SOCS3-JAK/STAT通路是不表达的,说明JAK/STAT通路在正常心肌中是不激活的,SOCS3基因作为胚胎时期表达的基因(ontogene)在非应激情况下不参与心肌细胞内的信号调控。JAK/STAT通路是否参与心肌慢性缺氧适应机制目前研究并不十分清楚,其下游调节因子的变化在心肌细胞达到缺氧适应平衡时的变化情况目前尚无报道。我们以前的研究发现心肌细胞缺氧复氧处理后NF-κB可以活化,且与心肌缺血预适应及一些药物预处理的保护作用有关。最新的研究表明:持续性表达的STAT3的磷酸化可以稳定的持续激活NF-κB活化进核,其活化的RelA的亚基的乙酰化形态(AC-RelA)表达同样受磷酸化的p-STAT3的活化调控。因此本课题拟阐明在慢性缺氧条件下SOCS3-IL-6/JAK2/STAT3信号系统与NF-κB信号系统相互交联参与调控心肌细胞适应的作用机制。
     目的:
     本研究的目的在于验证以下假说:在慢性缺氧心肌细胞中:1)IL-6- STAT3蛋白和NF -κB信号通路激活的持续稳定; 2)STAT3/NF-κB相互协调作用存在,共同介导心肌细胞抗凋亡作用;3)SOCS3的表达可以被缺氧刺激诱导,它会抑制STAT3的过度激活和调节NF -κB的激活,形成有序的信号表达稳态。
     研究方法:
     本研究符合医学道德伦理规范,共分三部分:
     第一部分:选取紫绀型(紫绀组,n=18)和非紫绀型(非紫绀组,n=22)先天性心脏病患儿,收集手术中切除的肥厚右室流出道心肌组织。Western blotting及免疫组化观察IL-6,NF-κB p65 (acetyl K310), SOCS3, STAT3, phosphor-Tyr-705-STAT3和phosphor-Ser-276-NF-κB p65在心肌组织中的表达情况;提取心肌组织的总RNA,采用Real time RT-PCR检测IL-6 mRNA,C-myc mRNA和SOCS3 mRNA表达水平; EMSA法检测心肌组织中NF-κB活化情况;ELISA检测先天性心脏病患儿外周血IL-6浓度。
     第二部分:体外培养H9c2大鼠心肌细胞株,将细胞暴露于1% O2、5% CO2的环境中建立缺氧细胞模型,培养不同时间段后(分为缺氧6h组, 12h组, 24h组, 48h组, and 72h组),Western blot检测NF-κB p65 (acetyl K310),SOCS3,STAT3,phosphor-Tyr-705-STAT3和phosphor-Ser-276-NF-κB p65在心肌组织中的表达情况;提取心肌组织的总RNA,采用Real time RT-PCR检测IL-6 mRNA, C-myc mRNA和SOCS3 mRNA表达水平;ELISA检测体外培养各组心肌细胞株上清液中IL-6浓度。
     第三部分:建立SOCS3稳定表达H9c2细胞株,给予转染SOCS3质粒的上述细胞缺氧处理,检测第二部分实验指标的变化;同时通过检测缺氧处理72h后转染SOCS3质粒组与未转染组间不同的生物活性:细胞凋亡检测(凋亡率(TUNEL)试验/Hoest活细胞染色);细胞活性检测(MTT试验);细胞培养基上清液中LDH (乳酸脱氢酶)浓度的差异。
     研究结果:
     主要结果如下:
     1、与非紫绀组相比,免疫组化检测提示:紫绀组心肌组织中信号分子IL-6蛋白表达明显高于非紫绀组,非紫绀组心肌组织中无明显IL-6表达;通过Western blot证实: NF-κB p65 (acetyl K310), SOCS3, phosphor-Tyr-705-STAT3和phosphor- Ser-276-NF-κB p65在紫绀组心肌组织中蛋白表达明显高于非紫绀组,免疫组化检测也证实以上结果。另外,通过Real time RT-PCR检测表明紫绀组心肌组织中NF-κB信号通路调节基因产物IL-6 mRNA;JAK2/STAT3信号通路调节基因产物C-myc mRNA和SOCS3 mRNA表达均明显高于非紫绀组。EMSA检测同样证实:紫绀组心肌组织的NF-κB的活化明显高于非紫绀组。但先天性心脏病患儿外周血IL-6浓度在紫绀组及非紫绀组间无差异。
     2、在常氧培养的H9c2心肌细胞中,Western blot及Real-time RT-PCR未检测到SOCS3蛋白和mRNA的表达。在缺氧培养心肌细胞中,随着缺氧时间的延长,SOCS3蛋白出现表达,且呈现先升高后稳定的蛋白表达趋势。在缺氧培养各组心肌细胞中,p-STAT3由胞浆转位入核活化情况也明显增强。NF-κB蛋白各亚单位(p-RelA;AC- RelA)在常氧培养心肌细胞中均未检测到,在缺氧各组心肌细胞中,随着缺氧时间的延长,核内NF-κB蛋白各亚单入核表达位均呈现先升高后稳定的趋势。对mRNA水平检测发现IL-6 mRNA和C-myc mRNA的表达也随缺氧时间的增加呈现先升高后稳定的趋势。
     3、成功建立SOCS3过表达H9c2心肌细胞株。对过表达SOCS3质粒心肌细胞组及未转染心肌细胞组同时给予体外缺氧培养处理后发现,同未转染SOCS3质粒心肌细胞组相比,转染组中的p-STAT3入核活化及NF -κB蛋白各亚单位(p-RelA;AC- RelA)核内表达均明显受到抑制。IL-6 mRNA和C-myc mRNA表达也明显受到抑制而转录减少。
     通过TUNEL及Hoest活细胞染色检测发现,同非转染SOCS3质粒组相比,转染组缺氧72h时心肌细胞凋亡率显著增加[43.5%(未转染组):14.5%(转染组),p<0.001]。相对应的各组细胞培养基上清液中的LDH (乳酸脱氢酶)浓度也明显增加;MTT检测发现转染组各缺氧时间段细胞活性明显减低;各缺氧时间段细胞培养基上清液中的IL-6明显减低。
     结论:
     1、在紫绀型先心病患者心肌组织中观察到STAT3及NF-κB信号系统均活化,其正性调节因子IL-6及负性调控因子SOCS3均处于高表达状态,这种高表达的信号通路对心肌细胞慢性缺氧适应可能具有重要的作用;
     2、慢性缺氧培养心肌细胞中,p-Ser-276-NF-κB p65、p-Tyr-705-STAT3、STAT3、SOCS3、NF-κB p65(acetyl K310)蛋白表达均随缺氧时间的延长,逐渐升高,后呈稳定表达状态,维持在高水平。随着缺氧时间的延长,IL-6/JAK2/STAT3信号通路的靶基因SOCS3和C-myc以及NF-κB信号通路的靶基因IL-6 mRNA转录水平也同样表现出先逐渐升高后稳定在高活性水平的趋势,说明随缺氧时间的延长,以上信号通路的改变是细胞为适应缺氧刺激的而做出的适应性改变;
     3.外源性的SOCS3明显减低慢性缺氧培养心肌细胞中p-Ser-276-NF-κB p65、p-Tyr-705-STAT3、NF-κB p65(acetyl K310)蛋白在核内的表达水平;同样过表达的SOCS3明显减低IL-6/JAK2/STAT3信号通路的靶基因C-myc mRNA以及NF-κB信号通路的靶基因IL-6 mRNA转录,说明外源性过表达的SOCS3明显抑制STAT3信号通路与NF-κB信号在细胞核内存在信号交联。外源性的SOCS3对两种信号通路抑制的效果使心肌细胞面对缺氧刺激出现细胞凋亡明显增高(TUNEL检测),细胞膜稳定(LDH分泌增加)明显降低,细胞活性明显减低,失去了对缺氧的适应,说明打破信号稳态对心肌细胞的存活及活性有明显的不利影响。
     综上所述,紫绀型先心病患者心肌组织中及缺氧培养心肌细胞中STAT3及NF-κB信号系统活性增强,存在核内相互协调作用,维持心肌细胞对缺氧刺激的适应,作为正反馈因子IL-6的旁分泌作用有效的维持信号系统的稳态表达,而作为重要的负反馈因子SOCS3的稳态表达,有效有序的维持心肌细胞内抗凋亡信号稳态的表达,起到对信号通路微调的作用,这些细胞内的信号系统自我调整对缺氧心肌细胞的存活和功能调节有重要意义。
Background and Objective:
     Cytokines related to interleukin-6 (IL-6) comprise a family of substances known to play cytoprotective and growth-promoting roles in different cell types. IL-6 related cytokines potently promote tyrosine-phosphorylation of Janus kinases (JAKs) and cytoplasmic latent transcription factors of the signal transducers and activators (STATs) family. STAT proteins regulate the expression of genes encoding proteins involved in angiogenesis, inflammation, apoptosis, extracellular matrix composition and cellular signaling. The JAK-STAT signaling pathway mediates cytoprotective effects in cardiomyocytes. Eight members have been identified as suppressors of the cytokine signaling (SOCS) family (CIS and SOCS1 to SOCS7), and not only act as direct negative feedback regulators of JAK-STAT signaling, but are also involved in the fine tuning of the myocardial adaptation response and in crosstalk of the complicated cytokine signal network in myocytes.
