钠离子通道功能改变在遗传性长QT综合征发病机制中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     遗传性长QT综合征(long QTsyndrome, LQTS)是一类遗传性的心律失常疾病,临床表现以反复发作的晕厥、抽搐甚至猝死为特征。体表心电图上表现为QT间期延长、T波异常(T波低平或双相),易发生室性快速心律失常(ventricular tachyarrhythmia, VT)或尖端扭转型室性心动过速(Torsade de Pointes, TdP),可能转化为心室颤动(ventricular fibrillation,VF)等恶性心律失常。长QT综合征是心脏结构正常、有不明原因晕厥的年轻人发生猝死的常见原因之一。
     流行病学研究显示,大多数遗传性长QT综合征具有家族聚集性,只有极少数是由于散在的新发突变引起。迄今为止共发现了13个基因的数千种基因变异导致的13种不同类型的长QT综合征,其中6种基因(KCNQ1、KCNH2、SCN5A、KCNJ2、 CACNA1C、KCNJ5)编码离子通道的结构蛋白,另外7种基因(ANKB、KCNE1、KCNE2、 CAV3、SCN4B、AKAP9、SNTA1)编码离子通道的调节蛋白。
     SCN5A基因编码人类心肌细胞上的电压门控性钠离子通道(hNav1.5)的α亚单位,α亚单位是完成钠离子通道功能的主要结构,可产生较大的内向钠离子电流,引起心肌细胞动作电位快速上升,同时使冲动在心肌组织间快速传导。该通道蛋白由位于胞内的N端、位于胞内的C端和4个同源结构域(DI-DIV)组成,每个同源结构域包含6个跨膜节段(S1-S6)。SCN5A基因发生突变可引起钠离子通道“功能增强”,延长心肌细胞动作电位时程(action potential duration, APD),延长QT间期,从而导致长QT综合征3型(LQT3).
     α1-互生蛋白(a1-syntrophin, SNTA1)属于抗肌萎缩蛋白(dystrophin)相关的蛋白家族,是互生蛋白(syntrophin)在骨骼肌和心肌细胞中的主要亚型。作为适配体,SNTA1蛋白可与神经性一氧化氮合酶(neuronal nitric oxide synthase, nNOS)、细胞膜钙ATP酶(plasma membrane Ca2+/calmodulin-dependent ATPase, PMCA4b)相互结合,构成复合体。在此复合体中,PMCA4b可抑制nNOS的功能,减少一氧化氮(NO)的合成。SNTA1还可直接通过PDZ结构域的结合序列直接与hNav1.5C端的最后三个氨基酸残基——丝氨酸-异亮氨酸-缬氨酸(serine-isoleucine-valine)相互作用。既往研究在长QT综合征患者中发现SNTA1基因的一个突变A390V可以破坏SNTA1与PMCA4b的结合作用,拮抗PMCA4b对nNOS的抑制作用,显著增加INa的峰电流和晚钠电流大小,标志着SNTA1成为长QT综合征12型(LQT12)的致病基因。
     目的
     定位一个长QT综合征家系的致病基因;识别基因突变位点;在细胞水平上研究该突变对其编码蛋白质功能的影响,探讨基因突变导致长QT综合征的发病机制。
     方法
     收集长QT综合征家系家族成员的外周静脉血,采用候选基因策略对目前已发现的13个长QT综合征的致病基因的全部外显子和外显子-内含子结合部位进行筛查,以期发现致病基因。在野生型质粒的基础上,采用定点突变技术构建突变体质粒,并利用瞬时转染的方法在异源真核生物表达系统——人胚肾293细胞(HEK293)中表达。采用全细胞膜片钳技术在转染了野生型或突变型质粒的HEK293细胞上记录通道电流,研究相应通道的电生理特性。
     结果
     先证者,女性,37岁,反复发作性晕厥30年,12导联体表心电图示校正的QT间期(QTc)延长(大于480ms)。先证者10岁的儿子因多次发生阵发性室上速接受过射频消融术治疗,体表心电图示QTc=500ms。其他家庭成员无明显症状。基因型分析发现,先证者的SCN5A基因和SNTA1基因存在两个新的基因变异,均引起该位点编码的氨基酸发生改变,分别为R800L和A261V。利用全细胞膜片钳技术在表达了野生型和突变体钠离子通道的HEK293细胞上记录钠电流(sodium current,IN。),发现与野生型通道(WT-SCN5A+WT-SNTA1)相比,双突变体通道(R800L-SCN5A+A261V-SNTA1)和单突变体通道(R800L-SCN5A+WT-SNTA1, WT-SCN5A+A261V-SNTA1)的晚钠电流(late sodium current,late/Na)增加,电流衰减减慢,以双突变体通道的改变最为显著。这一钠离子通道“功能增强”效应可被nNOS的抑制剂N-单甲基-L-精氨酸(NG-monomethyl-L-arginie, L-NMMA)所阻断。
     结论
     分别位于SCN5A基因和SNTA1基因的两个新的基因突变R800L与A261V通过影响钠离子通道的亚硝基化作用,共同导致钠离子通道“功能增强”效应,增加晚钠电流,减慢电流衰减,延长了动作电位时程,从而引起长QT综合征。
     背景
     SCN5A基因编码人类心肌细胞电压门控性钠离子通道(hNav1.5)的α亚单位,α亚单位是完成钠离子通道功能的主要结构,可产生较大的内向钠离子电流(sodium current,/Na),引起心肌细胞动作电位快速上升,同时使冲动在心肌组织间快速传导。α亚单位还与晚钠电流(late sodium current, late/Na)的产生有关,后者可影响心肌细胞的复极过程。SCN5A基因发生突变可引起一系列遗传性心律失常疾病,如长QT综合征3型、Brugada综合征、心脏传导系统疾病、病态窦房结综合征等。钠离子通道的功能异常往往与SCN5A基因的选择性剪接变异相关,并受到环境物理化学因素如酸中毒的影响。既往报道SCN5A基因的一个错义突变S1787N可引起长QT综合征3型,这一突变也在295名健康白人对照里发现了一例。
     目的
     本研究拟在SCN5A选择性剪接变异和不同pH条件的背景下,研究S1787N-SCN5A突变对钠离子通道电生理功能的影响,揭示该突变的致病机制。
     方法
     SCN5A基因有两种常见的剪接异构体,一种在第1077位氨基酸上缺失一个谷氨酸,记做Q1077del,是存在最多的剪接异构体;另一种则在第1077位氨基酸上未发生谷氨酸的缺失,记做Q1077。我们将S1787N突变构建于SCN5A基因这两种剪接异构体中,利用瞬时转染的方法在异源真核生物表达系统——人胚肾293细胞(HEK293)中表达。转染后24小时,应用全细胞膜片钳技术在转染了野生型或突变型钠离子通道的HEK293细胞上记录钠离子电流,研究钠离子通道的电生理特性。本实验中,我们采用了不同pH值的细胞内液。
     结果
     Q1077剪接变异体背景下的S1787N突变,钠离子通道的峰值电流密度(peak/Na density)、稳态激活过程和稳态失活过程的动力学参数以及晚钠电流的相对值(percentage of/Na late/peak)与野生型钠离子通道相比,无明显差异,改变细胞内液的pH值并不影响通道的电生理特性。而Q1077del剪接变异体背景下的S1787N突变,当细胞内液pH值正常即pH=7.4时,晚钠电流的相对值是野生型钠离子通道的2.1倍,统计学上有显著性差异(P<0.05);当细胞内液pH值下降即pH=6.7时,晚钠电流的相对值是野生型钠离子通道的2.9倍,统计学上有显著性差异(P<0.03)。
     结论
     致长QJ综合征3型的突变S1787N-SCN5A在不同SCN5A剪接变异体和不同细胞内pH值的环境下,呈现出不同的电生理特性。这一发现表明SCN5A基因的选择性剪接方式和物理化学环境因素均可对钠离子通道的功能产生影响,从而引起不同的分子表型和临床表型。
Background
     The inherited long QT syndrome (LQTS) is a hereditary cardiac disorder characterized by prolonged QT interval on the surface electrocardiogram (ECG) and increased risk for sudden death due to ventricular tachyarrhythmia. It is one of the common causes of unexplained syncope especially in young, seemingly healthy individuals. To date more than1000mutations in13genes have been identified to associate with LQTS, in which6genes encode cardiac ion channels (KCNQ1, KCNH2, SCN5A, KCNJ2, CACNA1C and KCNJ5), and7encode ion channel subunits or channel-interacting proteins (ChIPs)(ANKB, KCNE1, KCNE2, CAV3, SCN4B, AKAP9and SNTA1).
