急慢性心肌缺血心肌细胞凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:传统观念认为,心肌缺血与其导致的心肌坏死是一种全
    或无的关系。近年认为缺血对心肌的影响是多方面的:缺血时间在5min
    内时心肌处于可逆性损伤,恢复再灌注后缺血心肌迅速恢复正常;经短
    暂缺血的心肌对以后的缺血发作具保护作用,即心肌缺血预适应
    (IPC);冠状动脉阻塞5~20min所致心肌短暂缺血后引起的左室收缩功
    能不全,可在数小时或数天后恢复,无不可逆损伤,称为心肌顿抑(MS);
    冠状动脉病变所致低灌注引起持续性左心功能不全变化,当冠脉血流恢
    复正常后,心肌功能可部分或全部恢复正常,称为冬眠心肌(HM);冠
    状动脉阻塞时间超过30min,可引起心肌不可逆的损伤、坏死。
     既往认为细胞坏死是心肌缺血所致细胞死亡的唯一形式。近年来普
    遍承认细胞死亡有两种方式,即坏死和凋亡。缺血致心肌细胞凋亡是近
    年研究的热点,有关心肌缺血后细胞凋亡的演变规律及调控机制的研究
    尚处于起步阶段。MS本质上是缺血再灌注的后果,尚不清楚MS是否
    存在细胞凋亡。急性心肌梗塞(AMI)、HM以及缺血再灌注损伤,IPC
    时凋亡相关蛋白的表达缺乏系统研究。Losartan对心肌缺血再灌注损伤
    的预防作用是否也涉及到细胞凋亡尚不清楚。
     研究目的:本课题在AMI、HM、MS、IPC及缺血再灌注模型基础
    上,探讨急慢性心肌缺血所致心肌细胞凋亡及其机制,以及ATII拮抗
    剂Losartan对心肌缺血再灌注细胞凋亡的影响。
     研究方法:
     1.采用结扎大鼠冠脉LAD15min,再灌注2h及6h方法建立MS
     模型。观察MS心功能和MDA的改变,以及心肌细胞凋亡和
     Bcl-2、Bax、FAS的表达。
     2.采用闭塞大鼠冠脉LAD致缺血5min,随后再灌注5min,重复
     3次的方法造成IPC。观察IPC对缺血40min、再灌注6h的缺
    
    
     血再赐注的保护作用。
     3、采用结扎大鼠LAD的方法建立AMI模型。观察AMI后Zh、4h、
     6h、24h、48h及7d心肌细胞凋亡和Bcl.2、Bax、FAS的表达。
     4、采用给幼猪冠状动脉LAD第一对角支近端植人缩窄器,术后饲
     养 ZI周的方法建立 HM模型。观察 HM心肌细胞凋亡及 BcIZ、
     Bax、FAS的表达。
     5.上述心肌组织标本细胞凋亡的检测采用TUNEL及DNA凝胶电
     泳检测DNA片断。Bcl2、Bax及FAS蛋白的表达采用免疫组
     织化学方法。用图象分析法定量分析心肌细胞凋亡及BclZ、Bax
     及FAS蛋白的表达。
     6、观察ATll诱导培养心肌细胞凋亡及Losartan对其影响;观察
     L。satan对培养心肌缺血再涯注心肌细胞凋亡的影响。用碘化
     丙陡染色流式细胞仪检测及透射电镰检查来观察心肌细胞凋
     亡。
     %:
     1.MS与心肌细胞凋亡 缺血 15min再灌 Zh及 6力可致心功能可逆
    性障碍,MDA增加,但CK正常,光镜下组织结构正常;TUN’EL检测
    备组未见阳性细胞,DNA Ladder各组均阴性。
     2.预适应与心肌细胞凋亡:0厂PC组较缺血再蠢注组梗塞面积减
    少( 13.8土 4.互% VS 31.3土 6.互%,尸<0刀 1),CK水平降低(.7土 10.8 IU4
    VS 247.7土67.7则几,P<0.of)。(2 IPC组凋亡指数明显低于缺血再灌
    注组(10*土2.3% vs ZI.6土5.6%,尸<0.of)。* IPC组 DNA Ladder阳
    性率口2.2%)较缺血再灌注组*5.6%)明显要低(P<0.OI人*)缺血再灌
    注组 BCIE 表达p9.9 i 4.7O)较正常对照组p.5上 l.lo)明显增加 呵
     (P功.of人 而 IPC组 BC12的表达(45.吕士 6.l%)较缺血再蠢注组高
     (尸<0刀1);各组间 Bax表达差别不大,但 IPC组 Bcl-hax比值较缺
    血再灌注组高门.9土5.l%vs6尸土3.3%,P<0刀5h缺血再沤注组FAS表
    达(32.2土7.l%)较对照组a.6t0.8%)增加(P<0.OI人 而 IPC组 FAS
    表达门.8土4.20)低于缺血再灌注组(P<0.01L但高于对照组(P<0.01人
     3.AMI与,C’肌细胞凋亡(l),0脏大体观察见 AMI 24h组心脏增大,
     -6-
    