     Accumulating evidence indicates that activation and expression of the IL-6-JAK-STAT signaling pathway are facilitated by hypoxia. Among these signaling molecules, STAT3 can be activated by hypoxia/reoxygenation stress and this signaling pathway exerts cardioprotection in the ischemic heart. Blockade of the STAT3 pathway aggravates myocardial injury after infarction. Evidence from cardiomyocyte-restricted ablation of STAT3 mice further indicates that STAT3 protects the heart from ischemic injury by suppressing cardiomyocyte apoptosis, inducing local growth factor production. As a product of the STAT3-inducible gene, SOCS3 is a major feedback regulator of STAT3, and it blocks STAT3 activation by the gp130 receptor. Hypoxia has profound effects on the expression of SOCS3 in pulmonary arterial smooth muscle cell (PASMC). SOCS3 can also be induced and can inhibit signaling by a wide-spectrum of growth factors and cytokines including Toll-like receptor (TLR) agonists (such as lipopolysaccharide and CpG-DNA), IL-10, IL-6 and other gp130 signaling cytokines, leptin and interferon-γ. These properties suggest that SOCS3 may broadly regulate cytokine signaling and might be a chief factor in these classical signal loops. Moreover, it seems that SOCS3 expression determines the character of the response of cardiac myocytes to the IL-6-type cytokines and also impacts on other signaling pathways of other agonists. While many studies have evaluated the protective effects of STAT3 and regulatory effects of SOCS3 for hypoxia/reoxygenation injury of heart, it is unknown whether SOCS3 can be directly induced by hypoxia in cardiac myocytes. Additionally, little is known about the expression, activation and regulation of these signaling molecules in myocytes exposed to chronic low ambient oxygen levels.
     NF-κB is a ubiquitous transcription factor and its activation involves the regulation of a large variety of genes. NF-κB consists of five Rel-related proteins such as p50, p52 (NF-κB2), p65 (RelA), c-Rel and RelB. The prototypical NF-κB complex is a RelA/p50 heterodimer, which is important for NF-κB-mediated antiapoptotic effects. Recent studies have demonstrated that the amplitude and half-life of nuclear NF-κB are influenced by acetylation of RelA , which requires prior RelA phosphorylation. In particular , endogenous RelA is acetylated in a signal-coupled manner following stimulation. Reversible acetylation of RelA is essential for the duration of NF-κB activity.
     Signaling pathways that mediate protection from apoptosis involve activation of the transcription factor NF-κB, which in turn induces the expression of proteins that possess cytoprotective roles. NF-κB is induced by hypoxic stimulation and it regulates the secretion of IL-6 in cardiac myocytes, and may be the primary positive regulator of transcriptional activation of the IL-6-JAK-STAT signaling pathway during hypoxia. STAT3 is a transcription factor that can promote oncogenesis, and it is commonly activated in cancer as well as in tumor-associated myeloid cells. STAT3 and NF-κB stimulate a highly overlapping repertoire of pro-survival, proliferative, and pro-angiogenic genes. Crosstalk between STAT3 and NF-κB has been demonstrated at multiple levels, including activation of STAT3 by NF-κB-regulated factors such as IL-6 and Cox-2, possible inhibition of IκB kinase (IKK) activity in normal immune cells by STAT3, and nuclear translocation of unphosphorylated NF-κB by unphosphorylated STAT3. A recent study further demonstrated that activated STAT3 prolongs NF-κB nuclear retention through acetyltransferase p300-mediated RelA acetylation , thereby interfering with NF-κB nuclear export. Therefore, the STAT3/NF-κB interaction is important for tumor cells to adapt to a hypoxic tumor microenvironment and to mediate antiapoptotic effects. The present study was undertaken to test the following hypotheses: in chronic hypoxia cardiac myocytes: 1) the IL-6-STAT3 and NF-κB signaling pathways are sustained and stably activated; 2) STAT3/NF-κB interaction occurs; and 3) expression of SOCS3 is induced by hypoxia, and it suppresses STAT3 phosphorylation and mediates NF-κB activation.
     We examined the expression and activation of IL-6, STAT3 and NF-κB in the myocardium of infants with cyanotic cardiac defects, as well as in cultured cardiac myocytes subjected to chronic hypoxia. We evaluated the interaction of SOCS3 with STAT3 and NF-κB by transfecting the SOCS3 plasmid to hypoxic cultured H9c2 cells. The purposes of this study were to determine the crosstalk between NF-κB and STAT3 signaling and the effect of SOCS3 on this interaction on myocardial adaptation to chronic hypoxia. Methods:
     Samples taken from the right ventricular outflow tract were collected from patients with cyanotic (n = 18) or acyanotic (n =22) congenital heart disease. The expression of IL-6, NF-κB p65 (acetyl K310), SOCS3, STAT3, phosphor-Tyr-705-STAT3 and phosphor-Ser-276-NF-κB p65 was examined by immunohistochemistry and western blotting, while IL-6, C-myc and SOCS3 mRNA were tested by Real time RT-PCR. The activity of NF-κB were tested by Gel electrophoretic mobility shift assay (EMSA). Serum levels of IL-6 were measured by ELISA set.
     To evaluated the effect of chronic hypoxia on expression and activation of IL-6, STAT3 and NF-κB signaling pathway, the cardiomyocytes in embryonic rat-heart-derived H9c2 cells were cultivated and exposed to 1.0% O2, 5.0% CO2 for different durations to establish the chronic hypoxic cell model. Control cells were cultivated in the same conditions except for 21% O2 concentration. After different duration of hypoxic exposure (6, 12, 24, 48, and 72h), cells were collected and subjected to RT-PCR and western blot to detecting the mRNA and protein expression of the two signaling pathways. The expression of NF-κB p65 (acetyl K310), SOCS3, STAT3, phosphor-Tyr-705-STAT3 and phosphor-Ser-276-NF-κB p65 was examined by western blotting, while IL-6, C-myc and SOCS3 mRNA were tested by Real time RT-PCR. IL-6 concentrations in cultured H9c2 cell medium were determined by ELISA.