     SCN5A encodes the α subunit of voltage-gated cardiac sodium channel hNav1.5also denoted SCN5A that is responsible for large peak inward sodium current (/Na) in the heart. The a subunit has four homologous domains (DI-DIV) and each domain contains six transmembrane segments (S1-S6). LQTS-associated mutations in SCN5A cause LQT3, a "gain-of-function" leading to prolonged cardiac action potential duration, lengthened QT interval, and increased risk of arrhythmia.
     a1-syntrophin (SNTA1), a dystrophin-associated protein, is the dominant syntrophin isoform in skeletal and cardiac muscle. As a scaffolding adapter, SNTA1binds to neuronal nitric oxide synthase (nNOS), which is constitutively expressed in the heart, and the cardiac isoform of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA4b) to form a complex in which PMCA4b acts as a potent inhibitor of NO synthesis. SNTA1also interacts directly with the PDZ domain-binding motif formed by the last three residues (serine-isoleucine-valine) of Navl.5C terminus. Previous study revealed a novel mutation A390V-SNTA1in a LQTS patient disrupted the association with PMCA4b and antagonized the inhibition of nNOS, resulting in augmentation of both peak and late/Na, suggesting SNTA1as a novel LQTS-susceptibility gene (LQT12).
     Objectives
     The present study was designed to identify potentially novel mutations which would be responsible for LQTS in a Caucasian pedigree, to further characterize electrophysiological features and to elucidate a plausible pathogenic arrhythmia mechanism for LQTS.
     Methods
     A Caucasian family with syncope and prolonged QT interval was identified. Genomic DNA was extracted from peripheral blood lymphocytes and was screened for the entire open-reading frames of13LQTS-susceptibility genes by polymerase chain reaction (PCR), denaturing high-performance liquid chromatography (HPLC) and direct DNA sequencing. Identified mutations were created with the aid of site-directed mutagenesis. Wild-type or mutant channels were heterologously expressed in HEK293cells by transient co-transfection. Macroscopic voltage-gated/Na was measured24hours after transfection with the standard whole-cell patch clamp technique in HEK293cells.
     Results
     The proband was a37-year-old woman who had experienced recurrent bouts of syncope for30years. Her resting12-lead ECG showed a marginal prolongation of corrected QT interval (QTc>480ms). Her10-year-old son was suffered from supraventricular tachycardia and the ECG showed moderately prolonged QTc (500ms). Genetic analysis revealed they both harbored the R800L mutation in SCN5A and A261V mutation in SNTA1. Other family members harboring either mutation had weaker clinical phenotype. Functional assays showed Peak/Na densities were unchanged for WT and for mutant channels containing R800L-SCN5A, A261V-SNTA1or R800L-SCN5A plus A261V-SNTA1. However, late/Na for either single mutant was moderately increased2-3fold compared to WT. The combined mutations of R800L-SCN5A plus A261V-SNTA1significantly enhanced the/Na late/peak ratio by5.6-fold compared with WT. The time constants of current decay of combined mutant channel were markedly increased. The "gain-of-function" effect could be blocked by the NG-monomethyl-L-arginine (L-NMMA), a nNOS inhibitor.
     Conclusions
     We conclude that novel mutations in SCN5A and SNTA1jointly exert a nNOS dependent "gain-of-function" on SCN5A channels (i.e., increased late/Na as well as slowed current decay), which may consequently prolong the action potential duration and lead to LQTS phenotype.
