CREG调控内皮细胞周期的作用机制研究及其在小鼠下肢缺血模型中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     内皮损伤是动脉粥样硬化、心肌梗死、经皮冠状动脉介入治疗术后支架内再狭窄、下肢动脉硬化闭塞症(PAD)、休克等各种血栓性疾病的始动病因。促进内皮细胞(EC)的完整性,维持其正常功能,将为此类疾病提供新的防治手段。本研究探讨了一个新近发现的调控细胞转录的基因——E1A激活基因阻遏子(CREG)调控人脐静脉内皮细胞(HUVEC)周期的作用和机制,并在小鼠下肢缺血模型中初步探讨了其对血管新生的影响。
     方法:
     (1)以绿色荧光蛋白(GFP)腺病毒感染HUVEC作为对照,应用CREG腺病毒使HUVEC过表达CREG,以细胞计数、BrdU掺入实验、流式细胞术(FCM)检测CREG对HUVEC增殖的影响,Western blot检测HUVEC中CREG、信号通路、细胞周期蛋白(Cyclins)及细胞周期蛋白依赖性激酶(CDKs)的表达,RT-PCR检测Cyclins在转录水平上的表达差异。(2)以表达短发卡RNA (shRNA)序列的阴性空载体为对照,将CREG表达沉默的shRNA载体转染至逆转录病毒,产生病毒后感染HUVEC,经嘌呤霉素筛选,得到CREG表达下调的HUVEC;应用细胞计数、BrdU掺入实验、FCM检测从功能缺失角度验证CREG下调对HUVEC增殖的影响。(3)根据信号通路Western blot结果的提示,应用信号通路阻断剂阻断可被CREG明显影响的信号通路,以BrdU掺入实验及FCM检测细胞增殖并确定CREG发挥生物学作用的通路,Westernblot检测蛋白表达及信号通路蛋白及Cyclins的表达,确定CREG相关的信号通路及Cyclins。(4)在腺病毒感染造成CREG过表达的HUVEC中使用血管内皮生长因子中和抗体(VEGF NA)阻断VEGF的作用;在CREG被干扰造成其表达下调的HUVEC中添加重组人血管内皮生长因子(rhVEGF165),以细胞计数、BrdU掺入试验、FCM检测细胞增殖,同时以Western blot检测信号通路以及Cyclins的表达,确定血管内皮生长因子(VEGF)是否参与了CREG调控HUVEC增殖及Cyclins表达的作用。(5)以正常的以及感染GFP腺病毒的HUVEC作为对照,应用体外及小鼠在体matrigel血管生成实验检测HUVEC感染CERG腺病毒后对血管生成的影响;制作小鼠下肢缺血模型后,以PBS、GFP腺病毒做为对照,应用CREG腺病毒感染局部缺血肌肉组织,观测术肢体温、自体截肢率,以病理切片观测肌纤维形态改变,应用血流灌注成像仪检测术肢/健肢灌注比,检测CREG对小鼠下肢缺血的治疗作用以及对血管新生的影响。
     结果:
     (1)与对照组相比,HUVEC经腺病毒感染过表达CREG后,细胞计数增多,BrdU掺入实验中BrdU阳性细胞百分比增多,FCM分析提示S+G2期占全部细胞比例增多;而在shRNA导致CREG表达下调后,与对照组相比,发现细胞计数减少,BrdU阳性细胞百分比减少,FCM分析可见S+G2期占全部细胞比例减少。(2)Wstern blot提示:与对照组相比,CREG可使ERK、PI3K/Akt信号通路激活,Cyclin E表达增多,RT-PCR发现CREG可在转录水平影响Cyclin E的表达。(3)信号通路阻断剂添加后,BrdU掺入实验及FCM检测提示:尽管PI3K/Akt、ERK信号通路都可影响CREG调控的HUVEC增殖,但ERK通路特异性的介导了CREG对HUVEC增殖的调控,Western blot检测也证实了ERK特异性的介导了CREG对Cyclin E的调控。(4)体外及在体matrigel血管生成实验发现CREG过表达可使毛细血管密度明显增多;小鼠下肢缺血模型制作成功后,以腺病毒感染缺血区肌肉组织,经检测发现过表达CREG的腺病毒感染组与PBS组以及GFP腺病毒相比,术肢体温升高、自体截肢率降低、病理切片提示肌纤维萎缩程度明显减轻,血流灌注成像仪检测结果提示与对照组相比,CREG过表达组术肢/健肢灌注比升高。
     结论:
     (1)CREG可促进体外培养HUVEC的增殖;(2)ERK/Cyclin E通路介导了CREG对HUVEC增殖的调控作用;(3)CREG过表达能促进小鼠缺血下肢的血管新生。本研究为PAD的治疗提供了一个新的靶点,也为CREG在缺血性心肌病、经皮冠脉内介入治疗术后支架内再狭窄及迟发性血栓的防治中的应用提供了新的证据。
Object:
     Endothelial injury is one of the initiating causes of atherosclerosis, myocardialinfarction, intrastent restenosis after percutaneous coronary intervention, peripheral arterialdisease (PAD) and shock. Promoting integrity of the endothelial cells (EC) and maintainingtheir normal function will provide a new way to the prevention and treatment for the abovediseases. The aim of this study is to investigate the function and underlying mechanism ofcellular repressor of E1A-stimulated genes (CREG), a newly found transcription regulatinggene, on cell cycle of human umbilical vein endothelial cell (HUVEC). We further explorethe role of CREG in regulating angiogenesis in a mice lower limb ischemia model.
     Method:
     (1) HUVEC were infected with adenovirus carrying either green fluorescence protein(GFP) or CREG to establish GFP control group and CREG over-expression group. Cellcounting analysis, BrdU incorporation assay, and flow cytometry (FCM) were performed toassess role of CREG in regulating HUVEC proliferation. Then Western Blot was used todetect expression of CREG, signaling molecules, cyclins and cyclin-dependent kinases(CDKs). Reverse transcription-polymerase chain reaction (RT-PCR) was applied to detectdifference in transcriptional expression of cyclins.(2) Stable HUVEC clones with CREGsilenced down or expressing scrambled negative control short hairpin RNA (shRNA)sequence were established by puromycin selection after retroviral infection. Cell countinganalysis, BrdU incorporation assay, and FCM were performed to evaluate the function ofCREG on HUVEC proliferation from perspective of loss of function.(3) According to theresults of Western blot, the signaling pathways affected by CREG significantly wereblocked with corresponding blockers. HUVEC proliferation was assessed by cell counting analysis, BrdU incorporation assay and FCM to determine the signaling pathway throughwhich CREG exerted its function. To identify the CREG related signaling pathways andCyclins, the expressions of Cyclins and signaling pathway protein were detected byWestern blot.(4) After blocking VEGF signaling pathway with anti-VEGF165neutralizingantibody in HUVEC with CREG over-expression or adding human recombinant VEGF165(rhVEGF165) in HUVEC with CREG knock down, cell proliferation was detected by cellcounting analysis, BrdU incorporation assay, FCM analysis, and the expressions of Cyclinsand signaling pathway protein was detected by Western blot at the same time to determinewhether VEGF is involved in regulation of CREG on HUVEC proliferation and Cyclins.(5)Using the normal HUVEC and GFP adenovirus infected HUVEC as control; the effect ofCREG over expression on angiogenesis was detected by the matrigel angiogenesis assay invitro and in vivo in mice. After establishment of mice lower limb ischemia model, withPBS and GFP-carrying adenovirus as control, the adenovirus carrying CREG was used toinfected local ischemia muscle tissue. To evaluate CREG function on the treatment of micelower limb ischemia and the effect on angiogenesis, the autologous amputation rate and theratio of trouble limb temperature that of normal limb were recorded, the pathologicalchange of skeletal muscle fiber was detected by H&E staining, and the blood perfusionratio of trouble limb to the contralateral was measured by blood flow perfusion imagingdetection.
     Results:
     (1) Compared with control groups, HUVEC with CREG over-expression showedhigher cell numbers by cell counting, increased BrdU positive cells percentage by BrdUincorporation experiment and increased percentage of S+G2phase by FCM analysis. Incontrast, HUVEC with CREG silenced down showed lower cell numbers by cell counting,decreased BrdU positive cells percentage by BrdU incorporation experiment and declinedpercentage of S+G2phase by FCM analysis.(2) Western blot analysis showed that CREGcould up-regulate expression of Cyclin E and activate the ERK, PI3K/Akt signalingpathway compared with control groups. RT-PCR found CREG could regulate theexpression of Cyclin E at transcription level.(3) After addition of signaling pathwayblockers, BrdU incorporation experiment and FCM analysis revealed that the promotioneffect of CREG on HUVEC proliferation was specifically mediated by ERK pathway, but not by PI3K/Akt pathway, although the two signaling pathway can both affect HUVECproliferation. As the same, it’s ERK but not PI3K/Akt signal pathway that mediates theregulation of CREG on CyclinE expression.(4) In vitro and in vivo matrigel angiogenesisexperiments found that CREG over-expression could significantly increase the capillarydensity. In the mice lower limb ischemia models, compared with the PBS and GFPadenovirus control groups, application of CREG adenovirus to infect ischemic muscletissue showed high temperature ratio of trouble limb to healthy limb, lower rate ofautologous amputation, significantly alleviated atrophy of muscle fibers and improvedperfusion ratio of trouble limb to healthy limb.