     To address whether SOCS3 can inhibit hypoxia-induced STAT3 and NF-κB activation in hypoxic cultured H9c2 cells, we transfected them with the SOCS3 gene and examined changes in activated STAT3 and NF-κB. The expression of NF-κB p65 (acetyl K310), STAT3, phosphor-Tyr-705-STAT3 and phosphor-Ser-276-NF-κB p65 was examined by western blotting, while IL-6 and C-myc mRNA were tested by Real time RT-PCR. IL-6 concentrations in cultured H9c2 cell medium were determined by ELISA, too.
     To evaluate the effects of SOCS3 overexpression on cell survival , SOCS3 gene-transfected cardiac myocytes and non-transfected cardiac myocytes were submitted to a hypoxic environment for 6, 12, 24, 48, and 72h. Cell viability was assessed by the colorimetric 3-(4, 5-dimethylthia-zol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. LDH levels in the cultured supernatant were measured in duplicate following hypoxia using a commercially available kit. Terminal dUTP Nick End Labeling (TUNEL) and Hoescht staining were used for apoptosis analyses.
     Results:
     1. Immunohistochemistry revealed that all of these signaling molecules (IL-6, STAT3, p-STAT3, SOCS3, p-RelA and AC-RelA) were increased in myocardium of patients with cyanotic cardiac defects, in either the cytoplasm or the nuclei. Western blot analysis revealed that the protein levels of these signaling molecules were significantly elevated (p < 0.001) in patients with cyanotic compared to acyanotic congenital heart disease. Also, the expression of IL-6, C-myc and SOCS3 mRNA were markedly increased in cyanotic patients (p < 0.05). While there were no significant differences in serum levels of IL-6 between the acyanotic group and the cyanotic group (p >0.05).
     2. SOCS3 protein and mRNA were not detected in cardiomyocytes under normoxic conditions.While in hypoxia-exposed cells, the protein expression of STAT3-SOCS3 as well as NF-κB together with the mRNA of IL-6, SOCS3 and C-myc in hypoxia-exposed cells were significantly increased in a duration-dependent manner compared with the normoxia group (p < 0.001).
     3. The level of p-STAT3, p-RelA and AC-RelA did not increase in SOCS3 gene-transfected cells with prolonging time of hypoxia compared with the level of p-STAT3 in non-transfected cells (p < 0.001). Similarily, the mRNA of IL-6 and C-myc showed the same results(p < 0.001).In contrast to control cells, a greater proportion of SOCS3 gene-transfected cardiac myocytes subjected to hypoxia for 72 h exhibited pyknotic, TUNEL-positive nuclei.The non-transfected group subjected to hypoxia for 72 h showed significantly less hypoxia-mediated apoptosis of myocardial cells compared with the transfected group (p<0.001). Elevated LDH release was also observed in SOCS3 gene-transfected cardiac myocytes after hypoxia at each time interval. SOCS3 overexpression resulted in more LDH leakage from injured myocardium compared with non-transfected cardiac myocytes under hypoxic stress as well as SOCS3 gene-transfected group and control group in normoxia conditions (p < 0.001).
     Conclusions:
     1. The IL-6-STAT3-SOCS3 and NF-κB signaling pathways as well as the IL-6, SOCS3 and C-myc mRNA expression increase in cyanotic patients.
     2. In cardiac myocytes exposed to hypoxia, the activation of Ac-RelA, p-RelA, and p-STAT3 in the nucleus and the expression of SOCS3 and STAT3 in the cytoplasm are significantly increased in a duration-dependent manner compared with the normoxia group.The expression of levels of SOCS3,IL-6 and C-myc mRNA in the cytoplasm also increase in cardiac myocytes exposed to hypoxia.
     3. Overexpression of SOCS3 shows down-regulation of the IL-6 and C-myc genes. Transfected overexpression of SOCS3 suppresses hypoxia-induced STAT3 phosphorylation and attenuate the activation of Ac-RelA and p-RelA in cardiac myocytes exposed to hypoxia.And overexpression of SOCS3 inhibits the cytoprotective effect of the STAT3 and NF-κB signaling pathways in H9c2 cells exposed to hypoxia.
引文
1. Daniels SR. Quality of life after surgery for congential heart disease. J Pediatr 2008, 152(3):349-355.
    2.苏肇伉.亟待提高的我国复杂先天性心脏病外科治疗的质量。中国胸心血管外科临床杂志. 2004, 11: 1-3.
    3. Boengler K, Hilfiker-Kleiner D, Drexler H, et al.The myocardial JAK/STAT pathway: from protection to failure. Pharmacol. Ther, 2008, 120:172-185.
    4. Wang M, Markel T,Crisostomo P, et al. Deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta, Am. J. Physiol. Heart. Circ. Physiol.2007, 292:1694-1699.
    5. Yasukawa H, Hoshijima M, Gu Y, et al. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J. Clin. Invest, 2001, 108:1459-1467.
    6. Hartmann G, Tschop M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine, 2000, 12:246-252.
    7. Yan SF, Tritto I, Pinsky D, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6.1995 , 270:11463-11471.
    8. Dawn B, Xuan YT, Guo Y, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc. Res, 2004, 64: 61-71.
    9. Noman MZ , Buart S , Van Pelt J , et al. The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J. Immunol, 2009, 182: 3510-3521.
    10. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ. Res, 2004, 95:187-195.
    11. Negoro S, Kunisada K, Fujio Y, et al. Activation of signal transducer and activatorof transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation, 2001, 104:979-981.
    12. Negoro S, Kunisada K, Tone E, et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc. Res, 2000,47: 797-805.
    13. Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity, Nat.Immunol, 2003, 4:1169-1176.
    14. Sasaki A,Yasukawa H, Suzuki A, et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells, 1999, 4:339-351.
    15. Catlett-Falcone R, Landowski TH, Oshiro MM, et al.Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity, 1999, 10:105-115.
    16. Kolar F, Ostadal B. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res. 2004;53 Suppl 1:S3-13
    17.肖娟. NO信号通路在慢性缺氧心肌线粒体生物合成中的调控机制研究[博士学位论文].重庆:第三军医大学, 2008.
    18.洪毅.自噬体形成和UPR信号通路激活在心肌慢性缺氧适应中意义的研究[博士学位论文].重庆:第三军医大学, 2009.
    19.秦川. EPO预处理在心肌缺氧复氧损伤中的保护作用及其NF-κB信号机制的研究[博士学位论文].重庆:第三军医大学, 2005.
    20.王伟.紫绀型先心病围体外循环期血清EPO与TNF-α的观察. [硕士学位论文].重庆:第三军医大学, 2006.
    21.张喆. TNF-α及其Ⅱ型受体基因多态性对体外循环致全身炎症反应的影响. [博士学位论文].重庆:第三军医大学, 2006.
    22.蹇朝. MIF和AMPK在心肌慢性缺氧适应中意义的实验研究[硕士学位论文].重庆:第三军医大学, 2009.
    23. Cassatella MA, Gasperini S, Bovolenta C, et al. Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood, 1999,94 : 2880-2889.