     Background
     SCN5A encodes the voltage-dependent sodium channel α-subunit protein SCN5A, also called hNav1.5, found predominantly in human heart muscle. This channel is responsible for large peak inward sodium current (/Na) that underlies excitability and conduction in working myocardium (atrial and ventricular cells) and special conduction tissue (Purkinje cells and others), and also for late/Na that influences repolarization and refractoriness. SCN5A in humans has two splice variants, one lacking a glutamine at position1077(Q1077del) and one containing Q1077. Mutations in SCN5A can cause a broad variety of pathophysiological phenotypes, such as long QT syndrome type3(LQJ3), Brugada syndrome (BrS), cardiac conduction disease (CCD), or sick sinus syndrome (SSS)./Na dysfunction from mutated SCN5A can depend upon the splice variant background in which it is expressed, and also upon environmental factors such as acidosis. S1787N was reported previously as a LQT3-associated mutation and has also been observed in1of295healthy white controls.
     Objectives
     Here, we determined the in vitro biophysical phenotype of S1787N-SCN5A in an effort to further assess its possible pathogenicity.
     Methods
     We engineered S1787N in the two most common alternatively spliced SCN5A isoforms, the major isoform lacking a glutamine at position1077(Q1077del) and the minor isoform which contains Q1077in the pcDNA3.1vector, and expressed them in HEK293cells for eletrophysiological study. Macroscopic voltage-gated/Na was measured24hours after transfection with the standard whole-cell patch clamp technique. We applied two kinds of intracellular solution varied in pH.
     Results
     After24h transfection, S1787N in Q1077background had WT-like/Na including peak/Na density, activation and inactivation parameters as well as late/Na in both pHi7.4and pHi6.7. However, with S1787N in the Q1077del background, the percentage of/Na late/peak was increased2.1fold compared to WT in pHi7.4(n=7-9, p<0.05) and was increased2.9fold compared to WT in pHi6.7(n=6-8, p<0.03).
     Conclusions
     A LQT3-like biophysical phenotype for S1787N is both SCN5A isoform and intracellular pH dependent. These findings provide further evidence that the splice variant and environmental factors could affect the molecular phenotype with implications for the clinical phenotype and may provide insight into acidosis-induced arrhythmia mechanisms.
引文
[1]Bokil NJ, Baisden JM, Radford DJ, et al. Molecular genetics of long qt syndrome [J]. Molecular Genetics and Metabolism,101(1):1-8.
    [2]Crotti L, Celano G, Dagradi F, et al. Congenital long qt syndrome [J]. Orphanet J Rare Dis,2008,3(16.
    [3]Vincent GM, Timothy K, Zhang L. Congenital long qt syndrome [J]. Cardiac electrophysiology review,2002,6(1-2):57-60.
    .[4] Schwartz PJ, Ackerman MJ. The long qt syndrome:A transatlantic clinical approach to diagnosis and therapy [J]. European heart journal,2013.
    [5]Kallergis EM, Goudis CA, Simantirakis EN, et al. Mechanisms, risk factors, and management of acquired long qt syndrome:A comprehensive review [J]. TheScientificWorldJournal,2012,2012(212178.
    [6]George AL, Jr. Molecular and genetic basis of sudden cardiac death [J]. The Journal of clinical investigation,2013,123(1):75-83.
    [7]Lu JT, Kass RS. Recent progress in congenital long qt syndrome [J]. Curr Opin Cardiol,25(3):216-221.
    [8]Burgess DE, Bartos DC, Reloj AR, et al. High-risk long qt syndrome mutations in the kv7.1 (kcnql) pore disrupt the molecular basis for rapid k(+) permeation [J]. Biochemistry,2012,51(45):9076-9085.
    [9]Harmer SC, Tinker A. The role of abnormal trafficking of kcnel in long qt syndrome 5 [J]. Biochemical Society transactions,2007,35(Pt 5):1074-1076.
    [10]Bare J, Briec F, Schmitt S, et al. Screening for copy number variation in genes associated with the long qt syndrome:Clinical relevance [J]. J Am Coll Cardiol, 2011,57(1):40-47.
    [11]Sanguinetti MC. Hergl channelopathies [J]. Pflugers Archiv:European journal of physiology,2010,460(2):265-276.
    [12]Jiang M, Zhang M, Tang DG, et al. Kcne2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts [J]. Circulation,2004,109(14):1783-1788.
    [13]Wang DW, Yazawa K, George AL, Jr., et al. Characterization of human cardiac na+ channel mutations in the congenital long qt syndrome [J]. Proc Natl Acad Sci U S A, 1996,93(23):13200-13205.
    [14]Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-b mutation causes type 4 long-qt cardiac arrhythmia and sudden cardiac death [J]. Nature,2003,421(6923):634-639.
    [15]Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of kcnj2 mutations associated with Iqt7 (andersen syndrome) [J]. The Journal of clinical investigation,2002,110(3):381-388.
    [16]Navedo MF, Cheng EP, Yuan C, et al. Increased coupled gating of I-type ca2+ channels during hypertension and timothy syndrome [J]. Circ Res,2010,106(4):748-756.
    [17]Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias [J]. Progress in biophysics and molecular biology,2008,98(2-3):149-160.
    [18]Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long qt syndrome through activation of the nnos-scn5a macromolecular complex [J]. Proc Natl Acad Sci U S A,2008,105(27):9355-9360.
    [19]Yang Y, Liang B, Liu J, et al. Identification of a kir3.4 mutation in congenital long qt syndrome [J]. American journal of human genetics,2010.
    [20]Bare J, Briec F, Schmitt S, et al. Screening for copy number variation in genes associated with the long qt syndrome:Clinical relevance [J]. Journal of the American College of Cardiology,57(1):40-47.
    [21]Vilin YY, Fujimoto E, Ruben PC. A novel mechanism associated with idiopathic ventricular fibrillation (ivf) mutations r1232w and t1620m in human cardiac sodium channels [J]. Pflugers Archiv:European journal of physiology,2001,442(2):204-211.