     Conclusion:
     (1) CREG can promote the proliferation of HUVEC cultured in vitro;(2) The functionof CREG regulation on HUVEC proliferation was mediated by ERK/Cyclin E pathway;(3)CREG over-expression can promote angiogenesis in mice lower limbs ischemic models.This study provides a new target of CREG for the treatment of PAD, and also a new prooffor CREG in the prevention and treatment of ischemic heart disease, intrastent restenosisafter percutaneous coronary intervention and late-onset thrombosis.
引文
1,2关德明.动脉粥样硬化形成机制研究的新动态[J].哈尔滨医科大学学报,2001,35(3):224-226.
    3杨晓燕.内皮细胞的异质性与动脉粥样硬化[J].西南国防医药,2007,17(3):372-374.
    4Stewart, A.H., Lamont, P.M. Exercise training and peripheral vascular disease [J]. Br J Surg,2000,87(12):1732.
    5Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studiodell'Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Criticial Chronic Ischemia of the Lower
    6Exremities [J]. Eur J Vasc Endovasc Surg,1997,14(2):91-95.Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G., Rutherford, R.B. Inter-societyconsensus for the management of peripheral arterial disease [J]. Int Angiol,2007,26(2):81-157.
    1Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G., Rutherford, R.B. Inter-societyconsensus for the management of peripheral arterial disease [J]. Int Angiol,2007,26(2):81-157.
    2Griffioen, A.W., Molema, G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer,cardiovascular diseases, and chronic inflammation [J]. Pharmacol Rev,2000,52(2):237-268.
    3Mughal, N.A., Russell, D.A., Ponnambalam, S., Homer-Vanniasinkam, S. Gene therapy in the treatment of peripheralarterial disease [J]. Br J Surg,2012,99(1):6-15.
    4Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion [J]. Cell,1992,69(1):11-25.
    Furchgott, R.F., Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle byacetylcholine [J]. Nature,1980,288(5789):373-376.
    Zimmerman, G.A., McIntyre, T.M., Mehra, M., Prescott, S.M. Endothelial cell-associated platelet-activating factor: anovel mechanism for signaling intercellular adhesion [J]. J Cell Biol,1990,110(2):529-540.
    1Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., Shapiro, R.L., Galloway, A.C., Rifkin,D.B., Mignatti, P. Fibroblast growth factor-2(FGF-2) induces vascular endothelial growth factor (VEGF) expression inthe endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis [J]. J Cell Biol,1998,141(7):1659-1673.
    2Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., Hunt, T. Cyclin: a protein specified by maternal mRNA in seaurchin eggs that is destroyed at each cleavage division [J]. Cell,1983,33(2):389-396.
    3Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., Okayama, H. Cdc25A is a novel phosphatasefunctioning early in the cell cycle [J]. EMBO J,1994,13(7):1549-1556.
    4Solomon, M.J. The function(s) of CAK, the p34cdc2-activating kinase [J]. Trends Biochem Sci,1994,19(11):496-500.
    5MacLachlan, T.K., Sang, N., Giordano, A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cellcycle control and cancer [J]. Crit Rev Eukaryot Gene Expr,1995,5(2):127-156.
    6Sherr, C.J., Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression [J]. Genes Dev,1999,13(12):1501-1512.
    7Li, A., Blow, J.J. The origin of CDK regulation [J]. Nat Cell Biol,2001,3(8): E182-E184.
    8Liang, J., Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression [J]. Cell Cycle,2003,2(4):339-345.
    9Terada, Y., Inoshita, S., Nakashima, O., Kuwahara, M., Sasaki, S., Marumo, F. Regulation of cyclin D1expression andcell cycle progression by mitogen-activated protein kinase cascade [J]. Kidney Int,1999,56(4):1258-1261.
    Zachary, I., Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelialgrowth factor family [J]. Cardiovasc Res,2001,49(3):568-581.
    11Thakker, G.D., Hajjar, D.P., Muller, W.A., Rosengart, T.K. The role of phosphatidylinositol3-kinase in vascularendothelial growth factor signaling [J]. J Biol Chem,1999,274(15):10002-10007.
    12Wu, L.W., Mayo, L.D., Dunbar, J.D., Kessler, K.M., Baerwald, M.R., Jaffe, E.A., Wang, D., Warren, R.S., Donner,D.B. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and othermitogens in the induction of endothelial cell proliferation [J]. J Biol Chem,2000,275(7):5096-5103.
    13Wellner, M., Maasch, C., Kupprion, C., Lindschau, C., Luft, F.C., Haller, H. The proliferative effect of vascularendothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta [J]. Arterioscler Thromb Vasc Biol,1999,19(1):178-185.
    1Pedram, A., Razandi, M., Levin, E.R. Extracellular signal-regulated protein kinase/Jun kinase cross-talk underliesvascular endothelial cell growth factor-induced endothelial cell proliferation [J]. J Biol Chem,1998,273(41):26722-26728.
    2,12Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulated genes that inhibits activation byE2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    3,10Kunita, R., Otomo, A., Ikeda, J.E. Identification and characterization of novel members of the CREG family, putatives,e1c3reted glycoproteins expressed specifically in brain [J]. Genomics,2002,80(5):456-460.
    Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREG enhances differentiation ofNTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    5Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    6,11Sacher, M., Di Bacco, A., Lunin, V.V., Ye, Z., Wagner, J., Gill, G., Cygler, M. The crystal structure of CREG, asecreted glycoprotein involved in cellular growth and differentiation [J]. Proc Natl Acad Sci U S A,2005,102(51):18326-18331.
    7Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiac hypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    Moolmuang, B., Tainsky, M.A. CREG1enhances p16(INK4a)-induced cellular senescence [J]. Cell Cycle,2011,10(3):518-530.
    9Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor of E1A-stimulated genes attenuates11c1321ardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    1Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    2Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner, T., Mach, L. Cellular repressorof E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis[J]. Exp Cell Res,2008,314(16):3036-3047.
    3Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiac hypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    4Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor of E1A-stimulated genes attenuatescardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    5Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    6Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    7Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellular repressor E1A-stimulatedgenes controls phenotypic switching of adventitial fibroblasts by blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    1韩雅玲,康建,张剑,李少华.对去血清后HITASY细胞分子表达及表型分析[J].生物化学与生物物理进展,2003,30(6):868-873.
    2闫承慧,韩雅玲,刘海伟,胡叶,康建,王效增,李少华. E1A激活基因阻遏子过表达诱导体外培养大鼠平滑肌细胞分化[J].中华心血管病杂志,2004,32(z1):253.
    3韩雅玲,邓捷,梁明,康建,刘海伟,徐红梅,闫承慧.逆转录病毒介导的E1A激活基因阻遏子抑制大鼠颈动脉球囊损伤后新生内膜形成[J].中国病理生理杂志,2007,23(10):1873-1877.
    4Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S. Adenovirus-mediated intra-arterial delivery ofcellular repressor of E1A-stimulated genes inhibits neointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration ofhuman vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    6Yang, G., Han, Y., Tian, X., Tao, J., Sun, M., Kang, J., Yan, C. Pattern of expression of the CREG gene and CREGprotein in the mouse embryo [J]. Mol Biol Rep,2011,38(3):2133-2140.
    7Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    8Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    1Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-eluting stent attenuates in-stentneointimal formation in porcine coronary arteries [J]. PLoS One,2013,8(4): e60735.
    1Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulated genes that inhibits activation byE2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    2Fujita, N., Furukawa, Y., Itabashi, N., Okada, K., Saito, T., Ishibashi, S. Differences in E2F subunit expression inquiescent and proliferating vascular smooth muscle cells [J]. Am J Physiol Heart Circ Physiol,2002,283(1): H204-H212.
    3Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREG enhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    4韩雅玲,王效增,康建,刘海伟,李少华.大鼠颈动脉球囊损伤后血管平滑肌细胞E1A激活基因阻遏子的表达变化[J].中华心血管病杂志,2004,32(1):53-58.
    5Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration ofhuman vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    6韩雅玲,徐红梅,邓捷,胡叶,康建,刘海伟,闫承慧. E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡[J].生理学报,2006,58(4):324-330.
    7Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    8Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    1Baldwin, A.L., Thurston, G. Mechanics of endothelial cell architecture and vascular permeability [J]. Crit RevBiomed Eng,2001,29(2):247-278.
    2Pries, A.R., Secomb, T.W., Gaehtgens, P. The endothelial surface layer [J]. Pflugers Arch,2000,440(5):653-666.
