虚拟心脏正常电生理的仿真及房颤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟心脏建模仿真工作是对心脏结构和功能的模拟,基于虚拟心脏模型有助于提高心脏病的诊治水平和创新药物的开发。本文首先介绍了心脏解剖结构数学建模的发展历史及其对心脏仿真的重要性,随后重点讨论了利用ScanIP软件来进行心脏CT图像的分割和重建步骤及方法,最后对重建后的数学模型进行了定量的分析,并和临床的解剖结果进行了比较。对于完整的心脏传导系统的建模,到目前为止还没有完全基于图像的重建,由于分辨率的限制,我们使用Mimics软件并结合已发表的心脏传导系统的解剖知识首次建立了完整的虚拟心脏传导系统,其包括窦房结、界嵴、右房梳状肌、Bachmann束、左房梳状肌、肺静脉、卵圆窝、冠状窦、房室结、慢速通路、快速通路、上腔静脉、下腔静脉、纤维环,房室束、左HIS束,右HIS束、左Purkinje纤维网、右Purkinje纤维网。
     在虚拟心脏建模仿真中,纤维旋向对仿真结果的准确性起着很大的影响,因此本文采用肌丝分离方法得到了整个心脏的心内膜和心外膜的纤维旋向,然后对心室采用线性插值的方法重建了心室透壁每个细胞的纤维旋向,对于心房采用最短路径方法插值重建了心房透壁的细胞的纤维旋向,这些数据为以后的心脏电生理和力学仿真提供了很好的仿真平台。
     如果对心脏的电生理及力学仿真使用有限元,那么就先要对心脏的解剖模型进行网格划分。而网格划分的好坏决定着计算结果的精确度,太差的网格可能会导致错误的结果,因此设计出好的网格是必要的。大多数的商用软件进行网格划分都是基于实体的,很少是基于离散的点数据直接进行网格划分的。此外,不同的商用软件之间还存在输出数据格式兼容性的问题。本文提出了采用约束Delaunay四面体网格划分算法,并在Visual C++编程环境下实现心脏解剖模型有限元分析的网格划分。
     有了心脏的解剖模型再加上单细胞的动作电位模型就可以进行心脏的电生理仿真,我们实验室构建了34种不同的细胞模型,然后使用单域模型来仿真心脏电兴奋的扩散,最后在并行机上面仿真了全心脏的电兴奋传导。为了进一步研究心脏的电生理特性,我们特别对窦性节律下的心房内电兴奋传导进行了仿真,在这个过程中我们假设在右心房内有两条传导束连接着界嵴的顶端和卵圆窝缘及冠状窦,然后我们对仿真的结果进行了比较分析并对我们的假设进行了验证。
     最后我们还对心脏的病理情况进行了仿真,特别是房颤的研究。我们的仿真结果显示由于右心房中细胞动作电位的异质性,使得右心房中的波前容易产生碎裂而产生房颤。另外我们的仿真还发现纤维旋向对房颤的诱发及维持起着非常重要的作用。
Virtual heart modeling and simulation is the simulation of cardiac structure and function, virtual heart modeling can help improve the diagnosis and treatment of heart disease, and innovative drug development. This paper first introduces the history of the mathematical modeling of cardiac anatomy and the importance of heart simulation, and then focus on the procedures and methods of using the software ScanIP to CT image segmentation and reconstruction, and finally quantitative analysis of the reconstructed mathematical model, and compares with the clinical results. For complete modeling of the heart conduction system, so far there have not been amodel which is fully based on images, owing to the resolution, we use the Mimics software and combine with published anatomical knowledge of cardiac conduction system to establish a complete virtual heart conduction systemfor the first time, which includes a sinus node, crista terminalis, right atrial pectinate muscles, Bachmann bundle, left atrial pectinate muscles, pulmonary vein, fossa ovalis, coronary sinus, atrioventricular node, slow pathway, rapid pathway, superior vena cava, inferior vena cava, fibrous ring, atrioventricular bundle, left bundle HIS, right HIS bundle, left Purkinje fiber network, rightPurkinje fiber network. The data provides a good platform for the subsequent heart cardiac electrophysiology and mechanics simulation.