     梗塞处心肌呈污秽暗红色;7d组梗塞处向外膨出、壁薄如羊皮纸、色
     苍白。o)光镜下见AMI 6h以前各组无明显组织形态改变;24h组可见
     梗塞区心肌细胞肿胀、空泡形成、横纹消失,出现多形核白细胞浸润。
     48h心肌纤维出现玻璃样变,嗜酸性增强,核溶解,白细胞浸润明显增
     多。7d时梗塞灶肌纤维消失,为炎性肉芽肿及成纤维细胞所代替。m
     结扎冠脉后受累区 Zh即出现心肌细胞凋亡,6h达高峰(33,SM.2%),
     至24h时梗塞区仍有较多凋亡;48h梗塞区凋亡较少,7d时梗塞区未见
     凋亡细胞。48h及7d时梗塞边缘区见少量心肌细胞凋亡。()对照组及
     梗塞 Zh组 DNA Ladder检测阴性,梗塞 4 ,J’时组 l例阳性(阳性率 20o/o),
     6刁时组5例阳性(83.3%),24小时组4例阳性(66.7%),48J时组1例
Background: It was believed that cardiac ischemia and ischeniia-caused
     cardiomyocyte necrosis is a all or none?relationship. However, recent
     reports have demonstrated that the impacts of ischemia to myocardium are in
     many ways: when the ischemic period is shorter than 5mm, myocardial injury
     is reversible, the ischemia myocardium will return to normal rapidly after
     reperfusion; brie.f periods of acute myocardial ischemia protect against
     ischemia reperfusion injury, this phenomenon is called ischemia
     preconditioning (IPC); 5mm to 20 mm myocardial ischemia can cause a fully
     reversible yet prolonged mechanical dysfunction despite restoration of
     normal coronary flow, this is called myocardial stunning (MS); chronic
     reduced coronary blood flow can cause persistently impaired myocardial and
     LV function at rest , but the impaired heart function could be partially or
     completely restored to normal by improving blood flow or reducing oxygen
     demand, this is hibernating myocardium (I-fM); prolonged periods of
     myocardial ischemia (longer than 30 mm ) can cause tissue injury and cell
     death.
    
     For a long time it is believed that necrosis is the only way to death caused
     by myocardia ischemia and reperfion. Recently, considerable attention has
     been directed to another form of cell death , referred to as apoptosis. Recent
     reports have demonstrated that apoptosis does occur in cardiomyocyte by
     agents that have traditionally been thought to produce necrosis such as
     ischemia and hypoxia. The reseach relating to the developing rule and
     regulatory mechanism of cardiomyocyte apoptosis caused by ischeniia are on
     the early stage. It is lack systemic research on the expression of apoptotic
    
    
    