    [22]Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (w156x and r225w) in scn5a associated with severe cardiac conduction disturbances and degenerative changes in the conduction system [J]. Circulation research,2003,92(2):159-168.
    [23]Catterall WA. From ionic currents to molecular mechanisms:The structure and function of voltage-gated sodium channels [J]. Neuron,2000,26(1):13-25.
    [24]Splawski I, Shen JX, Timothy KW, et al. Spectrum of mutations in long-qt syndrome genes kvlqtl, herg, scn5a, kcnel, and kcne2 [J]. Circulation,2000,102(10):1178-1185.
    [25]Kyndt F, Probst V, Potet F, et al. Novel scn5a mutation leading either to isolated cardiac conduction defect or brugada syndrome in a large french family [J]. Circulation, 2001,104(25):3081-3086.
    [26]Wang DW, Viswanathan PC, Balser JR, et al. Clinical, genetic, and biophysical characterization of scn5a mutations associated with atrioventricular conduction block [J]. Circulation,2002,105(3):341-346.
    [27]Vatta M, Dumaine R, Antzelevitch C, et al. Novel mutations in domain i of scn5a cause brugada syndrome [J]. Mol Genet Metab,2002,75(4):317-324.
    [28]Oxford GS. Some kinetic and steady-state properties of sodium channels after removal of inactivation [J]. The Journal of general physiology,1981,77(1):1-22.
    [29]Tan HL, Bezzina CR, Smits JP, et al. Genetic control of sodium channel function [J]. Cardiovasc Res,2003,57(4):961-973.
    [30]Abriel H, Kass RS. Regulation of the voltage-gated cardiac sodium channel navl.5 by interacting proteins [J]. Trends in cardiovascular medicine,2005,15(l):35-40.
    [31]Abriel H. Roles and regulation of the cardiac sodium channel na v 1.5:Recent insights from experimental studies [J]. Cardiovasc Res,2007,76(3):381-389.
    [32]Nair K, Pekhletski R, Harris L, et al. Escape capture bigeminy:Phenotypic marker of cardiac sodium channel voltage sensor mutation r222q [J]. Heart Rhythm, 2012,9(10):1681-1688 e1681.
    [33]Sheets MF, Hanck DA. Charge immobilization of the voltage sensor in domain iv is independent of sodium current inactivation [J]. The Journal of physiology,2005,563(Pt 1):83-93.
    [34]Camacho JA, Hensellek S, Rougier JS, et al. Modulation of navl.5 channel function by an alternatively spliced sequence in the dii/diii linker region [J]. The Journal of biological chemistry,2006,281(14):9498-9506.
    [35]Wang Q, Shen J, Splawski I, et al. Scn5a mutations associated with an inherited cardiac arrhythmia, long qt syndrome [J]. Cell,1995,80(5):805-811.
    [36]Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia [J]. Nature,1995,376(6542):683-685.
    [37]George AL, Jr., Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated na+ channel alpha-subunit gene (scn5a) to band 3p21 [J]. Cytogenetics and cell genetics,1995,68(1-2):67-70.
    [38]Bougrid A, Claudepierre T, Picaud S, et al. Expression of dystrophins and the dystrophin-associated-protein complex by pituicytes in culture [J]. Neurochemical research,2011,36(8):1407-1416.
    [39]Ahn AH, Yoshida M, Anderson MS, et al. Cloning of human basic al, a distinct 59-kda dystrophin-associated protein encoded on chromosome 8q23-24 [J]. Proc Natl Acad Sci USA,1994,91(10):4446-4450.
    [40]Lyssand JS, Lee KS, DeFino M, et al. Syntrophin isoforms play specific functional roles in the alphald-adrenergic receptor/dapc signalosome [J]. Biochemical and biophysical research communications,2011,412(4):596-601.
    [41]Kim MJ, Hwang SH, Lim JA, et al. Alpha-syntrophin modulates myogenin expression in differentiating myoblasts [J]. PloSone,2010,5(12):e15355.
    [42]Petitprez S, Zmoos AF, Ogrodnik J, et al. Sap97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels navl.5 in cardiomyocytes [J]. Circ Res,2011,108(3):294-304.
    [43]Gavillet B, Rougier JS, Domenighetti AA, et al. Cardiac sodium channel na(v)1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin [J]. CircRes,2006,99(4):407-414.
    [44]Oceandy D, Cartwright EJ, Emerson M, et al. Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b [J]. Circulation, 2007,115(4):483-492.
    [45]Williams JC, Armesilla AL, Mohamed TMA, et al. The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex [J]. J Biol Chem,2006,281(33):23341-23348.
    [46]Weber H, Taniguchi T, Muller W, et al. Application of site-directed mutagenesis to rna and DNA genomes [J]. Cold Spring Harbor symposia on quantitative biology,1979,43 Pt 2(669-677.
    [47]Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches [J]. Pflugers Archiv:European journal of physiology,1981,391(2):85-100.
    [48]Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: Persistent late sodium current secondary to mutations in caveolin-3 [J]. Heart Rhythm, 2007,4(2):161-166.
    [49]Kapa S, Tester DJ, Salisbury BA, et al. Genetic testing for long-qt syndrome: Distinguishing pathogenic mutations from benign variants [J]. Circulation, 2009,120(18):1752-1760.
    [50]Tan BH, Pundi KN, Van Norstrand DW, et al. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits [J]. Heart Rhythm,7(6):771-778.
    [51]Huang H, Priori SG, Napolitano C, et al. Y1767c, a novel scn5a mutation, induces a persistent na+ current and potentiates ranolazine inhibition of na(v)1.5 channels [J]. Am J Physiol-Heart Circul Physiol,300(1):H288-H299.
    [52]Attwell D, Cohen I, Eisner D, et al. Steady-state ttx-sensitive (window) sodium current in cardiac purkinje-fibers [J]. Pflugers Arch,1979,379(2):137-142.
    [53]Zimmer T, Surber R. Scn5a channelopathies--an update on mutations and mechanisms [J]. Progress in biophysics and molecular biology,2008,98(2-3):120-136.