    24. Stoiber D, Stockinger S, Steinlein P, et al. Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3.J. Immunol, 2001,166: 466-472.
    25. Stoiber D, Kovarik P, Cohney S, et al. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J.Immunol, 1999, 163:2640-2647.
    26. Bode JG, Nimmesgern A, Schmitz J, et al.LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS.Lett, 1999,463: 365-370.
    27. Dalpke AH, Opper S, Zimmermann S, et al. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs.J.Immunol, 2001, 166:7082-7089.
    28. Wang M, Wang Y, Abarbanell A, et al. Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion.Surgery, 2009.146:138-144.
    29. Wang M, Crisostomo PR, Markel TA, et al. Mechanisms of sex differences in TNFR2-mediated cardioprotection. Circulation, 2008, 118:S38-S45.
    30. Kimizuka K, Nakao A, Nalesnik MA, et al. Exogenous IL-6 inhibits acute inflammatory responses and prevents ischemia/reperfusion injury after intestinal transplantation. Am. J. Transplant. 4 (2004) 482-494.
    31. Craig R, Wagner M, McCardle T, et al. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B, J.Biol.Chem, 2000, 276:37621-37629.
    32. Matsui H, IharaY, Fujio Y, et.al. Induction of interleukin (IL)-6 by hypoxia is mediated by nuclear factor (NF)-kappa B and NF-IL6 in cardiac myocytes. Cardiovasc.Res, 1999, 42:104-112.
    33. Bromberg JF, Wrzeszczynska MH, Devgan G, et.al. Stat3 as an oncogene. Cell, 1999, 98:295-303.
    34. Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat. Rev.Cancer, 2004, 4:97-105.
    35. Kujawski M, Kortylewski M, Lee H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 2008,118:3367-3377.
    36. Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science, 2007, 317:121-124.
    37. Dalwadi H, Krysan K, Heuze-Vourc’h N, et al. Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer.Clin. Cancer. Res, 2005, 11:7674-7682.
    38. Welte T, Zhang SS, Wang T, et al. STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity.Proc.Natl.Acad.Sci.U.S.A, 2003, 100:1879-1884.
    39. Yang J, Liao X, Agarwal MK, et al. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev, 2007, 21:1396-1408.
    40. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell, 1986, 47:921-928.
    41. Luqman S, Pezzuto JM. NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother. Res, 2010, 24:949-963.
    42. Miyamoto S, Verma IM. Rel/NF-kappa B/I kappa B story. Adv. Cancer. Res, 1995,66: 255-292.
    43. Karin M, Cao Y, Greten FR. NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2:301-310.
    44. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J.Mol.Med. 2003, 81:549-557.
    45. Chen LF, Williams SA, Mu Y, et.al. NF-kappaB RelA phosphorylation regulates RelA acety-lation. Mol.Cell. Biol, 2005, 25:7966-7975.
    46. Chen LF, Fischle W, Verdin E, et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation.Science, 2000, 293:1653-1657.
    47. Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO. J, 2002, 21:6539-6548.
    48. Essop MF. Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol2007, 584(Pt 3):715-726.
    49. Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res, 2010, 61(4):269-280.
    50. Takahashi Y, Dominici M, Swift J, et al. Trophoblast stem cells rescue placental defect in SOCS3-deficient mice. J Biol Chem, 2006,281: 11444-11445.
    51. Boengler K, Hilfiker-Kleiner D, Drexler H, et al. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther. 2008, 120(2):172-185.
    52. Podewski EK, Hilfiker-Kleiner D, Hilfiker A, et al. Alterations in Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in patients with end-stage dilated cardiomyopathy. Circulation. 2003, 107(6):798-802.
    53. Robyn S, Tracy A. Willson, et al.A family of cytokine-inducible inhibitors of signaling. Nature.1997, 387: 917-921.
    54. Mortola JP. Implications of hypoxic hypometabolism during mammalian ontogenesis. Respir Physiol Neurobiol. 2004, 141(3):345-356.
    55. Lee H, Herrmann A, Deng JH, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell .2009, 15(4):283–293.
    56. Liu Z, Hazan-Halevy I, Harris D, et al. STAT-3 Activates NF-{kappa}B in Chronic Lymphocytic Leukemia Cells. Mol Cancer Res,2011,9 (4):507-515.
    57. Pupjalis D, Goetsch J, Kottas DJ, et al. Annexin A1 released from apoptotic cells acts through formyl peptide receptors to dampen inflammatory monocyte activation via JAK/STAT/SOCS signalling. EMBO Mol Med. 2011, 3(2):102-114.
    58.艾珣,顾玉东.培养人脐静脉内皮细胞慢性缺血缺氧模型.中华手外科杂2001,17(4):233-236.
    59.孙胜,高文祥,廖卫公.神经细胞化学缺氧预处理模型的建立.第三军医大学报,2007,29(21):2100-2101.
    60. Roy S, Khanna S, Bickerstaff AA, et al.Oxygen sensing by primary car fibroblasts:a key role of p21(Waf1/Cip1/Sdi1).Circ Res,2003,92(3):264-271.
    61. Li HT, Long CS, Rokosh DG, et al.Chronic hypoxia differentially regulates a 1-adrenergic receptor subtype mRNAs and inhibits alpha 1-adrene receptor-stimulated cardiac hypertrophy and signaling.Circulation,1995,92:918-925.
    62. Kacimi R , Long CS , Karliner J.S.Chronic hypoxia modulates interleukin-1beta-stimulated inducible nitric oxide synthase pathway in car myocytes. Circulation, 1997, 96(6):1937-1943.
    63. Newby D, Marks L, Lyall F.Dissolved oxygen concentration in culture med assumptions and pitfalls.Placenta, 2005, 26(4):353-357.
    64. Masato T,Hiroshi I,Susumu A,et al.Hypoxia induces apopotosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes.Circ Res,1994,75:426-433.
    65. Labarca C, Paigen KA. Simple, rapid and sensitive DNA assay procedure..Anal Biochem, 1980, 102:344-351.
    66. Wang Q, Chong YB, Zhao A, et al.Clinical application of full automatic animal experimental cabin of normobaric/hypobaric hypoxia and high carbon dioxide. Journal of Medical Colleges of PLA, 2010, 25(2): 91-97.
    67. Stepanek J, Klocke D, Malvin G, et al. The piglet as an animal model for hypobaric hypoxia.Wilderness Environmental Medicine, 1998, 9(1): 8-13.
    68. Ostadal B.Effect of fetal anaemia on myocardial ischaemia-reperfusion injury and coronary vasoreactivity in adult sheep. Acta Physiol (Oxf). 2008, 194(4):253.
    1. Latini R, Bianchi M, Correale E, et al. Cytokines in acute myocardial infarction:selective increase in circulating tumor necrosis factor, its soluble receptor, and interleukin-1 receptor antagonist. J Cardiovasc Pharmacol, 1994, 23:1-6.
    2. Neumann FJ, Ott I, Gawaz M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation, 1995, 92:748-755.
    3. Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol, 2006, 109:226-234.
    4. Wang M, Tsai BM, Turrentine MW, et al. p38 Mitogen activated protein kinase mediates both death signaling and functional depression in the heart. Ann Thorac Surg, 2005, 80:2235-2241.
    5. Wang M, Sankula R, Tsai BM, et al. p38 MAPK mediates myocardial proinflammatory cytokine production and endotoxin-induced contractile suppression. Shock, 2004, 21:170-174.