    3Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium [J]. Cardiovasc Res,2004,61(3):498-511.
    4Roquer, J., Segura, T., Serena, J., Castillo, J. Endothelial dysfunction, vascular disease and stroke: the ARTICO study
    5[J]. Cerebrovasc Dis,2009,27Suppl1:25-37.Eringa, E.C., Serne, E.H., Meijer, R.I., Schalkwijk, C.G., Houben, A.J., Stehouwer, C.D., Smulders, Y.M., vanHinsbergh, V.W. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role intype2diabetes [J]. Rev Endocr Metab Disord,2013,14(1):39-48.
    6Wong, W.T., Tian, X.Y., Huang, Y. Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4,and ROS-dependent COX-2-derived prostanoids [J]. J Cardiovasc Pharmacol,2013,61(3):204-214.
    7张建江,易著文.血管内皮细胞损伤及修复的研究进展[J].临床心身疾病杂志,2007,13(2):183-185,177.
    8Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulated genes that inhibits activation byE2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    9Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREG enhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    10Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    11韩雅玲,康建,张剑,李少华.对去血清后HITASY细胞分子表达及表型分析[J].生物化学与生物物理进展,2003,30(6):868-873.
    12闫承慧,韩雅玲,刘海伟,胡叶,康建,王效增,李少华. E1A激活基因阻遏子过表达诱导体外培养大鼠平滑肌细胞分化[J].中华心血管病杂志,2004,32(z1):253.
    13韩雅玲,王效增,康建,刘海伟,李少华.大鼠颈动脉球囊损伤后血管平滑肌细胞E1A激活基因阻遏子的表达变化[J].中华心血管病杂志,2004,32(1):53-58.
    1Kevil, C.G., Payne, D.K., Mire, E., Alexander, J.S. Vascular permeability factor/vascular endothelial cell growthfactor-mediated permeability occurs through disorganization of endothelial junctional proteins [J]. J Biol Chem,1998,273(24):15099-15103.
    Ferrara, N. Vascular endothelial growth factor: molecular and biological aspects [J]. Curr Top Microbiol Immunol,1999,237:1-30.
    3Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    4Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulated genes that inhibits activation byE2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    1,3Kunita, R., Otomo, A., Ikeda, J.E. Identification and characterization of novel members of the CREG family, putativesecreted glycoproteins expressed specifically in brain [J]. Genomics,2002,80(5):456-460.
    2Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREG enhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    4Journet, A., Chapel, A., Kieffer, S., Roux, F., Garin, J. Proteomic analysis of human lysosomes: application tomonocytic and breast cancer cells [J]. Proteomics,2002,2(8):1026-1040.
    5Han, Y.L., Guo, P., Sun, M.Y., Guo, L., Luan, B., Kang, J., Yan, C.H., Li, S.H. Secreted CREG inhibits cellproliferation mediated by mannose6-phosphate/insulin-like growth factor II receptor in NIH3T3fibroblasts [J]. GenesCells,2008,13(9):977-986.
    6Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration of
    7human vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner, T., Mach, L. Cellular repressorof E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis[J]. Exp Cell Res,2008,314(16):3036-3047.
    8Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    9Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiac hypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    10Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor of E1A-stimulated genes attenuatescardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    11Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellular repressor E1A-stimulatedgenes controls phenotypic switching of adventitial fibroblasts by blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    12Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    13Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    1Endicott, J.A., Noble, M.E. Structural principles in cell-cycle control: beyond the CDKs [J]. Structure,1998,6(5):535-541.
    2Morgan, D.O., The cell cycle:principles of control. Primers in biology.2007, London: Published by New Science Pressin association with Oxford University Press.297.
    Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., Pavletich, N.P. Mechanism of CDKactivation revealed by the structure of a cyclinA-CDK2complex [J]. Nature,1995,376(6538):313-320.
    1Resnitzky, D., Reed, S.I. Different roles for cyclins D1and E in regulation of the G1-to-S transition [J]. Mol Cell Biol,1995,15(7):3463-3469.
    2Ford, H.L., Pardee, A.B. Cancer and the cell cycle [J]. J Cell Biochem,1999, Suppl32-33:166-172.
    3Schwartz, M.A., Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases viacytoplasmic signaling pathways [J]. J Cell Sci,2001,114(Pt14):2553-2560.
    Hlobilkova, A., Knillova, J., Bartek, J., Lukas, J., Kolar, Z. The mechanism of action of the tumour suppressor genePTEN [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2003,147(1):19-25.
    1Zachary, I. VEGF signalling: integration and multi-tasking in endothelial cell biology [J]. Biochem Soc Trans,2003,31(Pt6):1171-1177.
    2Liu, W., Ahmad, S.A., Reinmuth, N., Shaheen, R.M., Jung, Y.D., Fan, F., Ellis, L.M. Endothelial cell survival andapoptosis in the tumor vasculature [J]. Apoptosis,2000,5(4):323-328.
    3Xu, T., Wang, N.S., Fu, L.L., Ye, C.Y., Yu, S.Q., Mei, C.L. Celecoxib inhibits growth of human autosomal dominantpolycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway [J]. Mol Biol Rep,2012,39(7):7743-7753.
    4Li, W., Jin, B., Cornelius, L.A., Zhou, B., Fu, X., Shang, D., Zheng, H. Inhibitory effects of Rap1GAP overexpressionon proliferation and migration of endothelial cells via ERK and Akt pathways [J]. J Huazhong Univ Sci Technolog MedSci,2011,31(6):721-727.
    5Schaper, W. Collateral circulation: past and present [J]. Basic Res Cardiol,2009,104(1):5-21.
    6Namiecinska, M., Marciniak, K., Nowak, J.Z.[VEGF as an angiogenic, neurotrophic, and neuroprotective factor][J].Postepy Hig Med Dosw (Online),2005,59:573-583.
    7Spirli, C., Okolicsanyi, S., Fiorotto, R., Fabris, L., Cadamuro, M., Lecchi, S., Tian, X., Somlo, S., Strazzabosco, M.Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth inpolycystin-2-defective mice [J]. Hepatology,2010,51(5):1778-1788.
    1Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellular repressor E1A-stimulatedgenes controls phenotypic switching of adventitial fibroblasts by blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    2Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor of E1A-stimulated genes attenuatescardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    3Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    4Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    1Resnitzky, D., Reed, S.I. Different roles for cyclins D1and E in regulation of the G1-to-S transition [J]. Mol CellBiol,1995,15(7):3463-3469.
    2Carpenter, C.L., Duckworth, B.C., Auger, K.R., Cohen, B., Schaffhausen, B.S., Cantley, L.C. Purification andcharacterization of phosphoinositide3-kinase from rat liver [J]. J Biol Chem,1990,265(32):19704-19711.
    3Rao, V.N., Reddy, E.S. elk-1proteins interact with MAP kinases [J]. Oncogene,1994,9(7):1855-1860.
    1Hlobilkova, A., Knillova, J., Bartek, J., Lukas, J., Kolar, Z. The mechanism of action of the tumour suppressor genePTEN [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2003,147(1):19-25.
    2Schwartz, M.A., Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases viacytoplasmic signaling pathways [J]. J Cell Sci,2001,114(Pt14):2553-2560.
    Zachary, I. VEGF signalling: integration and multi-tasking in endothelial cell biology [J]. Biochem Soc Trans,2003,31(Pt6):1171-1177.
    1Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiac hypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    2韩雅玲,邓捷,梁明,康建,刘海伟,徐红梅,闫承慧.逆转录病毒介导的E1A激活基因阻遏子抑制大鼠颈动脉球囊损伤后新生内膜形成[J].中国病理生理杂志,2007,23(10):1873-1877.
    3韩雅玲,赵昕,闫承慧,康建,张效林,邓捷,徐红梅,刘海伟.转录因子E2F1抑制CREG表达调控体外培养的人血管平滑肌细胞分化[J].生物化学与生物物理进展,2007,34(5):490-496.
    4Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration ofhuman vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    5韩雅玲,徐红梅,邓捷,胡叶,康建,刘海伟,闫承慧. E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡[J].生理学报,2006,58(4):324-330.
    6韩雅玲,邓捷,梁明,康建,刘海伟,徐红梅,闫承慧.逆转录病毒介导的E1A激活基因阻遏子抑制大鼠颈动脉球囊损伤后新生内膜形成[J].中国病理生理杂志,2007,23(10):1873-1877.
    7Han, Y., Deng, J., Guo, L., Yan, C., Liang, M., Kang, J., Liu, H., Graham, A.M., Li, S. CREG promotes a maturesmooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery [J]. Cardiovasc Res,2008,78(3):597-604.
    8Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S. Adenovirus-mediated intra-arterial delivery ofcellular repressor of E1A-stimulated genes inhibits neointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-eluting stent attenuates in-stentneointimal formation in porcine coronary arteries [J]. PLoS One,2013,8(4): e60735.