    [54]Tan BH, Iturralde-Torres P, Medeiros-Domingo A, et al. A novel c-terminal truncation scn5a mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia [J]. Cardiovasc Res,2007,76(3):409-417.
    [55]Surber R, Hensellek S, Prochnau D, et al. Combination of cardiac conduction disease and long qt syndrome caused by mutation t1620k in the cardiac sodium channel [J]. Cardiovasc Res,2008,77(4):740-748.
    [56]Gee SH, Madhavan R, Levinson SR, et al. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins [J]. J Neurosci,1998,18(1):128-137.
    [57]Zhao C, Yu DH, Shen R, et al. Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from erk kinase to elk-1 [J]. The Journal of biological chemistry,1999,274(28):19649-19654.
    [58]Adams ME, Dwyer TM, Dowler LL, et al. Mouse alpha 1-and beta 2-syntrophin gene structure, chromosome localization, and homology with a discs large domain [J]. J Biol Chem,1995,270(43):25859-25865.
    [59]Wu GR, Ai T, Kim JJ, et al. Alpha-1-syntrophin mutation and the long-qt syndrome a disease of sodium channel disruption [J]. Circ-Arrhythmia Electrophysiol, 2008,1(3):193-201.
    [60]Cheng JD, Van Norstrand DW, Medeiros-Domingo A, et al. Alpha 1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current [J]. Circ-Arrhythmia Electrophysiol,2009,2(6):667-676.
    [61]Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies [J]. Pflugers Arch,460(2):223-237.
    [62]Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long qt syndrome genetic testing [J]. Heart Rhythm,2005,2(5):507-517.
    [63]Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long qt syndrome: Development and validation of an efficient approach to genotyping in clinical practice [J]. JAMA:the journal of the American Medical Association,2005,294(23):2975-2980.
    [64]Modell SM, Bradley DJ, Lehmann MH. Genetic testing for long qt syndrome and the category of cardiac ion channelopathies [J]. PLoS currents, 2012:e4f9995f9969e9996c9997.
    [65]Itoh H, Shimizu W, Hayashi K, et al. Long qt syndrome with compound mutations is associated with a more severe phenotype:A Japanese multicenter study [J]. Heart Rhythm,2010,7(10):1411-1418.
    [66]Benson DW. Compound heterozygous scn5a mutations:Does the sum of the parts equal the whole? [J]. Heart Rhythm,2009,6(8):1176-1177.
    [67]Wilde AA. Long qt syndrome:A double hit hurts more [J]. Heart Rhythm, 2010,7(10):1419-1420.
    [68]Westenskow P, Splawski I, Timothy KW, et al. Compound mutations:A common cause of severe long-qt syndrome [J]. Circulation,2004,109(15):1834-1841.
    [69]Medeiros-Domingo A, Tan BH, Iturralde-Torres P, et al. Unique mixed phenotype and unexpected functional effect revealed by novel compound heterozygosity mutations involving scn5a [J]. Heart Rhythm,2009,6(8):1170-1175.
    [I]Vilin YY, Fujimoto E, Ruben PC. A novel mechanism associated with idiopathic ventricular fibrillation (ivf) mutations r1232w and t1620m in human cardiac sodium channels [J]. Pflugers Archiv:European journal of physiology,2001,442(2):204-211.
    [2]Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (w156x and r225w) in scn5a associated with severe cardiac conduction disturbances and degenerative changes in the conduction system [J]. Circulation research,2003,92(2):159-168.
    [3]Catterall WA. From ionic currents to molecular mechanisms:The structure and function of voltage-gated sodium channels [J]. Neuron,2000,26(1):13-25.
    [4]Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-qt syndrome [J]. Circulation, 2006,114(20):2104-2112.
    [5]Baroudi G, Chahine M. Biophysical phenotypes of scn5a mutations causing long qt and brugada syndromes [J]. FEBS letters,2000,487(2):224-228.
    [6]Neu A, Eiselt M, Paul M, et al. A homozygous scn5a mutation in a severe, recessive type of cardiac conduction disease [J]. Human mutation, 2010,31(8):E1609-1621.
    [7]Huang CL, Lei L, Matthews GD, et al. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with scn5a deficiency:Insights from mouse models [J]. Frontiers in physiology,2012,3(234.
    [8]Holst AG, Liang B, Jespersen T, et al. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel scn5a mutation [J]. Cardiology,2010,115(4):311-316.
    [9]Gui J, Wang T, Jones RP, et al. Multiple loss-of-function mechanisms contribute to scn5a-related familial sick sinus syndrome [J]. PloS one,2010,5(6):e10985.
    [10]Selly JB, Boumahni B, Edmar A, et al. [cardiac sinus node dysfunction due to a new mutation of the scn5a gene] [J]. Archives de pediatrie:organe officiel de la Societe francaise de pediatrie,2012,19(8):837-841.
    [11]George AL, Jr., Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated na+ channel alpha-subunit gene (scn5a) to band 3p21 [J]. Cytogenetics and cell genetics,1995,68(1-2):67-70.
    [12]Kerr NC, Holmes FE, Wynick D. Novel isoforms of the sodium channels navl.8 and nav1.5 are produced by a conserved mechanism in mouse and rat [J]. The Journal of biological chemistry,2004,279(23):24826-24833.
    [13]Kerr NC, Gao Z, Holmes FE, et al. The sodium channel navl.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length nav1.5 channel [J]. Molecular and cellular neurosciences,2007,35(2):283-291.
    [14]Schroeter A, Walzik S, Blechschmidt S, et al. Structure and function of splice variants of the cardiac voltage-gated sodium channel na(v)1.5 [J]. Journal of molecular and cellular cardiology,2010,49(1):16-24.
    [15]Makielski JC, Ye B, Valdivia CR, et al. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human scn5a heart sodium channels [J]. Circulation research,2003,93(9):821-828.
    [16]Tan BH, Valdivia CR, Song C, et al. Partial expression defect for the scn5a missense mutation g1406r depends on splice variant background q1077 and rescue by mexiletine [J]. American journal of physiology Heart and circulatory physiology, 2006,291(4):H1822-1828.