     ralated protein after acute myocardial infarction, hibernating rnyocardium,
     ischemia-reperfusion injury and ischemia preconditioning. Angiotensin II can
     induce cardiomycyte apoptosis, and .Angiotensin II type 1 antagonist
     Losartan can pretect against ischemic reperfusion injury, but whether the
     protect effect of Losartan to is relatd to cardiomyocyte apoptosis is unclear.
     Objectives: On the basis of replicated AIvfl,HM, MS. IPC and ischemic
     reperfusion(IR) model, we investigating cardiomyocyte apoptosis and the
     expression of Bcl-2,Bax and FAS in acute and chronic myocardium
     ischemic, the effect of IPC and Losartan to cardiiomyocyte apoptosis of
     ischemic reperfusion are also observed.
     Materials and methods:
     I .The rat in vivo myocardial stunning model was made by ligating the LAD
     1 5mm followed by 2h and 6h reperfusion. Inspecting cardiomyocyte
     apoptosis and BcI-2,Bax and FAS protein expression in MS.
     2.The IPC model of rat was made with the protocol consisting of 3 cycles of
     5mm of myocardial ischemia and 5mm of reperfusion. Inspecting the effect
     of IPC to ischemia reperfusion with 40mm ischemia and 6h reperfusion.
     Collecting blood sample for biochemistry measurement, measuring the
     infarct area, Inspecting cardiomyocyte apoptosis and Bcl-2,Bax and FAS
     protein.
     3.Making AMI model with the method of ligating the left anterior descending
     coronary artery of rat. Investigating cadiomyocyte apoptosis and Bcl-
     2,Bax and FAS proteins in the group of 2h,4h, 6h, 24h, 48h and 7d after
     AMI.
     4.To establishing HM animal model, implanting the proximal LAD of
     juvenile pigs with a 5mm-long and 2.0mm fixed internal diameter Delran
     occluder, then housing the animals for 21 weeks. Confirming the MM with
     selective left coronary angiography, low dose dobutamine
     echocar
引文
1. Braunwald E, Kloner RA. The stunned myocardium, prolonged, postischemic, ventricular dysfunction. Circulation, 1982,66:1146-1149
    2. Ferrari R. Metabolic disturbances during myocrdial ischemia and reperfusion. Am J Cardiol, 1995,76: 17B-24B
    3. Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: Insights from recent clinicopathologic coronary arteriographic, and experimental studies. Hum Pathol, 1987,18:451
    4. Ferrari R, La Canna G, Giubbini R, et al. Left ventricular dysfunction due to stunning and hibernation in patients. Cardiovas Drugs Ther, 1994, 8:371
    5. Maclellan WB, Schneider MD. Death by design: Programmed cell death in cardiovascular biology and disease. Circ Res, 1997,81: 137-144
    6. Narula J, Kharbanda S, Khaw BA. Apoptosis and the heart. Chest, 1997, 112:1358-1362
    7. Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation, 1995,91: 2703-2711
    8. Hamet P, Richard L, Dam TV, et al. Apoptosis in target organs of hypertension. Hypertension, 1995,26: 642-648
    9. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med, 1997,336: 1190-1196
    10. Mallat Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med, 1996,335:1224-1226
    11. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol, 1994, 28: 2005-2016
    12. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological
    
    phenomenon with wide ranging implications in tissue kinetics. Br J Cancer, 1972,26:239-259
    13. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell, 1997, 88: 347-354
    14. Nagata S. Apoptosis by death factor. Cell, 1997, 88:355-365
    15. Wyllie AH. Apoptosis: cell death in tissue regulation. J Pathol, 1987,153:313-316
    16. Thomas NJ. Normal and abnormal consequences of apoptosis in the human heart. Circulation, 1994,90:556-557
    17. Allen RT, Hunter WJ, Agrawal DK. Morphological and biochemical characterisation and analysis of apoptosis. J Pharmacol Toxicol Methods, 1997,37:215-228
    18. Yuan J. Evolutionary conservation of genetic pathway of programmed cell death. J Cell Biochem, 1996,60:4-11
    19. Tanaka M, Ito H, Adachi S, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res, 1994, 75:426-433
    20. Vermes Ⅰ, Haamen C, Steffens Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidyl-serine expression on early apoptosis cells using fluorescein labelled Annexin V. J Immunol Methods, 1995,184:39-51
    21. Chiu L, Cherwinski H, Ransom J, et al. Flow cytometric ratio analysis of the Hoescht 33342 emmision spectrum: multiparametric characterisation of apoptotic lymphocytes. J Immunol Methods, 1996,189:157-171
    22. Gavrieli Y, Sherman Y, Ben Sasson SA. Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol, 1992,119:493-501
    23. Frey T. Nucleic acid dyes for detection of apoptosis in live cells. Cytometry, 1995,21:265-274
    24. Negoescu A. TUNEL: Improvement and evaluation of the method for In
    