    1Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    2Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    3Graupera, M., Guillermet-Guibert, J., Foukas, L.C., Phng, L.K., Cain, R.J., Salpekar, A., Pearce, W., Meek, S., Millan,J., Cutillas, P.R., Smith, A.J., Ridley, A.J., Ruhrberg, C., Gerhardt, H., Vanhaesebroeck, B. Angiogenesis selectivelyrequires the p110alpha isoform of PI3K to control endothelial cell migration [J]. Nature,2008,453(7195):662-666.
    4Stenman, J.M., Rajagopal, J., Carroll, T.J., Ishibashi, M., McMahon, J., McMahon, A.P. Canonical Wnt signalingregulates organ-specific assembly and differentiation of CNS vasculature [J]. Science,2008,322(5905):1247-1250.
    5Stegmann, T.J. FGF-1: a human growth factor in the induction of neoangiogenesis [J]. Expert Opin Investig Drugs,1998,7(12):2011-2015.
    6Cochain, C., Channon, K.M., Silvestre, J.S. Angiogenesis in the infarcted myocardium [J]. Antioxid Redox Signal,2013,18(9):1100-1113.
    Segers, V.F., Lee, R.T. Biomaterials to enhance stem cell function in the heart [J]. Circ Res,2011,109(8):910-922.
    8Hinkel, R., Trenkwalder, T., Kupatt, C. Gene therapy for ischemic heart disease [J]. Expert Opin Biol Ther,2011,11(6):723-737.
    9Eibel, B., Rodrigues, C.G., Giusti, I.I., Nesralla, I.A., Prates, P.R., Sant'Anna, R.T., Nardi, N.B., Kalil, R.A. Genetherapy for ischemic heart disease: review of clinical trials [J]. Rev Bras Cir Cardiovasc,2011,26(4):635-646.
    10Gupta, P.K., Chullikana, A., Parakh, R., Desai, S., Das, A., Gottipamula, S., Krishnamurthy, S., Anthony, N., Pherwani,A., Majumdar, A.S. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy ofallogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia [J]. J Transl Med,2013,11:143.
    Hart, C.A., Tsui, J., Khanna, A., Abraham, D.J., Baker, D.M. Stem cells of the lower limb: Their role and potential inmanagement of critical limb ischemia [J]. Exp Biol Med (Maywood),2013,238(10):1118-1126.
    1Hammer, A., Steiner, S. Gene therapy for therapeutic angiogenesis in peripheral arterial disease-a systematic reviewand meta-analysis of randomized, controlled trials [J]. Vasa,2013,42(5):331-339.
    2Hart, C.A., Tsui, J., Khanna, A., Abraham, D.J., Baker, D.M. Stem cells of the lower limb: Their role and potential inmanagement of critical limb ischemia [J]. Exp Biol Med (Maywood),2013,238(10):1118-1126.
    3Annex, B.H. Therapeutic angiogenesis for critical limb ischaemia [J]. Nat Rev Cardiol,2013,10(7):387-396.
    4Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H., Limbourg, F.P. Evaluation of postnatal arteriogenesisand angiogenesis in a mouse model of hind-limb ischemia [J]. Nat Protoc,2009,4(12):1737-1746.
    5Helisch, A., Wagner, S., Khan, N., Drinane, M., Wolfram, S., Heil, M., Ziegelhoeffer, T., Brandt, U., Pearlman, J.D.,Swartz, H.M., Schaper, W. Impact of mouse strain differences in innate hindlimb collateral vasculature [J]. ArteriosclerThromb Vasc Biol,2006,26(3):520-526.
    1Leong-Poi, H., Christiansen, J., Klibanov, A.L., Kaul, S., Lindner, J.R. Noninvasive assessment of angiogenesis byultrasound and microbubbles targeted to alpha(v)-integrins [J]. Circulation,2003,107(3):455-460.
    2Morales, D.E., McGowan, K.A., Grant, D.S., Maheshwari, S., Bhartiya, D., Cid, M.C., Kleinman, H.K., Schnaper, H.W.Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model [J].Circulation,1995,91(3):755-763.
    1Couffinhal, T., Silver, M., Kearney, M., Sullivan, A., Witzenbichler, B., Magner, M., Annex, B., Peters, K., Isner, J.M.Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor inApoE-/-mice [J]. Circulation,1999,99(24):3188-3198.
    1Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studiodell'Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Criticial Chronic Ischemia of the LowerExremities [J]. Eur J Vasc Endovasc Surg,1997,14(2):91-95.
    2Wolfe, J.H., Wyatt, M.G. Critical and subcritical ischaemia [J]. Eur J Vasc Endovasc Surg,1997,13(6):578-582.
    Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G., Rutherford, R.B. Inter-societyconsensus for the management of peripheral arterial disease [J]. Int Angiol,2007,26(2):81-157.
    1Mughal, N.A., Russell, D.A., Ponnambalam, S., Homer-Vanniasinkam, S. Gene therapy in the treatment of peripheralarterial disease [J]. Br J Surg,2012,99(1):6-15.
    Flamme, I., Frolich, T., Risau, W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis [J]. J CellPhysiol,1997,173(2):206-210.
    1Dimmeler, S., Haendeler, J., Zeiher, A.M. Regulation of endothelial cell apoptosis in atherothrombosis [J]. Curr OpinLipidol,2002,13(5):531-536.
    2Angus, J.A. Role of the endothelium in the genesis of cardiovascular disease [J]. Clin Exp Pharmacol Physiol,1996,23(8): S16-S22.
    Li, S., Huang, N.F., Hsu, S. Mechanotransduction in endothelial cell migration [J]. J Cell Biochem,2005,96(6):1110-1126
    1Haurani, M.J., Pagano, P.J. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators ofremodeling: bellwether for vascular disease?[J]. Cardiovasc Res,2007,75(4):679-689.
    2Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulated genes that inhibits activation byE2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    3,4Kunita, R., Otomo, A., Ikeda, J.E. Identification and characterization of novel members of the CREG family,putative secreted glycoproteins expressed specifically in brain [J]. Genomics,2002,80(5):456-460.
    5Sacher, M., Di Bacco, A., Lunin, V.V., Ye, Z., Wagner, J., Gill, G., Cygler, M. The crystal structure of CREG, a secretedglycoprotein involved in cellular growth and differentiation [J]. Proc Natl Acad Sci U S A,2005,102(51):18326-18331.
    6Yang, G., Han, Y., Tian, X., Tao, J., Sun, M., Kang, J., Yan, C. Pattern of expression of the CREG gene and CREGprotein in the mouse embryo [J]. Mol Biol Rep,2011,38(3):2133-2140.
    7,8Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREG enhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128
    9Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    1Journet, A., Chapel, A., Kieffer, S., Louwagie, M., Luche, S., Garin, J. Towards a human repertoire of monocyticlysosomal proteins [J]. Electrophoresis,2000,21(16):3411-3419.
    2,5Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growth dependent on themannose-6-phosphate/insulin-like growth factor II receptor [J]. Oncogene,2003,22(35):5436-5445.
    3Han, Y., Luan, B., Sun, M., Guo, L., Guo, P., Tao, J., Deng, J., Wu, G., Liu, S., Yan, C., Li, S.Glycosylation-independent binding to extracellular domains11-13of mannose-6-phosphate/insulin-like growth factor-2receptor mediates the effects of soluble CREG on the phenotypic modulation of vascular smooth muscle cells [J]. J MolCell Cardiol,2011,50(4):723-730.
    4Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner, T., Mach, L. Cellular repressorof E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis[J]. Exp Cell Res,2008,314(16):3036-3047.
    6Han, Y.L., Guo, P., Sun, M.Y., Guo, L., Luan, B., Kang, J., Yan, C.H., Li, S.H. Secreted CREG inhibits cellproliferation mediated by mannose6-phosphate/insulin-like growth factor II receptor in NIH3T3fibroblasts [J]. GenesCells,2008,13(9):977-986.
    7韩雅玲,徐红梅,闫承慧,胡叶,康建,刘海伟. RhoA和血清反应因子(SRF)介导E1A激活基因阻遏子诱导人血管平滑肌细胞分化[J].生物化学与生物物理进展,2006,33(5):438-445.
    1Gordon, P.V., Paxton, J.B., Fox, N.S. The cellular repressor of E1A-stimulated genes mediatesglucocorticoid-induced loss of the type-2IGF receptor in ileal epithelial cells [J]. J Endocrinol,2005,185(2):265-273.
    2Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration ofhuman vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    3韩雅玲,徐红梅,邓捷,胡叶,康建,刘海伟,闫承慧. E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡[J].生理学报,2006,58(4):324-330.