    [17]Tan BH, Valdivia CR, Rok BA, et al. Common human scn5a polymorphisms have altered electrophysiology when expressed in q1077 splice variants [J]. Heart Rhythm,2005,2(7):741-747.
    [18]Vatta M, Dumaine R, Varghese G, et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (sunds), a disease allelic to brugada syndrome [J]. Human molecular genetics,2002,11(3):337-345.
    [19]Wang DW, Desai RR, Crotti L, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome [J]. Circulation,2007,115(3):368-376.
    [20]Weber H, Taniguchi T, Muller W, et al. Application of site-directed mutagenesis to rna and DNA genomes [J]. Cold Spring Harbor symposia on quantitative biology,1979,43 Pt 2(669-677.
    [21]Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches [J]. Pflugers Archiv:European journal of physiology,1981,391(2):85-100.
    [22]Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome:Persistent late sodium current secondary to mutations in caveolin-3 [J]. Heart Rhythm,2007,4(2):161-166.
    [23]Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-qt syndrome genes. Kvlqtl, herg, scn5a, kcnel, and kcne2 [J]. Circulation, 2000,102(10):1178-1185.
    [24]Ackerman MJ, Splawski I, Makielski JC, et al. Spectrum and prevalence of cardiac sodium channel variants among black, white, asian, and hispanic individuals: Implications for arrhythmogenic susceptibility and brugada/long qt syndrome genetic testing [J]. Heart rhythm:the official journal of the Heart Rhythm Society, 2004,1(5):600-607.
    [25]Clancy CE, Kass RS. Inherited and acquired vulnerability to ventricular arrhythmias:Cardiac na+and k+channels [J]. Physiological reviews,2005,85(1):33-47.
    [26]Cormier JW, Rivolta I, Tateyama M, et al. Secondary structure of the human cardiac na+ channel c terminus:Evidence for a role of helical structures in modulation of channel inactivation [J]. The Journal of biological chemistry,2002,277(11):9233-9241.
    [27]Mantegazza M, Yu FH, Catterall WA, et al. Role of the c-terminal domain in inactivation of brain and cardiac sodium channels [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):15348-15353.
    [28]Wei J, Wang DW, Alings M, et al. Congenital long-qt syndrome caused by a novel mutation in a conserved acidic domain of the cardiac na+ channel [J]. Circulation, 1999,99(24):3165-3171.
    [29]Deschenes I, Baroudi G, Berthet M, et al. Electrophysiological characterization of scn5a mutations causing long qt (e1784k) and brugada (r1512w and r1432g) syndromes [J]. Cardiovascular research,2000,46(1):55-65.
    [30]Makita N, Behr E, Shimizu W, et al. The e1784k mutation in scn5a is associated with mixed clinical phenotype of type 3 long qt syndrome [J]. The Journal of clinical investigation,2008,118(6):2219-2229.
    [31]Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the scn5a-encoded cardiac sodium channel in patients referred for brugada syndrome genetic testing [J]. Heart rhythm:the official journal of the Heart Rhythm Society,2010,7(1):33-46.
    [32]Nakajima T, Kaneko Y, Saito A, et al. Identification of six novel scn5a mutations in Japanese patients with brugada syndrome [J]. International heart journal, 2011,52(1):27-31.
    [33]Bezzina C, Veldkamp MW, van Den Berg MP, et al. A single na(+) channel mutation causing both long-qt and brugada syndromes [J]. Circulation research, 1999,85(12):1206-1213.
    [34]Veldkamp MW, Viswanathan PC, Bezzina C, et al. Two distinct congenital arrhythmias evoked by a multidysfunctional na(+) channel [J]. Circulation research, 2000,86(9):E91-97.
    [35]Rivolta I, Abriel H, Tateyama M, et al. Inherited brugada and long qt-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes [J]. The Journal of biological chemistry, 2001,276(33):30623-30630.
    [36]Makita N, Horie M, Nakamura J, et al. Drug-induced long-qt syndrome associated with a subclinical scn5a mutation [J]. Circulation,2002,106(10):1269-1274.
    [37]Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of scn5a defects in sudden infant death syndrome [J]. JAMA:the journal of the American Medical Association,2001,286(18):2264-2269.
    [38]Kim J, Ghosh S, Liu H, et al. Calmodulin mediates ca2+ sensitivity of sodium channels [J]. The Journal of biological chemistry,2004,279(43):45004-45012.
    [39]Motoike HK, Liu H, Glaaser IW, et al. The na+ channel inactivation gate is a molecular complex:A novel role of the cooh-terminal domain [J]. The Journal of general physiology,2004,123(2):155-165.
    [40]Glaaser IW, Bankston JR, Liu H, et al. A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders [J]. The Journal of biological chemistry,2006,281(33):24015-24023.
    [41]Wang Q, Chen S, Chen Q, et al. The common scn5a mutation r1193q causes Iqts-type electrophysiological alterations of the cardiac sodium channel [J]. Journal of medical genetics,2004,41(5):e66.
    [42]Burke A, Creighton W, Mont E, et al. Role of scn5a y1102 polymorphism in sudden cardiac death in blacks [J]. Circulation,2005,112(6):798-802.
    [43]Chen S, Chung MK, Martin D, et al. Snp s1103y in the cardiac sodium channel gene scn5a is associated with cardiac arrhythmias and sudden death in a white family [J]. Journal of medical genetics,2002,39(12):913-915.
    [44]Plant LD, Bowers PN, Liu Q, et al. A common cardiac sodium channel variant associated with sudden infant death in african americans, scn5a s1103y [J]. The Journal of clinical investigation,2006,116(2):430-435.
    [45]Splawski I, Timothy KW, Tateyama M, et al. Variant of scn5a sodium channel implicated in risk of cardiac arrhythmia [J]. Science (New York, NY), 2002,297(5585):1333-1336.