    Situ Apoptotic cell identification. Biochemica, 1997,2: 12-17
    25. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science, 1998,281:1322-1326
    26. Aikawa R, Komuro Ⅰ, Yamazaki T, et al. Oxidative stress activated extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest, 1997,100:1813-1822
    27. Ikeda S, Hamada M, Hiwada K. Cardiomyocyte apoptosis with enhanced expression of P53 and Bax in right ventricle after pulmonary arterial banding. Life Sci,1999,65:925-933
    28. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin Ⅱ-induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol, 1997, 29: 859-870
    29. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest, 1995,96:2247-2259
    30. French L, Hahne M, Viard Ⅰ ,et al. Fas and Fas ligand in embryos and adult mice: ligand expression in several immunepriviliged and coexpression in adult tissues characterised by apoptotic cell turnover. J CellBiol, 1998,133:335-342
    31. Robb Maclellan W, Schneider MD. Death by design. Circ Res, 1997,81:137-144
    32. Irmler M, Thome M, Hahne M, et al. Inhibition of death-receptor signals by cellular FLIP. Nature, 1997, 388:190-195
    33. Evan G, Littlewood T. A matter of life and cell death. Science, 1998, 281:1317-1321
    34. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91:231-241
    35. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, et al. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-
    
    terminal kinases are activated by ischemia/reperfusion. Circ Res, 1996,79:162-173
    36. Palmero Ⅰ, Pantoja C, Serrano M, et al. P19ARF links tumour suppressor p53 to Ras. Nature, 1998, 395:125-126
    37. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995,270:1326-1331
    38. Sugden PH, Clerk A. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cell Signalling, 1997, 9: 337-351
    39. Scheid MP, Duronio V. Dissociation of cytokine-induced phosphorylation of Bad and the activation of PKB/akt: Involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci USA, 1998, 95: 7439-7444
    40. Wang X, Martindale JL, Liu Y, et al. The cellular response to oxidative stress: influences of the mitogen-activated protein kinase signalling pathways on cell survival. Biochem J, 1998,333: 291-300
    41. Guo Y-L, Baysal K, Kang B, et al. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-α in rat mesangial cells. J Biol Chem, 1998, 273: 4027-4034
    42. Li GW, Zaheer A, Coppey L, et al. Activation of JNK in the remote myocardium after large myocardial infarction in rats. Biochem Biophys Res Commun, 1998,246:816-820
    43. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signalling pathways. Science, 1998,275: 90-94
    44. Nemoto S, Xiang J, Huang S, et al. Induction of apoptosis by SB202190 through inhibition of p38 β mitogen-activated protein kinase. J Biol Chem, 1998,273: 16415-16420
    45. Roulston A, Reinhard C, Amiri P, et al. Early activation of c-Jun N-
    
    terminal kinase and p38 kinase regulate cell survival in the response to tumor necrosis Factor-a . J Biol Chem, 1998,273: 10232-10239
    46. Cohen GM. Caspases: the executioners of apoptosis. Biochem J, 1998, 326:1-16
    47. Nunez G, Benedict MA, Hu Y, et al. Caspases: the proteases of the apoptotic pathway. Oncogene, 1998,17: 3237-3245
    48. Sakahira H, Enari E, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature, 1998, 391:96-99
    49. Cleveland JL, Ihle JN. Contenders in Fas/TNF cell signalling. Cell,1995, 81:479-482
    50. Yue T-L, Wang C, Romanic A, et al. Staurosporine-induced apoptosis in cardiomyocytes: A potential role for caspase-3. J Mol Cell Cardiol, 1998, 30:495-507
    51. Black SC, Huang JQ, Rezaiefar P, et al. Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischaemia and reperfusion in the rat. J Mol Cell Cardiol, 1998,30: 733-742
    52. Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischaemia/reperfusion injury in rats by a caspase inhibitor. Circulation, 1998,97:276-281
    53. Meldrum DR. Tumour necrosis factor in the heart. Am J Physiol, 1998,274:R577-R595
    54. Hu Y, Benedict MA, Wu D, et al. Bcl-X1 interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA, 1998,95:4386-4391
    55. Kuida K, Haydar TF, Kuan C-Y, et al. Reduced apoptosis and cytochrome-c mediated caspase activation in mice lacking caspase 9. Cell, 1998,94:325-337
    56. Maundrell K, Antonsson B, Magnenant E, et al. Bcl-2 undergoes
    