    4Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellular repressor E1A-stimulatedgenes controls phenotypic switching of adventitial fibroblasts by blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    5Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    6Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    7Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiac hypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    8Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor of E1A-stimulated genes attenuatescardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    9Tao, J., Yan, C., Tian, X., Liu, S., Li, Y., Zhang, J., Sun, M., Ma, X., Han, Y. CREG Promotes the Proliferation ofHuman Umbilical Vein Endothelial Cells through the ERK/Cyclin E Signaling Pathway [J]. Int J Mol Sci,2013,14(9):18437-18456.
    10Wen-Xin, L., Xi-Shan, H. Application of laser capture microdissection and differential display technique for screeningof pathogenic genes involved in endometrial carcinoma [J]. Int J Gynecol Cancer,2007,17(6):1224-1230.
    Moolmuang, B., Tainsky, M.A. CREG1enhances p16(INK4a)-induced cellular senescence [J]. Cell Cycle,2011,10(3):518-530.
    1韩雅玲,刘海伟,康建,闫承慧,王效增,赵连友,李少华. E1A激活基因阻遏子在不同表型血管平滑肌细胞中的表达[J].中华医学杂志,2005,85(1):49-53.
    2韩雅玲,康建,张剑,李少华.对去血清后HITASY细胞分子表达及表型分析[J].生物化学与生物物理进展,2003,30(6):868-873.
    3韩雅玲,赵昕,闫承慧,康建,张效林,邓捷,徐红梅,刘海伟.人血管细胞中hCREG1基因启动子对血清饥饿发生应答[J].中国病理生理杂志,2008,24(8):1483-1489.
    4韩雅玲,闫承慧,刘海伟,胡叶,康建,王效增,李少华. E1A激活基因阻遏子过表达诱导体外培养大鼠平滑肌细胞分化[J].生物化学与生物物理进展,2004,31(12):1099-1105.
    5韩雅玲,徐红梅,闫承慧,胡叶,康建,刘海伟. RhoA和血清反应因子(SRF)介导E1A激活基因阻遏子诱导人血管平滑肌细胞分化[J].生物化学与生物物理进展,2006,33(5):438-445.
    1Han, Y., Deng, J., Guo, L., Yan, C., Liang, M., Kang, J., Liu, H., Graham, A.M., Li, S. CREG promotes a maturesmooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery [J]. Cardiovasc Res,2008,78(3):597-604.
    2韩雅玲,崔继福,郭亮,康建,张效林,闫承慧.分泌型hCREG蛋白抑制人血管平滑肌细胞增殖的量效关系研究[J].中国病理生理杂志,2008,24(11):2121-2125.
    3Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S. CREG inhibits migration ofhuman vascular smooth muscle cells by mediating IGF-II endocytosis [J]. Exp Cell Res,2009,315(19):3301-3311
    4Bennett, M.R., Macdonald, K., Chan, S.W., Boyle, J.J., Weissberg, P.L. Cooperative interactions between RB and p53regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atheroscleroticplaques [J]. Circ Res,1998,82(6):704-712.
    5McCarthy, N.J., Bennett, M.R. The regulation of vascular smooth muscle cell apoptosis [J]. Cardiovasc Res,2000,45(3):747-755.
    6吴光哲,闫承慧,韩雅玲,陶杰,邓捷,田孝祥,张保海,王涛,康建,张效林. E1A激活基因阻遏子(CREG)过表达通过抑制p38/JNK信号分子活化对抗人血管平滑肌细胞凋亡[J].生物化学与生物物理进展,2009,36(12):1597-1606.
    7Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C. Overexpression of CREGattenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    1Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulated genes regulates vascularendothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    1Tao, J., Yan, C., Tian, X., Liu, S., Li, Y., Zhang, J., Sun, M., Ma, X., Han, Y. CREG Promotes the Proliferation ofHuman Umbilical Vein Endothelial Cells through the ERK/Cyclin E Signaling Pathway [J]. Int J Mol Sci,2013,14(9):18437-18456.
    2Li, G., Chen, S.J., Oparil, S., Chen, Y.F., Thompson, J.A. Direct in vivo evidence demonstrating neointimal migrationof adventitial fibroblasts after balloon injury of rat carotid arteries [J]. Circulation,2000,101(12):1362-1365.
    Shi, Y., O'Brien, J.E., Fard, A., Mannion, J.D., Wang, D., Zalewski, A. Adventitial myofibroblasts contribute toneointimal formation in injured porcine coronary arteries [J]. Circulation,1996,94(7):1655-1664.
    1韩雅玲,王效增,康建,刘海伟,李少华.大鼠颈动脉球囊损伤后血管平滑肌细胞E1A激活基因阻遏子的表达变化[J].中华心血管病杂志,2004,32(1):53-58.
    2Han, Y., Deng, J., Guo, L., Yan, C., Liang, M., Kang, J., Liu, H., Graham, A.M., Li, S. CREG promotes a maturesmooth muscle cell phenotype and reduces neointimal formation in balloon-injured rat carotid artery [J]. Cardiovasc Res,2008,78(3):597-604.
    3Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S. Adenovirus-mediated intra-arterial delivery ofcellular repressor of E1A-stimulated genes inhibits neointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-eluting stent attenuates in-stentneointimal formation in porcine coronary arteries [J]. PLoS One,2013,8(4): e60735.
    1.关德明.动脉粥样硬化形成机制研究的新动态[J].哈尔滨医科大学学报,2001,35(3):224-226.
    2.杨晓燕.内皮细胞的异质性与动脉粥样硬化[J].西南国防医药,2007,17(3):372-374.
    3. Stewart, A.H., Lamont, P.M. Exercise training and peripheral vascular disease [J]. BrJ Surg,2000,87(12):1732.
    4. Long-term mortality and its predictors in patients with critical leg ischaemia. TheI.C.A.I. Group (Gruppo di Studio dell'Ischemia Cronica Critica degli Arti Inferiori).The Study Group of Criticial Chronic Ischemia of the Lower Exremities [J]. Eur J VascEndovasc Surg,1997,14(2):91-95.
    5. Wolfe, J.H., Wyatt, M.G. Critical and subcritical ischaemia [J]. Eur J Vasc EndovascSurg,1997,13(6):578-582.
    6. Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A., Fowkes, F.G.,Rutherford, R.B. Inter-society consensus for the management of peripheral arterialdisease [J]. Int Angiol,2007,26(2):81-157.
    7. Griffioen, A.W., Molema, G. Angiogenesis: potentials for pharmacologic interventionin the treatment of cancer, cardiovascular diseases, and chronic inflammation [J].Pharmacol Rev,2000,52(2):237-268.
    8. Mughal, N.A., Russell, D.A., Ponnambalam, S., Homer-Vanniasinkam, S. Gene therapyin the treatment of peripheral arterial disease [J]. Br J Surg,2012,99(1):6-15.
    9. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion [J]. Cell,1992,69(1):11-25.
    10. Furchgott, R.F., Zawadzki, J.V. The obligatory role of endothelial cells in therelaxation of arterial smooth muscle by acetylcholine [J]. Nature,1980,288(5789):373-376.
    11. Zimmerman, G.A., McIntyre, T.M., Mehra, M., Prescott, S.M. Endothelialcell-associated platelet-activating factor: a novel mechanism for signaling intercellularadhesion [J]. J Cell Biol,1990,110(2):529-540.
    12. Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., Shapiro,R.L., Galloway, A.C., Rifkin, D.B., Mignatti, P. Fibroblast growth factor-2(FGF-2)induces vascular endothelial growth factor (VEGF) expression in the endothelial cellsof forming capillaries: an autocrine mechanism contributing to angiogenesis [J]. J CellBiol,1998,141(7):1659-1673.
    13. Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., Hunt, T. Cyclin: a proteinspecified by maternal mRNA in sea urchin eggs that is destroyed at each cleavagedivision [J]. Cell,1983,33(2):389-396.
    14. Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., Okayama, H.Cdc25A is a novel phosphatase functioning early in the cell cycle [J]. EMBO J,1994,13(7):1549-1556.
    15. Solomon, M.J. The function(s) of CAK, the p34cdc2-activating kinase [J]. TrendsBiochem Sci,1994,19(11):496-500.
    16. MacLachlan, T.K., Sang, N., Giordano, A. Cyclins, cyclin-dependent kinases and cdkinhibitors: implications in cell cycle control and cancer [J]. Crit Rev Eukaryot GeneExpr,1995,5(2):127-156.
    17. Sherr, C.J., Roberts, J.M. CDK inhibitors: positive and negative regulators ofG1-phase progression [J]. Genes Dev,1999,13(12):1501-1512.
    18. Li, A., Blow, J.J. The origin of CDK regulation [J]. Nat Cell Biol,2001,3(8):E182-E184.
    19. Liang, J., Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cellcycle progression [J]. Cell Cycle,2003,2(4):339-345.
    20. Terada, Y., Inoshita, S., Nakashima, O., Kuwahara, M., Sasaki, S., Marumo, F.Regulation of cyclin D1expression and cell cycle progression by mitogen-activatedprotein kinase cascade [J]. Kidney Int,1999,56(4):1258-1261.