     Fiber rotation plays a big impact on the accuracy of the simulation results in the heart simulation, so in this paper myofilament separation method was used to obtain the endocardial and epicardial fiber rotation, and then the linear interpolation method was used to calculate the ventricular transmural fiber rotation, meanwhile, the shortest path method was used to calculate the atrium fiber rotation, these data provides a good simulation platform for future cardiac electrophysiology and mechanics simulation.
     Iffinite element method is used to simulate the cardiac electrophysiological and mechanical characters, then the first thing is to mesh the heart.Mesh generation is the precondition of finite element analysis, the quality of the mesh determines the precision of the computation results, those low-quality meshes might lead to incorrect results, and thus it is necessary to produce high-quality meshes for finite element analysis. Most commercial software generates meshes on the basis of the entity of an object, while seldom uses the discrete point data to produce meshes directly. Furthermore, the compatibility problem among different softwares always slows down the progress of research. This paper aims at producing Constrained Delaunay Tetrahedral meshes for heart anatomy model with Visual C++language.
     The anatomical model coupled with the action potential model can be used to carried out simulation of cardiac electrophysiology, our laboratory constructed34different cell models, and then used the monodomain model to simulate the spread of cardiac electricity, and finally the parallel simulation was used to simulate the excitation conduction. To further study the electrophysiological properties of the heart, we simulated the atrial electrical conduction under sinus rhythm, in this process, we assume that there are two bundles connectes the terminal crest and oval fossaand coronary sinus, and then we compared the simualation results with experimtant data, and our hypothesis was validated.
     Finally, we also carried out the pathological heart simulation, especially atrial fibrillation study. Our simulation results show that the heterogeneity of action potential in the right atrium made the wave front in the right atrium prone to fragmentation which caused atrial fibrillation. In addition our simulation also found that fiber orientation was important in induce and maintenance atrial fibrillation.
引文
1. Wang, K., et al., Architecture of Atrial Musculature in Humans. British Heart Journal,1995.73(6):p.559-565.
    2.凌风东,林奇,and赵根然,心脏解剖与临床.2005:北京大学医学出版社.
    3. Ho, S.Y., R.H. Anderson, and D. Sanchez-Quintana, Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovascular Research,2002.54(2): p.325-336.
    4. Hodgkin, A.L. and A.F. Huxley, A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology-London,1952.117(4):p.500-544.
    5. Shannon, T.R., et al., A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophysical Journal,2004.87(5):p.3351-3371.
    6. Irisawa, H., H.F. Brown, and W. Giles, Cardiac Pacemaking in the Sinoatrial Node. Physiological Reviews,1993.73(1):p.197-227.
    7. Yanagihara, K., A. Noma, and H. Irisawa, Reconstruction of Sino-Atrial Node Pacemaker Potential Based on the Voltage Clamp Experiments. Japanese Journal of Physiology,1980.30(6):p.841-857.
    8. Difrancesco, D. and D. Noble, A Model of Cardiac Electrical-Activity Incorporating Ionic Pumps and Concentration Changes. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1985.307(1133):p.353-398.
    9. Noble, D. and S.J. Noble, A Model of Sino-Atrial Node Electrical-Activity Based on a Modification of the Difrancesco-Noble (1984) Equations. Proceedings of the Royal Society of London Series B-Biological Sciences,1984.222(1228):p. 295-304.
    10. Wilders, R., H.J. Jongsma, and A.C.G. Vanginneken, Pacemaker Activity of the Rabbit Sinoatrial Node-a Comparison of Mathematical-Models. Biophysical Journal,1991.60(5):p.1202-1216.
    11. Demir, S.S., et al., A Mathematical-Model of a Rabbit Sinoatrial Node Cell. American Journal of Physiology,1994.266(3):p. C832-C852.
    12. Dokos, S., B.G. Celler, and N.H. Lovell, Vagal control of sinoatrial rhythm:A mathematical model. Journal of Theoretical Biology,1996.182(1):p.21-44.
    13. Demir, S.S., J.W. Clark, and W.R. Giles, Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart:a unifying model. American Journal of Physiology-Heart and Circulatory Physiology,1999.276(6):p. H2221-H2244.