    phosphorylation by c-JUN N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl. J Biol Chem, 1997,272:25238-25242
    57. Otter Ⅰ, Conus S, Ravn U, et al. The binding properties and the biological activities of Bcl-2 and Bax in cells exposed to apoptotic stimuli. J Biol Chem, 1998,273:6110-6120
    58. Gross A, Jockel J, Wei MC,et al. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO, 1998,17: 3878-3885
    59. Green DR, Reed JC. Mitochondria and apoptosis. Science, 1998, 281:1309-1312
    60. Cai J, Jones DP. Superoxide in apoptosis. J Biol Chem, 1998, 273: 11401-11401
    61. Koseki T, Inohara N, Chen S, et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA, 1998, 95: 5156-5160
    62. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptosis events induced by caspase-8 and cytochrome-c by direct inhibition of distinct caspases. EMBO, 1998, 17: 2215-2223
    63. Malinim NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NF-κ B induction by TNF, cd-95 and IL-1. Nature,1997,385: 540-544
    64. Ren J, Samson WK, Sowers JR.Insulin-like growth factor Ⅰ as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol, 1999,31:2049-2061
    65. Leri A, Liu Y, Claudio PP,et al. Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol, 1999, 154: 567-580
    66. Kajstura J, Cheng W, Reiss K, et al. Apoptosis and necrotic myocyte cell
    
    deaths are independent contributing variables of infarct size in rats. Lab Invest, 1996,74:86-107
    67. Bardales RH, Hailey LS, Xie SS, et al. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol, 1996,149:821-829
    68. Veinot JP, Gattinger DA, Fliss H. Early apoptosis in human myocardial. Hum Pathol, 1997,28:485-492
    69. Itoh G, Tamura J, Suzuki M, et al. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol, 1995, 146: 1325-1331
    70. Anversa P, Olivetti G, Meggs LG, et al. Cardiac anatomy and ventricular loading after myocardial infarction. Circulation, 1993,87: Ⅶ22-Ⅶ27
    71. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol, 1996,28: 2005-2016
    72. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997,95: 320-323
    73. Misao J, Hayakawa Y, Ohno M, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation, 1996,94: 1506-1512
    74. Cheng W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res , 1996,226:316-327
    75. Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress and cardiac hypertrophy. J Clin Invest, 1997,100: 1991-1999
    76. Schaefer S, Schwartz GG, Steinman S, et al. Effects of regional
    
    myocardial lidocaine infusion on high energy phosphates. J Moll Cell Cardiol, 1994,26:1601-1611
    77. Diamond GA, Forrester JS, DeLuz PL, et al. Postextrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J, 1978,95:204-209
    78. Rahimtoola SH. The hibernating myocardium. Am Heart J, 1989, 117:211-221
    79. Camici PG, Winjs W, Borgers M, et al. Pathophysiological mechanism of chronic reversible left ventricular dysfunction due to coronary artery disease (Hibernating myocardium ). Circulation, 1997, 96: 3205-3214
    80. Ausma J, Schaart G, Thone F, et al. Chronic ischemic viable myocardium in man: aspects dedifferentiation. Cardiovasc Pathol, 1995,4:29-37
    81. Shivalkar B, Mass A, Borgers M, et al. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation, 1996, 94: 308-315
    82. Elsasser A, Schlepper M, Klovekorn WP, et al. Hibernating myocardium: An incomplete adaptation to ischemia. Circulation, 1997,96: 2920-2931
    83. Elsasser A, Schaper J. Hibernating myocardium: adaptation or degeneration? Basic Res Cardiol, 1995, 90: 47-48
    84. Chen C, Ma L, Linfert DR, et al. Myocardial cell death and apoptosis in hibernating myocardiun. J Am Coll Cardiol, 1997, 30: 1407-1412
    85. Lim H, Fallavollita JA, Hard R, et al. Profound apoptosis-mediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation, 1999,100:2380-2386
    86. Bartling B, Hoffmann J, Holtz J, et al. Quantification of cardioprotective gene expression in porcine short-term hibernating myocardium. J Mol Cell Cardiol, 1999,31:147-158
    87. Dispersyn GD, Ausma J, Thone F,et al. Cardiomyocyte remodelling during myocardial hibernation and atrial fibrillation: prelude to apoptosis. Cardiovasc Res, 1999,43: 947-957
    