    21. Zachary, I., Gliki, G. Signaling transduction mechanisms mediating biological actionsof the vascular endothelial growth factor family [J]. Cardiovasc Res,2001,49(3):568-581.
    22. Thakker, G.D., Hajjar, D.P., Muller, W.A., Rosengart, T.K. The role of phosphatid-ylinositol3-kinase in vascular endothelial growth factor signaling [J]. J Biol Chem,1999,274(15):10002-10007.
    23. Wu, L.W., Mayo, L.D., Dunbar, J.D., Kessler, K.M., Baerwald, M.R., Jaffe, E.A., Wang,D., Warren, R.S., Donner, D.B. Utilization of distinct signaling pathways by receptorsfor vascular endothelial cell growth factor and other mitogens in the induction ofendothelial cell proliferation [J]. J Biol Chem,2000,275(7):5096-5103.
    24. Wellner, M., Maasch, C., Kupprion, C., Lindschau, C., Luft, F.C., Haller, H. Theproliferative effect of vascular endothelial growth factor requires protein kinaseC-alpha and protein kinase C-zeta [J]. Arterioscler Thromb Vasc Biol,1999,19(1):178-185.
    25. Pedram, A., Razandi, M., Levin, E.R. Extracellular signal-regulated proteinkinase/Jun kinase cross-talk underlies vascular endothelial cell growth factor-inducedendothelial cell proliferation [J]. J Biol Chem,1998,273(41):26722-26728.
    26. Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulatedgenes that inhibits activation by E2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    27. Kunita, R., Otomo, A., Ikeda, J.E. Identification and characterization of novelmembers of the CREG family, putative secreted glycoproteins expressed specifically inbrain [J]. Genomics,2002,80(5):456-460.
    28. Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREGenhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    29. Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growthdependent on the mannose-6-phosphate/insulin-like growth factor II receptor [J].Oncogene,2003,22(35):5436-5445.
    30. Sacher, M., Di Bacco, A., Lunin, V.V., Ye, Z., Wagner, J., Gill, G., Cygler, M. Thecrystal structure of CREG, a secreted glycoprotein involved in cellular growth anddifferentiation [J]. Proc Natl Acad Sci U S A,2005,102(51):18326-18331.
    31. Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiachypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    32. Moolmuang, B., Tainsky, M.A. CREG1enhances p16(INK4a)-induced cellularsenescence [J]. Cell Cycle,2011,10(3):518-530.
    33. Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor ofE1A-stimulated genes attenuates cardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    34. Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner,T., Mach, L. Cellular repressor of E1A-stimulated genes is a bona fide lysosomalprotein which undergoes proteolytic maturation during its biosynthesis [J]. Exp CellRes,2008,314(16):3036-3047.
    35. Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulatedgenes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165)signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    36. Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C.Overexpression of CREG attenuates atherosclerotic endothelium apoptosis viaVEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    37. Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellularrepressor E1A-stimulated genes controls phenotypic switching of adventitial fibroblastsby blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    38.韩雅玲,康建,张剑,李少华.对去血清后HITASY细胞分子表达及表型分析[J].生物化学与生物物理进展,2003,30(6):868-873.
    39.闫承慧,韩雅玲,刘海伟,胡叶,康建,王效增,李少华. E1A激活基因阻遏子过表达诱导体外培养大鼠平滑肌细胞分化[J].中华心血管病杂志,2004,32(z1):253.
    40.韩雅玲,邓捷,梁明,康建,刘海伟,徐红梅,闫承慧.逆转录病毒介导的E1A激活基因阻遏子抑制大鼠颈动脉球囊损伤后新生内膜形成[J].中国病理生理杂志,2007,23(10):1873-1877.
    41. Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S. Adenovirus-mediated intra-arterial delivery of cellular repressor of E1A-stimulated genes inhibitsneointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    42. Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S.CREG inhibits migration of human vascular smooth muscle cells by mediating IGF-IIendocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    43. Yang, G., Han, Y., Tian, X., Tao, J., Sun, M., Kang, J., Yan, C. Pattern of expression ofthe CREG gene and CREG protein in the mouse embryo [J]. Mol Biol Rep,2011,38(3):2133-2140.
    44. Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-elutingstent attenuates in-stent neointimal formation in porcine coronary arteries [J]. PLoSOne,2013,8(4): e60735.
    45. Fujita, N., Furukawa, Y., Itabashi, N., Okada, K., Saito, T., Ishibashi, S. Differences inE2F subunit expression in quiescent and proliferating vascular smooth muscle cells [J].Am J Physiol Heart Circ Physiol,2002,283(1): H204-H212.
    46.韩雅玲,王效增,康建,刘海伟,李少华.大鼠颈动脉球囊损伤后血管平滑肌细胞E1A激活基因阻遏子的表达变化[J].中华心血管病杂志,2004,32(1):53-58.
    47.韩雅玲,徐红梅,邓捷,胡叶,康建,刘海伟,闫承慧. E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡[J].生理学报,2006,58(4):324-330.
    48. Baldwin, A.L., Thurston, G. Mechanics of endothelial cell architecture and vascularpermeability [J]. Crit Rev Biomed Eng,2001,29(2):247-278.
    49. Pries, A.R., Secomb, T.W., Gaehtgens, P. The endothelial surface layer [J]. PflugersArch,2000,440(5):653-666.
    50. Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemicmyocardium [J]. Cardiovasc Res,2004,61(3):498-511.
    51. Roquer, J., Segura, T., Serena, J., Castillo, J. Endothelial dysfunction, vascular diseaseand stroke: the ARTICO study [J]. Cerebrovasc Dis,2009,27Suppl1:25-37.
    52. Eringa, E.C., Serne, E.H., Meijer, R.I., Schalkwijk, C.G., Houben, A.J., Stehouwer,C.D., Smulders, Y.M., van Hinsbergh, V.W. Endothelial dysfunction in (pre)diabetes:characteristics, causative mechanisms and pathogenic role in type2diabetes [J]. RevEndocr Metab Disord,2013,14(1):39-48.
    53. Wong, W.T., Tian, X.Y., Huang, Y. Endothelial dysfunction in diabetes andhypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2-derivedprostanoids [J]. J Cardiovasc Pharmacol,2013,61(3):204-214.
    54.张建江,易著文.血管内皮细胞损伤及修复的研究进展[J].临床心身疾病杂志,2007,13(2):183-185,177.
    55. Kevil, C.G., Payne, D.K., Mire, E., Alexander, J.S. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs throughdisorganization of endothelial junctional proteins [J]. J Biol Chem,1998,273(24):15099-15103.
    56. Ferrara, N. Vascular endothelial growth factor: molecular and biological aspects [J].Curr Top Microbiol Immunol,1999,237:1-30.
    57. Journet, A., Chapel, A., Kieffer, S., Roux, F., Garin, J. Proteomic analysis of humanlysosomes: application to monocytic and breast cancer cells [J]. Proteomics,2002,2(8):1026-1040.
    58. Han, Y.L., Guo, P., Sun, M.Y., Guo, L., Luan, B., Kang, J., Yan, C.H., Li, S.H. SecretedCREG inhibits cell proliferation mediated by mannose6-phosphate/insulin-like growthfactor II receptor in NIH3T3fibroblasts [J]. Genes Cells,2008,13(9):977-986.
    59. Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S.CREG inhibits migration of human vascular smooth muscle cells by mediating IGF-IIendocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    60. Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner,T., Mach, L. Cellular repressor of E1A-stimulated genes is a bona fide lysosomalprotein which undergoes proteolytic maturation during its biosynthesis [J]. Exp CellRes,2008,314(16):3036-3047.
    61. Endicott, J.A., Noble, M.E. Structural principles in cell-cycle control: beyond theCDKs [J]. Structure,1998,6(5):535-541.
    62. Morgan, D.O., The cell cycle:principles of control. Primers in biology.2007, London:Published by New Science Press in association with Oxford University Press.297.
    63. Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., Pavletich,N.P. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2complex [J]. Nature,1995,376(6538):313-320.
    64. Resnitzky, D., Reed, S.I. Different roles for cyclins D1and E in regulation of theG1-to-S transition [J]. Mol Cell Biol,1995,15(7):3463-3469.
    65. Ford, H.L., Pardee, A.B. Cancer and the cell cycle [J]. J Cell Biochem,1999, Suppl32-33:166-172.
    66. Schwartz, M.A., Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways [J]. J Cell Sci,2001,114(Pt14):2553-2560.
    67. Hlobilkova, A., Knillova, J., Bartek, J., Lukas, J., Kolar, Z. The mechanism of action ofthe tumour suppressor gene PTEN [J]. Biomed Pap Med Fac Univ Palacky OlomoucCzech Repub,2003,147(1):19-25.
    68. Zachary, I. VEGF signalling: integration and multi-tasking in endothelial cell biology[J]. Biochem Soc Trans,2003,31(Pt6):1171-1177.