    14. Endresen, L.P., et al., A theory for the membrane potential of living cells. European Biophysics Journal with Biophysics Letters,2000.29(2):p.90-103.
    15. Boyett, M.R., H. Honjo, and I. Kodama, The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res,2000.47(4):p.658-87.
    16. Zhang, H., et al., Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology,2000.279(1):p. H397-H421.
    17. Boyett, M.R., et al., Control of the pacemaker activity of the sinoatrial node by intracellular Ca2+. Experiments and modelling. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2001.359(1783):p.1091-1110.
    18. Zhang, H.G., et al., Analysis of the chronotropic effect of acetylcholine on sinoatrial node cells. Journal of Cardiovascular Electrophysiology,2002.13(5): p.465-474.
    19. Kurata, Y., et al., Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. American Journal of Physiology-Heart and Circulatory Physiology,2002.283(5):p. H2074-H2101.
    20. Sarai, N., et al., Role of individual ionic current systems in the SA node hypothesized by a model study. Japanese Journal of Physiology,2003.53(2):p. 125-134.
    21. Kurata, Y., et al., Regional difference in dynamical property of sinoatrial node pacemaking:role of na+ channel current. Biophysical Journal,2008.95(2):p. 951-77.
    22. Lovell, N.H., et al., A gradient model of cardiac pacemaker myocytes. Progress in Biophysics & Molecular Biology,2004.85(2-3):p.301-323.
    23. Seemann, G., et al., Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Transact A Math Phys Eng Sci,2006.364(1843):p.1465-81.
    24. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties:insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology,1998.44(1): p. H301-H321.
    25. Chandler, N.J., et al., Molecular Architecture of the Human Sinus Node Insights Into the Function of the Cardiac Pacemaker. Circulation,2009.119(12):p. 1562-1575.
    26. Billette, J., Atrioventricular Nodal Activation during Periodic Premature Stimulation of the Atrium. American Journal of Physiology,1987.252(1):p. H163-H177.
    27. Liu, Y.N., et al., Ionic Mechanisms of Electrotonic Inhibition and Concealed Conduction in Rabbit Atrioventricular Nodal Myocytes. Circulation,1993.88(4): p.1634-1646.
    28. Inada, S., et al., One-Dimensional Mathematical Model of the Atrioventricular Node Including A trio-Nodal, Nodal, and Nodal-His Cells. Biophysical Journal, 2009.97(8):p.2117-2127.
    29. Hilgemann, D.W. and D. Noble, Excitation Contraction Coupling and Extracellular Calcium Transients in Rabbit Atrium-Reconstruction of Basic Cellular Mechanisms. Proceedings of the Royal Society of London Series B-Biological Sciences,1987.230(1259):p.163-205.
    30. Earm, Y.E. and D. Noble, A Model of the Single Atrial Cell-Relation between Calcium Current and Calcium Release. Proceedings of the Royal Society of London Series B-Biological Sciences,1990.240(1297):p.83-96.
    31. Lindblad, D.S., et al., A model of the action potential and underlying membrane currents in a rabbit atrial cell. American Journal of Physiology-Heart and Circulatory Physiology,1996.40(4):p. H1666-H1696.
    32. Nygren, A., et al., Mathematical model of an adult human atrial cell-The role of K+ currents in repolarization. Circulation Research,1998.82(1):p.63-81.
    33. Nygren, A., L.J. Leon, and W.R. Giles, Simulations of the human atrial action potential. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2001.359(1783):p. 1111-1125.
    34. Cherry, E.M. and S.J. Evans, Properties of two human atrial cell models in tissue:Restitution, memory, propagation, and reentry. Journal of Theoretical Biology,2008.254(3):p.674-690.
    35. Cherry, E.M., H.M. Hastings, and S.J. Evans, Dynamics of human atrial cell models:Restitution, memory, and intracellular calcium dynamics in single cells. Progress in Biophysics & Molecular Biology,2008.98(1):p.24-37.
    36. Pandit, S.V., et al., A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophysical Journal,2001.81(6):p. 3029-3051.