    
    88. Richter C. Pro-oxidants and mitochondrial Ca2+: their relationship to apoptosis and oncogenesis. FEBS Lett, 1993, 325:104-107
    89. Greenlund LJ, Deckwerth TL, Johnson EM, et al. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron, 1995,14:303-315
    90. Mower DA, Peckham DW, Illera VA, et al. Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J Immunol.,1994,152:4832-4843
    91. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused myocardium. Circ Res, 1996,79:949-956
    92. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994, 94:1621-1628
    93. Ohta H, Yatomi Y, Sweeney EA, et al. A possible role of sphingosine in induction of apoptosis by tumor necrosis facter-a in human neutrophils, FEBS Lett, 1994,355: 267-270
    94. Bielawska AE, Shapiro JP, Jiang L, et al. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am J Pathol, 1997,151: 1257-1236
    95. Krown K, Page TP, Nguyen C, et al. Tumour necrosis factor alpha-induced apoptosis in cardiac myocytes. J Clin Invest ,1996, 98: 2854-2865
    96. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 75: 1124-1136
    97. Parratt JR. Protection of the heart by ischaemic preconditioning: mechanisms and possibilities for pharmacological exploitation. TIPS, 1994,15: 19-25
    98. Kloner RA, Yellon D. Does ischemic preconditioning occur in patients? JACC, 1994,24: 1133-1142
    99. Kitakaze M, Hori M, Morioka T, et al. α1,-adrenoceptor activation
    
    mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5-nucleotidase activity. J Clin Invest, 1994, 93: 2197-2205
    100. Cleveland JC, Meldrum DR, Rowland RT, et al. The obligate role of protein kinase C in mediating clinically accessible cardiac preconditioning. Surgery, 1996, 120: 345-353
    101. Hide EJ, Thiemermann C. Limitation of myocardial infarct size in the rabbit by ischaemic preconditioning is abolished by sodium 5-hyfroxydecanoate. Cardiovasc Res, 1996,31: 941-946
    102. Gottlieb RA, Gruol DL, Zhu JY, et al. Preconditioning in rabbit cardiomyocytes: role of ph, vacuolar proton ATPase,and apoptosis. J Clin Invest,1996, 97:2391-2398
    103. Piot CA, Padmanaban D, Ursell PC, et al. Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation, 1997, 96:1598-1604
    104. Bumpus FM, Catt RJ, Chiu AT, et al. Nomenclature for angiotensin receptors. Hypertension, 1991,17: 720-721
    105. Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin Ⅱ induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the bc1-2-to-bax protein ratio in the cell. J Clin Invest, 1998,101: 1326-1342
    106. Juugs J, Koening-Berard E, Vangilst WH, et al. Cardioprotective of angiotensin-converting enzyme(ACE) inhibitors. Can J Cardiol, 1993, 9: 336
    107. Dzau VJ. Cardiac renin-angiotensin system: molecular and functional aspect. Am J Med, 1988, 84(3A):22-27
    108. Yang BC, Phillips MI, Ambuehl PEJ, et al. Increase in angiotensin Ⅱ type Ⅰ receptor expression immediately after ischemia-reperfusion in isolated rat heart. Circulation, 1997, 96: 922
    109. Werrmemn JG, Cohen SM. Use of losartan to the role of cardiac renin-angiotensin system in myocardial dysfunction during ischemia and
    