    6. Cain BS, Meldrum DR, Meng X, et al. p38 MAPK inhibition decreases TNF-alpha production and enhances postischemic human myocardial function. J Surg Res, 1999, 83:7-12.
    7. Meldrum DR, Partrick DA, Cleveland JC et al. On-pump coronary artery bypass surgery activates human myocardial NF-kappaB and increases TNFalpha in the heart. J Surg Res, 2003, 112:175-179.
    8. Shames BD, Selzman CH, Pulido EJ, et al.LPS-induced NF-kappaB activation and TNF-alpha release in human monocytes are protein tyrosine kinase dependent and protein kinase C independent. J Surg Res, 1999, 83:69-74.
    9. Meldrum DR, Shenkar R, Sheridan BC, et al. Hemorrhage activates myocardial NFkappaB and increases TNF-alpha in the heart. J Mol Cell Cardiol, 1997, 29:2849-2854.
    10. Fischer, P, Hilfiker-Kleiner, D. Survival pathways in hypertrophy and heart failure: The gp130-STAT3 axis. Basic Res Cardiol, 2007, 102(4): 279?297.
    11. Pennica D, King KL, Shaw KJ, et al. Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA, 1995, 92(4):1142–1146.
    12. Müller-Newen G. The cytokine receptor gp130: faithfully promiscuous. Sci STKE,2003, (201):PE40.
    13. Villarino AV, Huang E, Hunter CA. Understanding the pro- and anti-inflammatory properties of IL-27.Immunol, 2004, 173(2):715-720.
    14. Negoro S, Kunisada K, Tone E,et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res, 2000,47(4):797-805.
    15. Boengler K, Hilfiker-Kleiner D, Drexler H, et al. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther, 2008, 120(2):172-185.
    16. Terrell AM, Crisostomo PR, Wairiuko GM, et al. Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock, 2006, 26(3):226-234.
    17. Yang S, Zheng R, Hu S, et al. Mechanism of cardiac depression after traumahe- morrhage: increased cardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function. Am J Physiol Heart Circ Physiol, 2004, 287:H2183-H2191.
    18. Szalay L, Shimizu T, Suzuki T, et al. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression. Am J Physiol Regul Integr Comp Physiol, 2006, 290:R812-R818.
    19. Yu HP, Yang S, Choudhry MA, et al. Mechanism responsible for the salutary effects of flutamide on cardiac performance after trauma-hemorrhagic shock: upregulation of cardiomyocyte estrogen receptors. Surgery, 2005, 138:85-92.
    20. Wang M, Crisostomo P, Wairiuko GM, Meldrum DR. Estrogen receptor alpha mediates acute myocardial protection in females. Am J Physiol Heart Circ Physiol, 2006, 290:H2204-H2209.
    21. Hsieh YC, Yang S, Choudhry MA, et al.Flutamide restores cardiac function after trauma-hemorrhage via an estrogen-dependent pathway through upregulation of PGC-1. Am J Physiol Heart Circ Physiol, 2006, 290:H416-H423.
    22. Baker L, Meldrum KK, Wang M, et al.The role of estrogen in cardiovascular disease. J Surg Res, 2003, 115:325-344.
    23. Kher A, Wang M, Tsai BM, et al. Sex differences in the myocardial inflammatory response to acute injury. Shock, 2005, 23:1-10.
    24. Webster KA, Discher DJ, Bishopric NH. Induction and nuclear accumulation of fosand jun proto-oncogenes in hypoxic cardiac myocytes. J. Biol. Chem, 1993,268, 16852-16858.
    25. Karakurum M, Shreeniwas R, Chen J, et al. Hypoxic induction of interleukin-8 gene expression in human endothelialcells. J. Clin. Invest, 1994, 93:1564-1570.
    26. Shivakumar K, Sollott SJ, Sangeetha M, et al. Paracrine effects of hypoxic fibroblast-derived factors on the MPT-ROS threshold and viability of adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol, 2008, 294(6):H2653- H2658.
    27. Yan SF, Tritto I, Pinsky D, et al. Induction of interleukin-6 (IL-6) by hypoxia in vascular cells. J. Biol. Chem, 1995, 270:11463-11471.
    28. Hishinuma S, Funamoto M, Fujio Y, et al. Hypoxic strress induces cardiotrophin-1 expression in cardiac myocytes. Biochem Biophys Res Commun, 1999, 264: 436-440.
    29. Isshiki H, Akira S, Tanabe O, et al. Constitutive and interleukin-1 (IL-1)-inducible factors interact with the IL-1-responsive element in the IL-6 gene. Mol Cell Biol, 1990, 10(6):2757–2764.
    30. Akira S, Isshiki H, Sugita T, et al. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J, 1990, 9(6):1897–1906.
    31. Lenardo MJ, Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell, 1989, 58:227–229.
    32. Matsumori A, Yamada T, Suzuki H, et al. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br. Heart J, 1994, 72:561–566.
    33. Matsui H, Ihara Y, Fujio Y, et al. Induction of interleukin (IL) -6 by hypoxia is mediated by nuclear factor (NF) -kappa B and NF-IL6 in cardiac myocytes. Cardiovasc Res, 1999, 42: 104–112.
    34. Kaneko K, Kanda T, Yokoyama T, et al. Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction. Res Commun Mol Pathol Pharmacol, 1997, 97: 3-12.
    35. Kurdi M, Randon J, Cerutti C, et al. Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR (mRen2)27 and SHR rats. Mol Cell Biochem, 2005, 269:95-101.
    36. Sano M, Fukuda K, Kodama H, et al.Interleukin-6 family of cytokines mediateangiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem, 2000,275:29717-29723.
    37. Fredj S, Bescond J, Louault C, et al. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol, 2005, 202:891-899.
    38. Fredj S, Bescond J, Louault C, et al. Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol,2005,204: 428- 436.
    39. Erten Y, Tulmac M, Derici U, et al. An association between inflammatory state and left ventricular hypertrophy in hemodialysis patients. Ren Fail, 2005, 27:581-589.
    40. Briest W, Rassler B, Deten A, et al. Norepinephrine-induced interleukin-6 increase in rat hearts: differential signal transduction in myocytes and non-myocytes. Pflugers Arch, 2003, 446:437-446.
    41. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol , 1998 ,274:R577-R595,
    42. Finkel MS, Hoffman RA, Shen L, et al.Interleukin-6 (IL-6) as a mediator of stunned myocardium. Am J Cardiol, 1993, 71:1231-1232.
    43. Vona-Davis L, Zhu X, Yu AK, et al.Modulation of interleukin-6 in cardiac myoblasts during endotoxemia. J Surg Res, 2003, 112:91-96.
    44. Zhou M, Wang P, Chaudry IH. Cardiac contractility and structure are not significantly compromised even during the late, hypodynamic stage of sepsis. Shock, 1998, 9:352-358.
    45. Sano M, Fukuda K, Sato T, et al. ERK and p38 MAPK, but not NF-kappaB, are critically involved in reactive oxygen speciesYmediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res, 2001, 89:661-669.
    46. Wang M , Sankula R , Tsai BM , et al.p38 MAPK mediates myocardial proinflammatory cytokine production and endotoxin-induced contractile suppression. Shock, 2004, 21:170-174.
    47. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372:739-746.
    48. Ancey C, Corbi P, Froger J, et al. Secretion of IL-6, IL-11 and LIF by humancardiomyocytes in primary culture. Cytokine, 2002, 18:199-205.
    49. Sarkar S, Vellaichamy E, Young D, et al. Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes. Am J Physiol Heart Circ Physiol, 2004, 287:107-117.