    37. Bondarenko, V.E., et al., Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology,2004.287(3):p. H1378-H1403.
    38. Wang, L.J. and E.A. Sobie, Mathematical model of the neonatal mouse ventricular action potential. American Journal of Physiology-Heart and Circulatory Physiology,2008.294(6):p. H2565-H2575.
    39. Puglisi, J.L. and D.M. Bers, LabHEART:an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology-Cell Physiology,2001.281(6):p. C2049-C2060.
    40. Mahajan, A., et al., A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical Journal,2008.94(2):p. 392-410.
    41. Winslow, R.L., et al., Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure,Ⅱ-Model studies. Circulation Research,1999.84(5):p.571-586.
    42. Fox, J.J., J.L. McHarg, and R.F. Gilmour, Ionic mechanism of electrical alternans. American Journal of Physiology-Heart and Circulatory Physiology, 2002.282(2):p. H516-H530.
    43. Hund, T.J. and Y. Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation,2004. 110(20):p.3168-3174.
    44. Noble, D., et al., The Role of Sodium-Calcium Exchange during the Cardiac Action-Potential Annals of the New York Academy of Sciences,1991.639:p. 334-353.
    45. Luo, C.H. and Y. Rudy, A Model of the Ventricular Cardiac Action-Potential-Depolarization, Repolarization, and Their Interaction, Circulation Research, 1991.68(6):p.1501-1526.
    46. Luo, C.H. and Y. Rudy, A Dynamic-Model of the Cardiac Ventricular Action-Potential.1. Simulations of Ionic Currents and Concentration Changes. Circulation Research,1994.74(6):p.1071-1096.
    47. Nordin, C., Computer-Model of Membrane Current and Intracellular Ca2+ Flux in the Isolated Guinea-Pig Ventricular Myocyte. American Journal of Physiology,1993.265(6):p. H2117-H2136.
    48. Zeng, J.L. and Y. Rudy, Early Afterdepolarizations in Cardiac Myocytes Mechanism and Rate Dependence. Biophysical Journal,1995.68(3):p. 949-964.
    49. Noble, D., et al., Improved guinea-pig ventricular cell model incorporating a diadic space, I-Kr and I-Ks, and length-and tension-dependent processes. Canadian Journal of Cardiology,1998.14(1):p.123-134.
    50. Jafri, M.S., J.J. Rice, and R.L. Winslow, Cardiac Ca2+ dynamics:The roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophysical Journal,1998.74(3):p.1149-1168.
    51. Faber, G.M. and Y. Rudy. Action potential and contractility changes in [Na+](i) overloaded cardiac myocytes:A simulation study Biophysical Journal,2000. 78(5):p.2392-2404.
    52. Matsuoka, S., et al., Role of individual ionic current systems in ventricular cells hypothesized by a model study. Japanese Journal of Physiology,2003.53(2):p. 105-123.
    53. Pasek, M., et al., A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system. Progress in Biophysics & Molecular Biology,2008.96(1-3):p.258-280.
    54. Priebe, L. and D.J. Beuckelmann, Simulation study of cellular electric properties in heart failure. Circulation Research,1998.82(11):p.1206-1223.
    55. Bernus, O., et al., A computationally efficient electrophysiological model of human ventricular cells. Am J Physiol Heart Circ Physiol,2002.282(6):p. H2296-308.
    56. Ten Tusscher. K.H. and A.V. Panfilov. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Physics in Medicine and Biology,2006.51(23):p.6141-56.
    57. ten Tusscher. K.H.W.J. and A.V. Panfilov. Alternans and spiral breakup in a human ventricular tissue model. American Journal of Physiology-Heart and Circulatory Physiology,2006.291(3):p. H1088-H1100.
    58. Fink. M.,et al., Contributions of IIERG K+ current to repolarization of the human ventricular action potential. Prog Biophys Mol Biol.2008.96(1-3):p. 357-76.
    59. Iyer. V.. R. Mazhari. and R.L. Winslow. A computational model of the human left-ventricular epicardial myocyte. Biophysical Journal.2004.87(3):p. 1507-1525.
    60. Bueno-Orovio, A., E.M. Cherry, and F.H. Fenton, Minimal model for human ventricular action potentials in tissue. Journal of Theoretical Biology,2008. 253(3):p.544-60.