    [46]Van Norstrand DW, Tester DJ, Ackerman MJ. Overrepresentation of the proarrhythmic, sudden death predisposing sodium channel polymorphism s1103y in a population-based cohort of african-american sudden infant death syndrome [J]. Heart rhythm:the official journal of the Heart Rhythm Society,2008,5(5):712-715.
    [47]Cheng J, Tester DJ, Tan BH, et al. The common african american polymorphism scn5a-s1103y interacts with mutation scn5a-r680h to increase late na current [J]. Physiological genomics,2011,43(9):461-466.
    [48]Nguyen-Thi A, Ruiz-Ceretti E, Schanne OF. Electrophysiologic effects and electrolyte changes in total myocardial ischemia [J]. Canadian journal of physiology and pharmacology, 1981,59(8):876-883.
    [49]Woodhull AM. Ionic blockage of sodium channels in nerve [J]. The Journal of general physiology,1973,61(6):687-708.
    [50]Sigworth FJ. The conductance of sodium channels under conditions of reduced current at the node of ranvier [J]. The Journal of physiology,1980,307(131-142.
    [51]Campbell DT, Hahin R. Altered sodium and gating current kinetics in frog skeletal muscle caused by low external ph [J]. The Journal of general physiology,1984,84(5):771-788.
    [52]Daumas P, Andersen OS. Proton block of rat brain sodium channels. Evidence for two proton binding sites and multiple occupancy [J]. The Journal of general physiology, 1993,101(1):27-43.
    [53]Begenisich T, Danko M. Hydrogen ion block of the sodium pore in squid giant axons [J]. The Journal of general physiology,1983,82(5):599-618.
    [54]Khan A, Kyle JW, Hanck DA, et al. Isoform-dependent interaction of voltage-gated sodium channels with protons [J]. The Journal of physiology,2006,576(Pt 2):493-501.
    [55]Khan A, Romantseva L, Lam A, et al. Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block [J]. The Journal of physiology,2002,543(Pt 1):71-84.
    [56]Jones DK, Peters CH, Tolhurst SA, et al. Extracellular proton modulation of the cardiac voltage-gated sodium channel, navl.5 [J]. Biophysical journal,2011,101(9):2147-2156.
    [57]Jones DK, Ruben PC. Biophysical defects in voltage.Gated sodium channels associated with long qt and brugada syndromes [J]. Channels (Austin, Tex),2008,2(2):70-80.
    [58]Makielski JC. Sids:Genetic and environmental influences may cause arrhythmia in this silent killer [J]. The Journal of clinical investigation,2006,116(2):297-299.
    [1]Vilin YY, Fujimoto E, Ruben PC. A novel mechanism associated with idiopathic ventricular fibrillation (ivf) mutations r1232w and t1620m in human cardiac sodium channels [J]. Pflugers Archiv:European journal of physiology,2001,442(2):204-211.
    [2]Catterall WA. From ionic currents to molecular mechanisms:The structure and function of voltage-gated sodium channels [J]. Neuron,2000,26(1):13-25.
    [3]Baroudi G, Chahine M. Biophysical phenotypes of scn5a mutations causing long qt and brugada syndromes [J]. FEBS letters,2000,487(2):224-228.
    [4]Neu A, Eiselt M, Paul M, et al. A homozygous scn5a mutation in a severe, recessive type of cardiac conduction disease [J]. Human mutation,2010,31(8):E1609-1621.
    [5]Huang CL, Lei L, Matthews GD, et al. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with scn5a deficiency: Insights from mouse models [J]. Frontiers in physiology,2012,3(234.
    [6]Blechschmidt S, Haufe V, Benndorf K, et al. Voltage-gated na+ channel transcript patterns in the mammalian heart are species-dependent [J]. Progress in biophysics and molecular biology,2008,98(2-3):309-318.
    [7]Camacho JA, Hensellek S, Rougier JS, et al. Modulation of navl.5 channel function by an alternatively spliced sequence in the dii/diii linker region [J]. The Journal of biological chemistry,2006,281(14):9498-9506.
    [8]Haufe V, Camacho JA, Dumaine R, et al. Expression pattern of neuronal and skeletal muscle voltage-gated na+ channels in the developing mouse heart [J]. The Journal of physiology,2005,564(Pt 3):683-696.
    [9]Kerr NC, Holmes FE, Wynick D. Novel isoforms of the sodium channels nav1.8 and nav1.5 are produced by a conserved mechanism in mouse and rat [J]. The Journal of biological chemistry,2004,279(23):24826-24833.
    [10]Gersdorff Korsgaard MP, Christophersen P, Ahring PK, et al. Identification of a novel voltage-gated na+ channel rna(v)1.5a in the rat hippocampal progenitor stem cell line hib5 [J]. Pflugers Archiv:European journal of physiology,2001,443(1):18-30.
    [11]Kerr NC, Gao Z, Holmes FE, et al. The sodium channel navl.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length nav1.5 channel [J]. Molecular and cellular neurosciences, 2007,35(2):283-291.
    [12]Ou SW, Kameyama A, Hao LY, et al. Tetrodotoxin-resistant na+ channels in human neuroblastoma cells are encoded by new variants of navl.5/scn5a [J]. The European journal of neuroscience,2005,22(4):793-801.
    [13]Wasner U, Geist B, Battefeld A, et al. Specific properties of sodium currents in multipotent striatal progenitor cells [J]. The European journal of neuroscience, 2008,28(6):1068-1079.
    [14]Zimmer T, Bollensdorff C, Haufe V, et al. Mouse heart na+ channels:Primary structure and function of two isoforms and alternatively spliced variants [J]. American journal of physiology Heart and circulatory physiology,2002,282(3):H1007-1017.
    [15]Wang J, Ou SW, Wang YJ, et al. Analysis of four novel variants of navl.5/scn5a cloned from the brain [J]. Neuroscience research,2009,64(4):339-347.
    [16]Abriel H. Cardiac sodium channel na(v)1.5 and interacting proteins:Physiology and pathophysiology [J]. Journal of molecular and cellular cardiology,2010,48(1):2-11.