    50. Villegas S, Villarreal FJ, et al. Leukemia inhibitory factor and interleukin-6 downregulate sarcoplasmic reticulum Ca2+ ATPase (SERCA2) in cardiac myocytes. Basic Res Cardiol, 2000, 95:47-54.
    51. MacGowan GA, Mann DL, Kormos RL, et al. Circulating interleukin-6 in severe heart failure. Am J Cardiol, 1997, 79:1128-1131.
    52. Roig E, Orús J, ParéC, et al.Serum interleukin-6 in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol, 1998, 82:688-690, Abstract A8.
    53. Plenz G, Eschert H, Erren M, et al. The interleukin-6/interleukin-6-receptor system is activated in donor hearts. J Am Coll Cardiol, 2002,39:1508-1512.
    54. Raymond RJ, Dehmer GJ, Theoharides TC, et al.Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J, 2001, 141:435-438.
    55. Tsutamoto T, Hisanaga T, Wada A, et al.Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol, 1998, 31:391-398.
    56. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation, 2003, 107:1486-1491.
    57. Hirota H, Izumi M, Hamaguchi T, et al. Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure. Heart Vessels, 2004, 19:237-241.
    58. Torre-Amione G, Kapadia S, Benedict C, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol, 1996, 27:1201-1206.
    59. Birks EJ, Yacoub MH. The role of nitric oxide and cytokines in heart failure. CoronArtery Dis, 1997, 8:389-402.
    60. Kinugawa K, Takahashi T, Kohmoto O, et al. Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res, 1994, 75:285-295.
    61. Pennica D, Swanson TA, Shaw KJ, et al. protein and gene structure, biological and binding activities, and chromosomal localization. Cytokine, 1996, 8:183-189.
    62. Asai S, Saito Y, Kuwahara K, et al. The heart is a source of circulating cardiotrophin-1 in humans. Biochem Biophys Res Commun, 2000, 279:320-323.
    63. Jin H, Yang R, Keller GA, et al. In vivo effects of cardiotrophin-1. Cytokine,1996, 8:920-926.
    64. Talwar S, Squire IB, O’Brien RJ, et al. Plasma cardiotrophin-1 following acute myocardial infarction: relationship with left ventricular systolic dysfunction. Clin Sci (Lond), 2002, 102:9-14.
    65. Takimoto Y, Aoyama T, Iwanaga Y, et al. Increased expression of cardiotrophin-1 during ventricular remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol, 2002, 282:H896-H901.
    66. Jougasaki M, Leskinen H, Larsen AM, et al. Ventricular cardiotrophin-1 activation precedes BNP in experimental heart failure. Peptides, 2003, 24:889-892.
    67. Zolk O, Engmann S, Munzel F, et al. Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue. Am J Physiol Endocrinol Metab, 2005, 288:E1214-E1221.
    68. Jougasaki M, Leskinen H, Larsen AM, et al. Leukemia inhibitory factor is augmented in the heart in experimental heart failure. Eur J Heart Fail, 2003, 5:137-145.
    69. Eiken HG, Oie E, Damas JK, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest, 2001, 31:389-397.
    70. Florholmen G, Aas V, Rustan AC, et al. Leukemia inhibitory factor reduces contractile function and induces alterations in energy metabolism in isolated cardiomyocytes. J Mol Cell Cardiol, 2004, 37:1183-1193.
    71. Kunisada K, Tone E, Fujio Y, et al. Activation of gp130 transduces hypertrophicsignals via STAT3 in cardiac myocytes. Circulation, 1998, 98:346-352.
    72. Sheng Z, Knowlton K, Chen J, et al. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem, 1997, 272:5783-5791.
    73. Kuwahara K, Saito Y, Kishimoto I,et al. Cardiotrophin-1 phosphorylates Akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol, 2000, 32:1385-1394.
    74. Brar BK, Stephanou A, Liao Z, et al. Cardiotrophin-1 can protect cardiac myocytes from injury when added both prior to simulated ischaemia and at reoxygenation. Cardiovasc Res, 2001, 51:265-274.
    75. Benigni F, Sacco S, Pennica D, et al. Cardiotrophin-1 inhibits tumor necrosis factor production in the heart and serum of lipopolysaccharidetreated mice and in vitro in mouse blood cells. Am J Pathol, 1996, 149: 1847-1850.
    76. Ulich TR, Fann MJ, Patterson PH,et al. Intratracheal injection of LPS and cytokines. V. LPS induces expression of LIF and LIF inhibits acute inflammation. Am J Physiol, 1994, 267:L442-L446.
    77. Berry MF, Pirolli TJ, Jayasankar V, et al. Targeted overexpression of leukemia inhibitory factor to preserve myocardium in a rat model of postinfarction heart failure. J Thorac Cardiovasc Surg, 2004, 128:866-875.
    78. Kunisada K, Hirota H, Fujio Y, et al. Activation of Jak-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation, 1996, 94:2626-2632.
    79. Yoshida K, Taga T, Saito M, et al. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A, 1996, 93:407-411.
    80. Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell, 1999, 97: 189-198.
    81. Hirota H, Yoshida K, Kishimoto T, et al. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causesmyocardial hypertrophy in mice. Proc Natl Acad Sci U S A, 1995, 92: 4862-4866.
    82. Ancey C, Menet E, Corbi P, et al. Human cardiomyocyte hypertrophy induced in vitro by gp130 stimulation. Cardiovasc Res, 2003,59: 78-85.
    83. Heinrich PC, Behrmann I, Muller-Newen G,et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J , 1998 , 334(pt 2):297-314.
    84. O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell, 2002, 109:S121-S131, (suppl).
    85. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol, 2002, 3:651-662.
    86. Heinrich PC, Behrmann I, Haan S,et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation.Biochem J,2003,374:1-20.
    87. Stahl N, Boulton TG, Farruggella T,et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science , 1994 , 263:92-95.
    88. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol, 1998.16:293-322.
    89. Stahl N, Farruggella TJ, Boulton TG,et al. Choice of STATs and other substrates specified by modular tyrosinebased motifs in cytokine receptors. Science, 1995, 267:1349-1353.
    90. Gerhartz C, Heesel B, Sasse J,et al. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J Biol Chem, 1996, 271: 12991-12998.
    91. Ananthakrishnan R, Hallam K, Li Q, Ramasamy R. Jak-STAT pathway in cardiac ischemic stress. Vascul Pharmacol, 2005, 43:353-356.
    92. Cooney RN: Suppressors of cytokine signaling (SOCS): inhibitors of the Jak/STAT pathway. Shock, 2002, 17:83-90.
    93. Ihle JN: Cytokine receptor signalling. Nature, 1995, 377:591-594.
    94. 104.Hilfiker-Kleiner D, Hilfiker A, Fuchs M, et al. Signal transducer and activator of transcription 3 is required formyocardial capillary growth, control of interstitialmatrix deposition, and heart protection from ischemic injury. Circ Res, 2004, 95:187-195.
    95. Hilfiker-Kleiner D, Hilfiker A, Drexler H.Many good reasons to have STAT3 in the heart. Pharmacol Therapeut, 2005, 107:131-137.
    96. Snyder M, Huang XY, Zhang JJ. Identification of novel direct Stat3 target genes for control of growth and differentiation. J Biol Chem, 2008, 283:3791-3798.