    61. Noble, D., Modification of Hodgkin-Huxley Equations Applicable to Purkinje Fibre Action and Pace-Maker Potentials. Journal of Physiology-London,1962. 160(2):p.317-&.
    62. Mcallister, R.E., D. Noble, and R.W. Tsien, Reconstruction of Electrical-Activity of Cardiac Purkinje-Fibers. Journal of Physiology-London,1975.251(1):p. 1-59.
    63. Stewart, P., et al., Mathematical models of the electrical action potential of Purkinje fibre cells. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences,2009.367(1896):p. 2225-2255.
    64. Moe, G.K., J.A. Abildskov, and W.C. Rheinboldt, Computer Model of Atrial Fibrillation. American Heart Journal,1964.67(2):p.200-&.
    65. Bub, G., A. Shrier, and L. Glass, Spiral wave generation in heterogeneous excitable media. Physical Review Letters,2002.88(5):p.
    66. Gerhardt, M., H. Schuster, and J.J. Tyson, A Cellular Automaton Model of Excitable Media Including Curvature and Dispersion. Science,1990.247(4950): p.1563-1566.
    67. Smith, J.M. and R.J. Cohen, Simple Finite-Element Model Accounts for Wide-Range of Cardiac Dysrhythmias. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1984.81(1):p. 233-237.
    68. Henriquez, C.S., Simulating the Electrical Behavior of Cardiac Tissue Using the Bidomain Model. Critical Reviews in Biomedical Engineering,1993.21(1):p. 1-77.
    69. Tung, L., A bi-domain model for describing ischemic myocardial D-C potentials. 1978, Cambridge, MA:Massachusetts Inst. Technol.
    70. Miller, W.T. and D.B. Geselowitz, Simulation studies of the electrocardiogram. I. The normal heart. Circulation Research,1978.43(2):p.301-15.
    71. Potse, M., et al., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Ieee Transactions on Biomedical Engineering,2006.53(12):p.2425-2435.
    72. Henriquez, C.S. and A.A. Papazoglou, Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proceedings of the Ieee,1996.84(3):p.334-354.
    73. Vetter, F.J. and A.D. McCulloch, Three-dimensional analysis of regional cardiac function:a model of rabbit ventricular anatomy. Progress in Biophysics & Molecular Biology,1998.69(2-3):p.157-183.
    74. Trayanova, N., J. Eason, and F. Aguel, Computer simulations of cardiac defibrillation:a look inside the heart. Computing and Visualization in Science, 2002.4(4):p.259-270.
    75. Cherry, E.M., H.S. Greenside, and C.S. Henriquez, A space-time adaptive method for simulating complex cardiac dynamics. Physical Review Letters, 2000.84(6):p.1343-6.
    76. Harrild, D. and C. Henriquez, A computer model of normal conduction in the human atria. Circulation Research,2000.87(7):p. E25-36.
    77. Blanc, O., et al., A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans Biomed Eng,2001.48(11): p.1229-37.
    78. Blanc, O., A computer model of human atrial arrhythmia.2002, Ecole Polytechnique Federale de Lausanne. p. Chapter 6:Model of Human Atria, pp. 115-122.
    79. Bishop, M.J., et al., Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am J Physiol Heart Circ Physiol,2010.298(2):p. H699-718.
    80. Simelius, K., J. Nenonen, and M. Horacek, Modeling Cardiac Ventricular Activation. International Journal of Bioelectromagnetism,2001.3(2):p.51-58.
    81. Lorange, M. and R.M. Gulrajani, A computer heart model incorporating anisotropic propagation. Ⅰ. Model construction and simulation of normal activation. Journal of Electrocardiology,1993.26(4):p.245-61.
    82. Sampson, K.J. and C.S. Henriquez, Electrotonic influences on action potential duration dispersion in small hearts:a simulation study. American Journal of Physiology-Heart and Circulatory Physiology,2005.289(1):p. H350-H360.
    83. Colli-Franzone, P., et al., Modeling ventricular repolarization:Effects of transmural and apex-to-base heterogeneities in action potential durations. Mathematical Biosciences,2008.214(1-2):p.140-152.