    69. Liu, W., Ahmad, S.A., Reinmuth, N., Shaheen, R.M., Jung, Y.D., Fan, F., Ellis, L.M.Endothelial cell survival and apoptosis in the tumor vasculature [J]. Apoptosis,2000,5(4):323-328.
    70. Xu, T., Wang, N.S., Fu, L.L., Ye, C.Y., Yu, S.Q., Mei, C.L. Celecoxib inhibits growth ofhuman autosomal dominant polycystic kidney cyst-lining epithelial cells through theVEGF/Raf/MAPK/ERK signaling pathway [J]. Mol Biol Rep,2012,39(7):7743-7753.
    71. Li, W., Jin, B., Cornelius, L.A., Zhou, B., Fu, X., Shang, D., Zheng, H. Inhibitoryeffects of Rap1GAP overexpression on proliferation and migration of endothelial cellsvia ERK and Akt pathways [J]. J Huazhong Univ Sci Technolog Med Sci,2011,31(6):721-727.
    72. Schaper, W. Collateral circulation: past and present [J]. Basic Res Cardiol,2009,104(1):5-21.
    73. Namiecinska, M., Marciniak, K., Nowak, J.Z.[VEGF as an angiogenic, neurotrophic,and neuroprotective factor][J]. Postepy Hig Med Dosw (Online),2005,59:573-583.
    74. Spirli, C., Okolicsanyi, S., Fiorotto, R., Fabris, L., Cadamuro, M., Lecchi, S., Tian, X.,Somlo, S., Strazzabosco, M. Mammalian target of rapamycin regulates vascularendothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice[J]. Hepatology,2010,51(5):1778-1788.
    75. Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor ofE1A-stimulated genes attenuates cardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    76. Carpenter, C.L., Duckworth, B.C., Auger, K.R., Cohen, B., Schaffhausen, B.S., Cantley,L.C. Purification and characterization of phosphoinositide3-kinase from rat liver [J]. JBiol Chem,1990,265(32):19704-19711.
    77. Rao, V.N., Reddy, E.S. elk-1proteins interact with MAP kinases [J]. Oncogene,1994,9(7):1855-1860.
    78.韩雅玲,赵昕,闫承慧,康建,张效林,邓捷,徐红梅,刘海伟.转录因子E2F1抑制CREG表达调控体外培养的人血管平滑肌细胞分化[J].生物化学与生物物理进展,2007,34(5):490-496.
    79. Han, Y., Deng, J., Guo, L., Yan, C., Liang, M., Kang, J., Liu, H., Graham, A.M., Li, S.CREG promotes a mature smooth muscle cell phenotype and reduces neointimalformation in balloon-injured rat carotid artery [J]. Cardiovasc Res,2008,78(3):597-604.
    80. Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S.Adenovirus-mediated intra-arterial delivery of cellular repressor of E1A-stimulatedgenes inhibits neointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    81. Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-elutingstent attenuates in-stent neointimal formation in porcine coronary arteries [J]. PLoSOne,2013,8(4): e60735.
    82. Graupera, M., Guillermet-Guibert, J., Foukas, L.C., Phng, L.K., Cain, R.J., Salpekar, A.,Pearce, W., Meek, S., Millan, J., Cutillas, P.R., Smith, A.J., Ridley, A.J., Ruhrberg, C.,Gerhardt, H., Vanhaesebroeck, B. Angiogenesis selectively requires the p110alphaisoform of PI3K to control endothelial cell migration [J]. Nature,2008,453(7195):662-666.
    83. Stenman, J.M., Rajagopal, J., Carroll, T.J., Ishibashi, M., McMahon, J., McMahon, A.P.Canonical Wnt signaling regulates organ-specific assembly and differentiation ofCNS vasculature [J]. Science,2008,322(5905):1247-1250.
    84. Stegmann, T.J. FGF-1: a human growth factor in the induction of neoangiogenesis [J].Expert Opin Investig Drugs,1998,7(12):2011-2015.
    85. Cochain, C., Channon, K.M., Silvestre, J.S. Angiogenesis in the infarctedmyocardium [J]. Antioxid Redox Signal,2013,18(9):1100-1113.
    86. Segers, V.F., Lee, R.T. Biomaterials to enhance stem cell function in the heart [J].Circ Res,2011,109(8):910-922.
    87. Hinkel, R., Trenkwalder, T., Kupatt, C. Gene therapy for ischemic heart disease [J].Expert Opin Biol Ther,2011,11(6):723-737.
    88. Eibel, B., Rodrigues, C.G., Giusti, I.I., Nesralla, I.A., Prates, P.R., Sant'Anna, R.T.,Nardi, N.B., Kalil, R.A. Gene therapy for ischemic heart disease: review of clinicaltrials [J]. Rev Bras Cir Cardiovasc,2011,26(4):635-646.
    89. Gupta, P.K., Chullikana, A., Parakh, R., Desai, S., Das, A., Gottipamula, S.,Krishnamurthy, S., Anthony, N., Pherwani, A., Majumdar, A.S. A double blindrandomized placebo controlled phase I/II study assessing the safety and efficacy ofallogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia [J]. JTransl Med,2013,11:143.
    90. Hart, C.A., Tsui, J., Khanna, A., Abraham, D.J., Baker, D.M. Stem cells of the lowerlimb: Their role and potential in management of critical limb ischemia [J]. Exp BiolMed (Maywood),2013,238(10):1118-1126.
    91. Hammer, A., Steiner, S. Gene therapy for therapeutic angiogenesis in peripheral arterialdisease-a systematic review and meta-analysis of randomized, controlled trials [J].Vasa,2013,42(5):331-339.
    92. Annex, B.H. Therapeutic angiogenesis for critical limb ischaemia [J]. Nat Rev Cardiol,2013,10(7):387-396.
    93. Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H., Limbourg, F.P.Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limbischemia [J]. Nat Protoc,2009,4(12):1737-1746.
    94. Helisch, A., Wagner, S., Khan, N., Drinane, M., Wolfram, S., Heil, M., Ziegelhoeffer, T.,Brandt, U., Pearlman, J.D., Swartz, H.M., Schaper, W. Impact of mouse straindifferences in innate hindlimb collateral vasculature [J]. Arterioscler Thromb Vasc Biol,2006,26(3):520-526.
    95. Leong-Poi, H., Christiansen, J., Klibanov, A.L., Kaul, S., Lindner, J.R. Noninvasiveassessment of angiogenesis by ultrasound and microbubbles targeted toalpha(v)-integrins [J]. Circulation,2003,107(3):455-460.
    96. Morales, D.E., McGowan, K.A., Grant, D.S., Maheshwari, S., Bhartiya, D., Cid, M.C.,Kleinman, H.K., Schnaper, H.W. Estrogen promotes angiogenic activity in humanumbilical vein endothelial cells in vitro and in a murine model [J]. Circulation,1995,91(3):755-763.
    97. Couffinhal, T., Silver, M., Kearney, M., Sullivan, A., Witzenbichler, B., Magner, M.,Annex, B., Peters, K., Isner, J.M. Impaired collateral vessel development associatedwith reduced expression of vascular endothelial growth factor in ApoE-/-mice [J].Circulation,1999,99(24):3188-3198.
    98. Flamme, I., Frolich, T., Risau, W. Molecular mechanisms of vasculogenesis andembryonic angiogenesis [J]. J Cell Physiol,1997,173(2):206-210.
    1. Dimmeler, S., Haendeler, J., Zeiher, A.M. Regulation of endothelial cell apoptosis inatherothrombosis [J]. Curr Opin Lipidol,2002,13(5):531-536.
    2. Angus, J.A. Role of the endothelium in the genesis of cardiovascular disease [J]. ClinExp Pharmacol Physiol,1996,23(8): S16-S22.
    3. Li, S., Huang, N.F., Hsu, S. Mechanotransduction in endothelial cell migration [J]. JCell Biochem,2005,96(6):1110-1126.
    4. Haurani, M.J., Pagano, P.J. Adventitial fibroblast reactive oxygen species as autacrineand paracrine mediators of remodeling: bellwether for vascular disease?[J]. CardiovascRes,2007,75(4):679-689.
    5. Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. A cellular repressor of E1A-stimulatedgenes that inhibits activation by E2F [J]. Mol Cell Biol,1998,18(9):5032-5041.
    6. Kunita, R., Otomo, A., Ikeda, J.E. Identification and characterization of novelmembers of the CREG family, putative secreted glycoproteins expressed specifically inbrain [J]. Genomics,2002,80(5):456-460.
    7. Sacher, M., Di Bacco, A., Lunin, V.V., Ye, Z., Wagner, J., Gill, G., Cygler, M. Thecrystal structure of CREG, a secreted glycoprotein involved in cellular growth anddifferentiation [J]. Proc Natl Acad Sci U S A,2005,102(51):18326-18331.