    97. Wang R, Cherukuri P, Luo JY. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem, 2005, 280:11528-11534.
    98. Kwon MC, Koo BK, Moon JS, et al.Crif1 is a novel transcriptional coactivator of STAT3. EMBO J,2008, 27: 642-653.
    99. Haspel RL, SaldittGeorgieff M, Darnell JE. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J, 1996, 15:6262-6268.
    100. Cooney RN. Suppressors of cytokine signaling (SOCS): inhibitors of the JAK/STAT pathway. Shock, 2002, 17:83-90.
    101. Darnell JE Jr. STATs and gene regulation. Science, 1997, 277:1630?1635.
    102. Pan J, Fukuda K, Saito M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res, 1999, 84:1127-1136.
    103. Zurney J, Howard KE, Sherry B. Basal expression levels of IFNAR and Jak-STAT components are determinants of cell-type-specific differences in cardiac antiviral responses. J Virol, 2007, 81:13668?13680.
    104. Takeda K, Noguchi K, Shi W, et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA, 1997, 94: 3801-3804.
    105. McCormick J, Suleman N, Scarabelli TM,et al.STAT1 Deficiency in the Heart Protects against Myocardial Infarction by Enhancing Autophagy. J Cell Mol Med, 2011, 29:1582-4934.
    106. Scarabelli TM, Mariotto S, Abdel-Azeim S, et al. Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion- induced injury. FEBS Lett, 2009, 583(3):531-541.
    107. Scarabelli TM, Townsend PA, Chen Scarabelli C,et al. Amino acid supplementationdifferentially modulates STAT1 and STAT3 activation in the myocardium exposed to ischemia/reperfusion injury. Am J Cardiol,2008 , 101(11A):63E-68E.
    108. Kile BT, Schulman BA, Alexander WS, et al. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci,2002,27:235-241.
    109. Kamura T, Sato S, Haque D, et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev, 1998, 12:3872-3881.
    110. Johnston JA. Are SOCS suppressors, regulators, and degraders? J Leukoc Biol, 2004, 75:743-748.
    111. Zhang JG, Farley A, Nicholson SE, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to Elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci U S A , 1999 , 96:2071-2076.
    112. Yasukawa H, Misawa H, Sakamoto H, et al. The Jak-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. Embo J, 1999,18:1309-1320.
    113. Nicholson SE,Willson TA, Farley A, et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. Embo J,1999 18:375-385,.
    114. Nicholson SE, De Souza D, Fabri LJ, et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2 binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A , 2000,97:6493-6498.
    115. Alexander WS, Starr R, Metcalf D, et al. Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. J Leukoc Biol, 1999,66:588-592.
    116. De Souza D, Fabri LJ, Nash A, et al. SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatase SHP-2 have similar binding specificities. Biochemistry, 2002, 41:9229-9236.
    117. Kong F, Guo X, Noel JG, et al. Thermal injuryYinduced increases of hepatocyte SOCS3 lead to decreases in STAT3. Shock, 2002, 18:374-379.
    118. Wu X , Herndon DN , Wolf SE. Growth hormone down-regulation of interleukin-1beta and interleukin-6 induced acute phase protein gene expression isassociated with increased gene expression of suppressor of cytokine signal-3. Shock, 2003, 19:314-320.
    119. Marine JC, McKay C, Wang D, et al.SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell, 1999,98:617-627.
    120. Croker BA, Krebs DL, Zhang JG, , et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol, 2003,4:540-545.
    121. Fischer P, Lehmann U, Sobota RM, et al.The role of the inhibitors of interleukin-6 signal transduction SHP2 and SOCS3 for desensitization of interleukin-6 signalling. Biochem J, 2004,378:449-460.
    122. Takahashi Y, Carpino N, Cross JC, et al.SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. Embo J , 2003 , 22:372-384.
    123. Yasukawa H, Hoshijima M, Gu Y, et al.Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest, 2001, 108:1459-1467.
    124. Calegari VC, Bezerra RM, Torsoni MA, , et al.Suppressor of cytokine signaling 3 is induced by angiotensin II in heart and isolated cardiomyocytes, and participates in desensitization. Endocrinology, 2003, 144:4586-4596.
    125. Zolk O, Ng LL, O’Brien RJ, et al. Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Circulation, 2002,106:1442-1446.
    126. Sakamoto H, Kinjyo I, Yoshimura A. The Janus kinase inhibitor, JAB/SOCS-1, is an interferon-gamma inducible gene and determines the sensitivity to interferons. Leuk Lymphoma, 2000,38:49-58.
    127. Alexander WS, Hilton DJ.The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol, 2004, 22:503-529.
    128. Metcalf D, Mifsud S, Di Rago L, et al.Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppressor of cytokine signaling-1 (SOCS-1).Proc Natl Acad Sci U S A, 2002, 99:943-948.
    129. Alexander WS, Starr R, Fenner JE, et al. SOCS1 is a critical inhibitor of interferongamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell, 1999, 98:597-608.
    130. Nakagawa R, Naka T, Tsutsui H, et al.SOCS-1 participates in negative regulation of LPS responses. Immunity, 2002, 17:677-687.
    131. Kinjyo I, Hanada T, Inagaki-Ohara K, et al.SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity, 2002, 17:583-591.
    132. Kimura A, Naka T, Nagata S, et al.SOCS-1 suppresses TNF-alpha-induced apoptosis through the regulation of Jak activation. Int Immunol, 2004, 16:991-999.
    133. Morita Y, Naka T, Kawazoe Y, et al. Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci U S A, 2000, 97:5405-5410.
    1. Sen R, Baltimore D. Inducibility ofκappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell, 1986, 47(6):921-928.
    2. Valen G, Yan Z, Hansson G. Nuclear FactorΚappa-B and the Heart. J. Am. Coll. Cardiol, 2001, 38(2):307-314.
    3. Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14: 649-681.
    4. Miyamoto S, Verma IM. Rel/NF-kappa B/I kappa B story. Adv Cancer Res, 1995, 66:255-292.
    5. Ballard DW, Dixon EP, Peffer NJ, et al. The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci U S A, 1992, 89(5):1875-1879.
    6. Chen F, Castranova V, Shi X, et al. New insights into the role of nuclear factor-κappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem, 1999, 45(1): 7-17.
    7. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 1994, 12:141-179.
    8. Bours V, Bonizzi G, Bentires-Alj M, et al. NF-kappaB activation in response to toxical and therapeutical agents:role in inflammation and cancer treatment. Toxicol, 2000, 153(1-3):27-38.
    9. Ghosh S, May MJ,Κopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol, 1998, 16: 225-260.
    10. Barnes PJ, Adcock IM. NF-kappa B: a pivotal role in asthma and a new target for therapy. Trends Pharmacol Sci, 1997, 18(2): 46-50.
    11. Thurberg BL , Collins T. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol, 1998, 9(5): 387-396.
    12. Dejardin E. The alternative NF-κB pathway from biochemistry to biology: Pitfalls and promises for future drug development. Biochem Pharmacol, 2006, 72: 1161-1179.
    13. Saitoh Y, Ouchida R, Miwa N. Bcl-2 prevents hypoxia/reoxygenation-induced cell death through suppressed generation of reactive oxygen species and upregulation ofBcl-2 proteins. J Cell Biochem, 2003, 90(5): 914-924.
    14. Liao G, Zhang M, Harhaj EW, et al. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem, 2004, 279(25): 26243-26250.
    15. Grech AP, Amesbury M, Chan T, et al.TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity, 2004, 5:629-642.
    16. Jing H, Hiroyasu N, Hiroaki S, et al.Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-κB activation and transformation in resistant JB6 cells. Carcinogenesis, 2004, 6(10):1991-2003.