    84. Nattel, S., New ideas about atrial fibrillation 50 years on. Nature,2002. 415(6868):p.219-226.
    85. Fuster, V., et al., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation-executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation). Eur Heart J,2006.27(16):p.1979-2030.
    86. Chikwe, J., et al., Current concepts in ablation of atrial fibrillation. Semin Cardiothorac Vasc Anesth,2009.13(4):p.215-24.
    87. Calkins, H., et al., HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation:Recommendations for personnel, policy, procedures and follow-up. Europace,2007.9(6):p.335-379.
    88. Virag, N., et al., Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos,2002.12(3):p.754-763.
    89. Jacquemet, V., et al., Simulated atrial fibrillation in a computer model of human atria. Dsp 2002:14th International Conference on Digital Signal Processing Proceedings, Vols 1 and 2,2002:p.393-398.
    90. Jacquemet, V., N. Virag, and L. Kappenberger, Wavelength and vulnerability to atrial fibrillation:Insights from a computer model of human atria. Europace, 2005.7:p. S83-S92.
    91. Ruchat, P., et al., A biophysical model of atrial fibrillation to define the appropriate ablation pattern in modified maze. European Journal of Cardio-Thoracic Surgery,2007.31(1):p.65-69.
    92. Ruchat, P., et al., A biophysical model of atrial fibrillation ablation:what can a surgeon learn from a computer model? Europace,2007.9:p.71-76.
    93. Kharche, S., et al., Scroll waves in 3D virtual human atria:A computational study. Functional Imaging and Modeling of the Heart, Proceedings,2007.4466: p.129-138.
    94. Gong, Y.F., et al., Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci-A simulation study. Circulation,2007. 115(16):p.2094-2102.
    95. Dongdong Deng, L.X., Study the Effect of Tissue Heterogeneity and Anisotropy in Atrial Fibrillation Based on a Human Atrial Model, in Computing in Cardiology.2010. p.433-436.
    96. Eifler, W.J., et al., Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms. Circulation Research,1981.48(2):p.168-82.
    97. Lu, W.X., Z.Y. Xu, and Y.J. Fu, Microcomputer-Based Cardiac Field Simulation-Model. Medical & Biological Engineering & Computing,1993. 31(4):p.384-387.
    98. Jiang, M.F., et al., The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem. Medical Engineering & Physics,2009.31(8):p.979-985.
    99. Jiang, M.F., et al., Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Physics in Medicine and Biology,2007.52(5):p.1277-1294.
    100. Jiang, M.F., et al., Two hybrid regularization frameworks for solving the electrocardiography inverse problem. Physics in Medicine and Biology,2008. 53(18):p.5151-5164.
    101. Jiang, M.F., et al., Effect of Cardiac Motion on Solution of the Electrocardiography Inverse Problem. Ieee Transactions on Biomedical Engineering,2009.56(4):p.923-931.
    102. Shou, G.F., et al., Truncated total least squares:A new regularization method for the solution of ECG inverse problems. Ieee Transactions on Biomedical Engineering,2008.55(4):p.1327-1335.
    103. Shou, G.F., et al., Solving the ECG Forward Problem by Means of Standard h-and h-Hierarchical Adaptive Linear Boundary Element Method:Comparison With Two Refinement Schemes. Ieee Transactions on Biomedical Engineering, 2009.56(5):p.1454-1464.
    104. Hren, R., J. Nenonen, and B.M. Horacek, Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure. Annals of Biomedical Engineering,1998.26(6):p.1022-35.
    105. Nielsen, P.M.F., et al., Mathematical-Model of Geometry and Fibrous Structure of the Heart. American Journal of Physiology,1991.260(4):p. H1365-H1378.
    106. Ten Tusscher, K.H., R. Hren, and A.V. Panfilov, Organization of ventricular fibrillation in the human heart. Circulation Research,2007.100(12):p. e87-101.
    107. Haissaguerre, M., et al., Atrial fibrillatory cycle length:computer simulation and potential clinical importance. Europace,2007.9 Suppl 6:p.vi64-70.
    108. Zozor, S., et al., A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans Biomed Eng,2003.50(4):p. 412-20.
    109. Jacquemet, V., et al., Study of unipolar electrogram morphology in a computer model of atrial fibrillation. Journal of Cardiovascular Electrophysiology,2003. 14(10):p.S172-S179.