    [17]Makielski JC, Ye B, Valdivia CR, et al. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human scn5a heart sodium channels [J]. Circulation research,2003,93(9):821-828.
    [18]Tan BH, Valdivia CR, Rok BA, et al. Common human scn5a polymorphisms have altered electrophysiology when expressed in q1077 splice variants [J]. Heart rhythm: the official journal of the Heart Rhythm Society,2005,2(7):741-747.
    [19]Tan BH, Valdivia CR, Song C, et al. Partial expression defect for the scn5a missense mutation gl406r depends on splice variant background q1077 and rescue by mexiletine [J]. American journal of physiology Heart and circulatory physiology, 2006,291(4):H1822-1828.
    [20]Wang DW, Desai RR, Crotti L, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome [J]. Circulation,2007,115(3):368-376.
    [21]Fraser SP, Diss JK, Chioni AM, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis [J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2005,11(15):5381-5389.
    [22]Copley RR. Evolutionary convergence of alternative splicing in ion channels [J]. Trends in genetics:TIG,2004,20(4):171-176.
    [23]Sarao R, Gupta SK, Auld VJ, et al. Developmentally regulated alternative rna splicing of rat brain sodium channel mrnas [J]. Nucleic acids research,1991,19(20):5673-5679.
    [24]Gustafson TA, Clevinger EC, O'Neill TJ, et al. Mutually exclusive exon splicing of type iii brain sodium channel alpha subunit rna generates developmentally regulated isoforms in rat brain [J]. The Journal of biological chemistry,1993,268(25):18648-18653.
    [25]Chioni AM, Fraser SP, Pani F, et al. A novel polyclonal antibody specific for the na(v)1.5 voltage-gated na(+) channel'neonatal'splice form [J]. Journal of neuroscience methods,2005,147(2):88-98.
    [26]Gellens ME, George AL, Jr., Chen LQ, et al. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(2):554-558.
    [27]Rogart RB, Cribbs LL, Muglia LK, et al. Molecular cloning of a putative tetrodotoxin-resistant rat heart na+ channel isoform [J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(20):8170-8174.
    [28]Wang J, Ou SW, Wang YJ, et al. New variants of navl.5/scn5a encode na+channels in the brain [J]. Journal of neurogenetics,2008,22(1):57-75.
    [29]Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line [J]. Biochimica et biophysica acta, 2003,1616(2):107-111.
    [30]Brackenbury WJ, Chioni AM, Diss JK, et al. The neonatal splice variant of navl.5 potentiates in vitro invasive behaviour of mda-mb-231 human breast cancer cells [J]. Breast cancer research and treatment,2007,101(2):149-160.
    [31]Brackenbury WJ, Djamgoz MB, Isom LL. An emerging role for voltage-gated na+ channels in cellular migration:Regulation of central nervous system development and potentiation of invasive cancers [J]. The Neuroscientist:a review journal bringing neurobiology, neurology and psychiatry,2008,14(6):571-583.
    [32]Onkal R, Mattis JH, Fraser SP, et al. Alternative splicing of navl.5:An electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue [J]. Journal of cellular physiology,2008,216(3):716-726.
    [1]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell,2006,126(4):663-676.
    [2]Park I-H, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors [J]. Nature,2008,451(7175):141-146.
    [3]Yu J, Vodyanik MA, He P, et al. Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion [J]. STEM CELLS,2006,24(1):168-176.
    [4]Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science (New York, NY),2007,318(5858):1917-1920.
    [5]Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes [J]. The Journal of clinical investigation,2001,108(3):407-414.
    [6]Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes:Role of coculture with visceral endoderm-like cells [J]. Circulation,2003,107(21):2733-2740.
    [7]Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts [J]. Nature biotechnology,2007,25(9):1015-1024.
    [8]Dick E, Rajamohan D, Ronksley J, et al. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening [J]. Biochemical Society transactions, 2010,38(4):1037-1045.
    [9]Novak A, Barad L, Zeevi-Levin N, et al. Cardiomyocytes generated from cpvtd307h patients are arrhythmogenic in response to beta-adrenergic stimulation [J]. Journal of cellular and molecular medicine,2012,16(3):468-482.
    [10]Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-qt syndrome [J]. The New England journal of medicine, 2010,363(15):1397-1409.
    [11]Bezzina CR, Wilde AA, Roden DM. The molecular genetics of arrhythmias [J]. Cardiovascular research,2005,67(3):343-346.
    [12]Itzhaki I, Maizels L, Huber I, et al. Modelling the long qt syndrome with induced pluripotent stem cells [J]. Nature,2011,471(7337):225-229.
    [13]Matsa E, Rajamohan D, Dick E, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long qt syndrome type 2 mutation [J]. European heart journal,2011,32(8):952-962.
    [14]Beaufort-Krol GC, van den Berg MP, Wilde AA, et al. Developmental aspects of long qt syndrome type 3 and brugada syndrome on the basis of a single scn5a mutation in childhood [J]. Journal of the American College of Cardiology,2005,46(2):331-337.
    [15]Remme CA, Verkerk AO, Nuyens D, et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human scn5a-1795insd [J]. Circulation,2006,114(24):2584-2594.
    [16]Remme CA, Scicluna BP, Verkerk AO, et al. Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy [J]. Circulation research,2009,104(11):1283-1292.
    [17]Yazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in timothy syndrome [J]. Nature,2011,471(7337):230-234.
    [18]Remme CA, Wilde AA, Bezzina CR. Cardiac sodium channel overlap syndromes: Different faces of scn5a mutations [J]. Trends in cardiovascular medicine, 2008,18(3):78-87.
    [19]Sabir IN, Killeen MJ, Grace AA, et al. Ventricular arrhythmogenesis:Insights from murine models [J]. Progress in biophysics and molecular biology,2008,98(2-3):208-218.
    [20]Watanabe H, Yang T, Stroud DM, et al. Striking in vivo phenotype of a disease-associated human scn5a mutation producing minimal changes in vitro [J]. Circulation,2011,124(9):1001-1011.
    [21]Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization [J]. Physiological reviews,2005,85(4):1205-1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700