    17. Qian Y, Qin J, Cui G, et al.Act1, a negative regulator in CD40-and BAFF-mediated B cell survival. Immunity, 2004, 21(4): 575-587.
    18. Craig R, Wagner M, Mccardle T,et al. The cytoprotective effects of the glycoprotein 130 receptorcoupled cytoκine, cardiotrophin-1, require activation of NF-κappa B. J Biol Chem, 2001, 276(40): 37621-37629.
    19. Mustapha S,Κirshner A, De Moissac D,et al. A direct requirement of nuclear factor-κB for suppression of apoptosis in ventricular myocytes. Am J Physiol Heart Circ Physiol, 2000, 279:H939-H945.
    20. Bergmann MW, Loser P, Dietz R,et al. Effect of NF-κB inhibition on TNF-αinduced apoptosis and downstream pathway in cardiomyocytes. J Mol Cell Cardiol, 2001, 33:1223-1232.
    21. De Moissac D, Sheng H,Κirshembaum L. A Linκage of the BH4 domain of Bcl-2 and the Nuclear Factor -κB signaling pathway suppression of apoptosis. J Biol Chem, 1999, 274 (41):29505- 29509.
    22. Purcell N, Tang G, Yu C, et al.Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. PNAS, 2001, 98(12): 6668-6673.
    23. Higuchi Y , OtsuΚ, NishidaΚ, et al. Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol, 2002, 34(2):233-240.
    24. Dawn B, Xuan YT, Marian M, et al.Cardiac-specific abrogation of NF- kappa Bactivation inmice by transdominant expression of a mutant Iκappa B alpha. J Mol Cell Cardiol, 2001, 33(1):161-173.
    25. Misra A, Haudek SB,Κnuefermann P, et al. Nuclear factor kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine Model of acute myocardial infarction. Circulation, 2003, 108:3075-3078.
    26. Parry G, Macκman N. A set of inducible genes expressed by activated human monocytic and endothelial cells containΚB-like sites that specifically bind c-Rel-p65 heterodimers. J Biol Chem, 1994, 269: 20823-20825.
    27. Baldwin AS Jr. Series introduction: The transcription factor NF-kappaB and human disease. J Clin Invest, 2001, 107(1): 3-6.
    28. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev J Immunol, 1996, 14:649-683.
    29. Weih F, Durham SΚ, Barton DS, et al.p50-NF-κB complexes partially compensate for the absence of RelB: Severely increased pathology in p50(-/-)relB(-/-) double-knockout mice. J Exp Med, 1997, 185(7): 1359- 1370.
    30. Beg AA, Sha WC, Bronson RT, et al.Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature, 1995, 376(6536):167- 170.
    31. Kaczorowski DJ , Tsung A , Billiar TR. Innate immune mechanisms in ischemia/reperfusion.Front Biosci (Elite Ed), 2009, 1;1:91-98.
    32. Peart JN, Headrick JP.Clinical cardioprotection and the value of conditioning responses.Am J Physiol Heart Circ Physiol. 2009, 296(6):H1705-H1720.
    33. Chandrasekar B, Freeman GL. Induction of nuclear factorκB and activation protein-1 in postischemic myocardium. FEBS Lett, 1997, 401: 30-34.
    34. Shimizu N, Yoshiyama M, Omura T, et al.Activation of mitogen activated proteinκinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res, 1998, 38: 116-124.
    35. Sun B, Fan H, Honda T, et al.Activation of NF Kappa B and expression of ICAM-1 in ischemic-reperfused canine myocardium. J Mol Cell Cardiol, 2001, 33(1): 109-119.
    36. Morgan E, Boyle E, Yun W, et al.An essential role for NF kappaB in the cardioadaptive response to ischemia. Ann Thorac Surg, 1999, 68(2):377-382.
    37. Pye J, Ardeshirpour F, Mccain A, et al.Proteasome inhibition ablates activation of NF-κappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol, 2002, 284(3):H919-H926.
    38. Isomura I , Morita A. Regulation of NF-kappaB signaling by decoy- oligodeoxynucleotides. Microbiol Immunol. 2006, 50(8): 559-563.
    39. YamasakiΚ, Asai T, Shimizu M, et al.Inhibition of NF kappaB activation using cis-element decoy of NF kappaB binding site reduces neointimal formation in porcine ballooninjured coronary artery model. Gene Ther, 2003, 10(4):356-364.
    40. Feeley BT, Miniati D, Park AΚ, et al. Nuclear factor-kappaB transcription factor decoy treatment inhibits graft coronary artery disease after cardiac transplantation in rodents.Transplant. 2000, 70(11): 1560-1568.
    41. Maulik N, Sato M, Price BD, et al. An essentialrole of NF kappaB in tyrosineκinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett, 1998, 429(3): 365-369.
    42. Meldrum DR. Mechanisms of cardiac preconditioning: ten years after the discovery of ischemic preconditioning. J Surg Res, 1997, 73(1): 1-13.
    43. Tahepold P, Vaage J, Starkopf J, et al. Hyperoxia elicits myocardial protection through a nuclear factor kappaB-dependent mechanism in the rat heart. J Thorac. Cardiovasc Surg, 2003, 125(3): 650-660.
    44. Morgan HE, Gordon E,Κira E, et al.Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol, 1987, 49:533-543.
    45. ChienΚR,ΚnowltonΚU, Zhu H, et al.Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J, 1991, 5: 3037-3046.
    46. Li Y, Ha T, Gao X, Kelley J, et al. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol, 2004, 287(4):H1712-H1720.
    47. Kawano S, Kubota T, Monden Y, et al. Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol, 2006, 291(3):H1337-1344.
    48. Frantz S, Fraccarollo D, Wagner H, et al. Sustained activation of nuclear factorkappa B and activator protein 1 in chronic heart failure.Cardiovasc Res, 2003,
    57(3):749-556.
    49. BrandΚ, Page S, Walli AΚ, et al. Role of nuclear factor-kappa B in atherogenesis. Exp. Physiol, 1997, 82:297-304.
    50. Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor - kappa B is present in the atherosclerotic lesion. J Clin Invest , 1996 , 97(7):1715-1722.
    51. Zuckerbraun BS, McCloskey CA, Mahidhara RS, et al.Overexpression of mutated I kappaB alpha inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation. J Vase Surg, 2003, 38:812 - 819.
    52. Kanters E, Gijbels MJ, van der Made I, Vergouwe MN, et al.Hematopoietic NF -κB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. J Blood , 2004 ,103:(3 ), 934- 940.
    53. Pueyo ME , Nicoletti A , Conzalez ,et al.Angiotension II stimulates endothelial vascular cell adhesion molecule– l via nuclear factor– kappa B activation induced by intracellular oxidative stress.J Arterioscler Thromb Vasc Biol , 2000 ,20(3) :645 -651.
    54. Agrawal A, Cha-Molstad H, Samols D, Kushner I. Overexpressed nuclear factor -κB can participate endogenous C- reactive protein induction and enhances the effects of C/ EBPβandtransducer and activator of transcription-3. J Immunology ,2003 ,108 (4) :539 - 541
    55. Nakagami H , Tomita N , Kaneda Y, et al.Anti - oxidant gene therapy by NF kappa B decoy oligodeoxynucleotide .J Curr Pharm Biotechnol,2006 ,7 (2) :95-100
    56. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-{kappa}B signaling .J Mol Cell Biol. 2011 , 18. [Epub ahead of print].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700