    8. Yang, G., Han, Y., Tian, X., Tao, J., Sun, M., Kang, J., Yan, C. Pattern of expression ofthe CREG gene and CREG protein in the mouse embryo [J]. Mol Biol Rep,2011,38(3):2133-2140.
    9. Veal, E., Groisman, R., Eisenstein, M., Gill, G. The secreted glycoprotein CREGenhances differentiation of NTERA-2human embryonal carcinoma cells [J]. Oncogene,2000,19(17):2120-2128.
    10. Di Bacco, A., Gill, G. The secreted glycoprotein CREG inhibits cell growthdependent on the mannose-6-phosphate/insulin-like growth factor II receptor [J].Oncogene,2003,22(35):5436-5445.
    11. Journet, A., Chapel, A., Kieffer, S., Louwagie, M., Luche, S., Garin, J. Towards ahuman repertoire of monocytic lysosomal proteins [J]. Electrophoresis,2000,21(16):3411-3419.
    12. Han, Y., Luan, B., Sun, M., Guo, L., Guo, P., Tao, J., Deng, J., Wu, G., Liu, S., Yan, C.,Li, S. Glycosylation-independent binding to extracellular domains11-13ofmannose-6-phosphate/insulin-like growth factor-2receptor mediates the effects ofsoluble CREG on the phenotypic modulation of vascular smooth muscle cells [J]. J MolCell Cardiol,2011,50(4):723-730.
    13. Schahs, P., Weidinger, P., Probst, O.C., Svoboda, B., Stadlmann, J., Beug, H., Waerner,T., Mach, L. Cellular repressor of E1A-stimulated genes is a bona fide lysosomalprotein which undergoes proteolytic maturation during its biosynthesis [J]. Exp CellRes,2008,314(16):3036-3047.
    14. Han, Y.L., Guo, P., Sun, M.Y., Guo, L., Luan, B., Kang, J., Yan, C.H., Li, S.H. SecretedCREG inhibits cell proliferation mediated by mannose6-phosphate/insulin-like growthfactor II receptor in NIH3T3fibroblasts [J]. Genes Cells,2008,13(9):977-986.
    15.韩雅玲,徐红梅,闫承慧,胡叶,康建,刘海伟. RhoA和血清反应因子(SRF)介导E1A激活基因阻遏子诱导人血管平滑肌细胞分化[J].生物化学与生物物理进展,2006,33(5):438-445.
    16. Gordon, P.V., Paxton, J.B., Fox, N.S. The cellular repressor of E1A-stimulated genesmediates glucocorticoid-induced loss of the type-2IGF receptor in ileal epithelial cells[J]. J Endocrinol,2005,185(2):265-273.
    17. Han, Y., Cui, J., Tao, J., Guo, L., Guo, P., Sun, M., Kang, J., Zhang, X., Yan, C., Li, S.CREG inhibits migration of human vascular smooth muscle cells by mediating IGF-IIendocytosis [J]. Exp Cell Res,2009,315(19):3301-3311.
    18.韩雅玲,徐红梅,邓捷,胡叶,康建,刘海伟,闫承慧. E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡[J].生理学报,2006,58(4):324-330.
    19. Li, Y., Tao, J., Zhang, J., Tian, X., Liu, S., Sun, M., Zhang, X., Yan, C., Han, Y. Cellularrepressor E1A-stimulated genes controls phenotypic switching of adventitial fibroblastsby blocking p38MAPK activation [J]. Atherosclerosis,2012,225(2):304-314.
    20. Wang, N., Han, Y., Tao, J., Huang, M., You, Y., Zhang, H., Liu, S., Zhang, X., Yan, C.Overexpression of CREG attenuates atherosclerotic endothelium apoptosis viaVEGF/PI3K/AKT pathway [J]. Atherosclerosis,2011,218(2):543-551.
    21. Zhang, H., Han, Y., Tao, J., Liu, S., Yan, C., Li, S. Cellular repressor of E1A-stimulatedgenes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165)signaling pathway [J]. Exp Cell Res,2011,317(20):2904-2913.
    22. Xu, L., Liu, J.M., Chen, L.Y. CREG, a new regulator of ERK1/2in cardiachypertrophy [J]. J Hypertens,2004,22(8):1579-1587.
    23. Bian, Z., Cai, J., Shen, D.F., Chen, L., Yan, L., Tang, Q., Li, H. Cellular repressor ofE1A-stimulated genes attenuates cardiac hypertrophy and fibrosis [J]. J Cell Mol Med,2009,13(7):1302-1313.
    24. Tao, J., Yan, C., Tian, X., Liu, S., Li, Y., Zhang, J., Sun, M., Ma, X., Han, Y. CREGPromotes the Proliferation of Human Umbilical Vein Endothelial Cells through theERK/Cyclin E Signaling Pathway [J]. Int J Mol Sci,2013,14(9):18437-18456.
    25. Wen-Xin, L., Xi-Shan, H. Application of laser capture microdissection and differentialdisplay technique for screening of pathogenic genes involved in endometrial carcinoma[J]. Int J Gynecol Cancer,2007,17(6):1224-1230.
    26. Moolmuang, B., Tainsky, M.A. CREG1enhances p16(INK4a)-induced cellularsenescence [J]. Cell Cycle,2011,10(3):518-530.
    27.韩雅玲,刘海伟,康建,闫承慧,王效增,赵连友,李少华. E1A激活基因阻遏子在不同表型血管平滑肌细胞中的表达[J].中华医学杂志,2005,85(1):49-53.
    28.韩雅玲,康建,张剑,李少华.对去血清后HITASY细胞分子表达及表型分析[J].生物化学与生物物理进展,2003,30(6):868-873.
    29.韩雅玲,赵昕,闫承慧,康建,张效林,邓捷,徐红梅,刘海伟.人血管细胞中hCREG1基因启动子对血清饥饿发生应答[J].中国病理生理杂志,2008,24(8):1483-1489.
    30.韩雅玲,闫承慧,刘海伟,胡叶,康建,王效增,李少华. E1A激活基因阻遏子过表达诱导体外培养大鼠平滑肌细胞分化[J].生物化学与生物物理进展,2004,31(12):1099-1105.
    31. Han, Y., Deng, J., Guo, L., Yan, C., Liang, M., Kang, J., Liu, H., Graham, A.M., Li, S.CREG promotes a mature smooth muscle cell phenotype and reduces neointimalformation in balloon-injured rat carotid artery [J]. Cardiovasc Res,2008,78(3):597-604.
    32.韩雅玲,崔继福,郭亮,康建,张效林,闫承慧.分泌型hCREG蛋白抑制人血管平滑肌细胞增殖的量效关系研究[J].中国病理生理杂志,2008,24(11):2121-2125.
    33. Bennett, M.R., Macdonald, K., Chan, S.W., Boyle, J.J., Weissberg, P.L. Cooperativeinteractions between RB and p53regulate cell proliferation, cell senescence, andapoptosis in human vascular smooth muscle cells from atherosclerotic plaques [J]. CircRes,1998,82(6):704-712.
    34. McCarthy, N.J., Bennett, M.R. The regulation of vascular smooth muscle cellapoptosis [J]. Cardiovasc Res,2000,45(3):747-755.
    35.吴光哲,闫承慧,韩雅玲,陶杰,邓捷,田孝祥,张保海,王涛,康建,张效林. E1A激活基因阻遏子(CREG)过表达通过抑制p38/JNK信号分子活化对抗人血管平滑肌细胞凋亡[J].生物化学与生物物理进展,2009,36(12):1597-1606.
    36. Li, G., Chen, S.J., Oparil, S., Chen, Y.F., Thompson, J.A. Direct in vivo evidencedemonstrating neointimal migration of adventitial fibroblasts after balloon injury of ratcarotid arteries [J]. Circulation,2000,101(12):1362-1365.
    37. Shi, Y., O'Brien, J.E., Fard, A., Mannion, J.D., Wang, D., Zalewski, A. Adventitialmyofibroblasts contribute to neointimal formation in injured porcine coronaryarteries [J]. Circulation,1996,94(7):1655-1664.
    38.韩雅玲,王效增,康建,刘海伟,李少华.大鼠颈动脉球囊损伤后血管平滑肌细胞E1A激活基因阻遏子的表达变化[J].中华心血管病杂志,2004,32(1):53-58.
    39. Han, Y., Guo, L., Yan, C., Guo, P., Deng, J., Mai, X., Kang, J., Li, S. Adenovirus-mediated intra-arterial delivery of cellular repressor of E1A-stimulated genes inhibitsneointima formation in rabbits after balloon injury [J]. J Vasc Surg,2008,48(1):201-209.
    40. Deng, J., Han, Y., Sun, M., Tao, J., Yan, C., Kang, J., Li, S. Nanoporous CREG-elutingstent attenuates in-stent neointimal formation in porcine coronary arteries [J]. PLoSOne,2013,8(4): e60735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700