    reperfusion. J Cardiovasc Pharmacol, 1996, 27:177~182
    110.Scott JA, Khaw BA, Locke E, et al. The role of free radial-mediated processor in oxygen related damage in cultured murine myocardial cells.Circ Res, 1985, 56:72~77
    111.Koyama T, Temma K, Akere T. Reperfusion-induced contracture develops with a decreasing [Ca~(2+)]i in single heart cells. Am J Physiol,1991; 261:H1115~H1122
    112.Kusuoka H, Koretsune Y, Chacko VP, et al. Excitation-contraction coupling in postischemic myocardium: Does failure of activator Ca~(2+) transients underlie stunning? Circ Res, 1990, 66:1268~1276
    113.Bolli R, Zhu WX, Thomby JI, et al. Time-course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol, 1988, 254:H102~H114
    114.Heyndrickx GR, Millard RW, Mcritchie RJ, et al. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest, 1975, 56:978
    115.Lavallee M, Cox D, Patrick TA, et al. Salvage of myocardial function by coronary artery reperfusion 1,2 and 3 hours after occlusion in conscious dogs. Circ Res, 1983, 53:235~247
    116.吴宏超,钱学贤,刘宏.顿抑心肌组织降钙素基因相关肽的免疫组织化学研究.心功能杂志,1999,11(2):77~79
    117.钱学贤,戴玉华,孔华宇.现代心血管病学.第一版.北京:人民军医出版社,1999.918~919
    118.Downing SE, Chen V. Myocardial hibernation in the ischemic neonated heart. Cir Res, 1990, 66:763~772
    119.Schulz R, Rose J, Martin C, et al. Development of short-term myocardial hibernation: its limitation by the severity of ischemia and inotropic stimulation. Circulation, 1993, 88:684~695
    120.Mills I, John T, Fffallon DW, et al. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure
    
    and flow. Am J Physiol. 1994,266:H447-H457
    121. Lakatta EG, Nayler WG, Poole-Wilson PA. Calcium overload and mechanical function in posthypoxic myocardium:biphasic of pH during hypoxia. Eur J Cardiol, 1979,10:77-87
    122. Ferrier GR, Mottat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Circ Res, 1985; 56:184
    123. Linfert DR, Chen C, Ma L, et al. Internucleosomal DNA fragmentation in apoptotic myocytes. Clinical Chemistry, 1997,43:2431-2434
    124. Shirakawa K, Miura T, Yamakawa K, et al. Effects of ischemic preconditioning on the expression of TNF-a and the induction of apoptosis in the ischemia-reperfusion rat heart. Circulation, 1995, 92(Suppl Ⅱ): Ⅱ-773
    125. Russell SW, Rosenau W, Lee JC. Cytolysis induced by human lymphotoxin. Am J Pathol, 1972,69:103-111
    126. Perlman H, Maillard L. Krasinski K, et al. Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation, 1997,95: 981-987
    127. Savill J. Apoptosis in disease. Euro J Clin Invest, 1994,24: 715-723
    128. Goldstein S, Ali AS, Sabbah H .Ventricular remodeling. Mechanisms and prevention. Cardiol Clin, 1998,16: 623-632
    129. Brusch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol, Science, 1992,13:245-251
    130. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissue: an overview. Cancer Metast Rev, 1992,11:95-103
    131. Linfert DR, Chen C, Ma L, et al. Internucleosomal DNA fragmentation in apoptotic myocytes. Clinical Chemistry, 1997,43:2431-2434
    132. Baffy G, Miyashita T, Williamson JR, et al. Apoptosis induced by withdrawal of interleukin-3(IL-3) from an IL-3-dependent hematopoietic
    
    cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production. J Biol chem,1993, 268:6511-6519
    133. Veis DJ, Sorenson CM, Shutter JR, et al. Bcl-2 deficient mice demonstrate fulminant lymphold apoptosis, polycystic kidneys and hypopigmented hair. Cell, 1993,75: 229-240
    134. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programed cell death. Cell, 1993, 74: 609-619
    135. Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for bcl-XL and bcl-2, displaces bax and promotes cell death. Cell, 1995, 80: 285-291
    136. Beinlich CJ, White GJ, Baker KM, et al. Angiotensin Ⅱ and left ventricular growth in newborn pig heart. J Mol Cell Cardiol, 1991, 3: 1031-1038
    137. Sechi LA, Griffin CA, Grady EF, et al. Characterization of angiotersin Ⅱ receptor subtypes in rat heart. Circ Res, 1992, 71: 1482-1489
    138. Dxau VJ, Re RN. Evidence for the existence of renin in the heart. Circulation, 1987, 75:1134-1136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700