    110. Ruchat, P., et al., Use of a biophysical model of atrial fibrillation in the interpretation of the outcome of surgical ablation procedures. European Journal of Cardio-Thoracic Surgery,2007.32(1):p.90-95.
    111. Rotter, M., et al., Impact of varying ablation patterns in a simulation model of persistent atrial fibrillation. Pacing Clin Electrophysiol,2007.30(3):p.314-21.
    112. Ackerman, M.J., The Visible Human Project. J Biocommun,1991.18(2):p.14.
    113. Slavin, K.V., The Visible Human Project. Surg Neurol,1997.48(6):p.638-9.
    114. Sachse, F.B., et al. Modeling the anatomy of the human heart using the cryosection images of the Visible Female dataset. in Proc Third Users Conference of the National Library of Medicine's Visible Human Project.2000. Bethesda, USA.
    115. Seemann, G., et al., Electrophysiology and tension development in a transmural heterogeneous model of the visible female left ventricle. Functional Imaging and Modeling of Heart, Proceedings,2005.3504:p.172-182.
    116. Seemann, G., F.B. Sachse, and O. Dossel, Excitation propagation and force development in the left ventricle of the visible female data set. Biomed Tech (Berl),2002.47 Suppl 1 Pt 1:p.221-4.
    117. Weiss, D.L., et al., Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall. Europace,2005.7 Suppl 2:p.105-17.
    118.李增惠,中国数字化虚拟人体的科技问题——香山科学会议第174次学术讨论会中国基础科学,2002.3:p.35-4.
    119.张绍祥,et a1.,首例中国数字化可视人体完成.第三军医大学学报,2002.24(10):p.1231-2.
    120.张绍祥,et a1.,首例中国女性数字化可视人体数据集完成.第三军医大学学报,2003.25(4):p.371-1.
    121.原林,et a1.,数字化虚拟中国女性拦一号数据图像处理.中国临床解剖学杂志,2003.21(3):p.193-4.
    122. L, Y., et al., Construction of dataset for Virtual Chinese Male No.1. JOURNAL OF FIRST MILITARY MEDICAL UNIVERSITY 2003.23(6):p.520-3.
    123. Guo, Y.L., et al., Thin sectional anatomy, three-dimensional reconstruction and visualization of the heart from the Chinese Visible Human. Surgical and Radiologic Anatomy,2005.27(2):p.113-118.
    124.方琼,数字化虚拟人体在医学中的应用进展安徽卫生职业技术学院学报,2008.7(1):p.81-3.
    125. Modre, R., et al., Model-based imaging of cardiac electrical function in human atria. Medical Imaging 2003:Image Processing, Pts 1-3,2003.5032:p.72-81.
    126. Hunter, P.J., A.J. Pullan, and B.H. Smaill, Modeling total heart function. Annual Review of Biomedical Engineering,2003.5:p.147-177.
    127. Trew, M.L., et al., A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes. Mathematical Biosciences,2005.198(2):p.169-89.
    128. Scollan, D.F., et al., Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Annals of Biomedical Engineering,2000.28(8):p.934-944.
    129. Chen, J.J., et al., Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction:quantification with diffusion tensor MRI. American Journal of Physiology-Heart and Circulatory Physiology,2005.289(5):p. H1898-H1907.
    130. Peyrat, J.M., et al., A computational framework for the statistical analysis of cardiac diffusion tensors:application to a small database of canine hearts. IEEE Trans Med Imaging,2007.26(11):p.1500-14.
    131. Rohmer, D., A. Sitek, and G.T. Gullberg, Reconstruction and visualization of fiber and Laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance Imaging (DTMRI) data. Investigative Radiology, 2007.42(11):p.777-789.
    132. Romero, D., et al., Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing:A Model Study. Annals of Biomedical Engineering,2010. 38(4):p.1388-1398.
    133. LeGrice, I.J., P.J. Hunter, and B.H. Smaill, Laminar structure of the heart:A mathematical model. American Journal of Physiology-Heart and Circulatory Physiology,1997.41(5):p. H2466-H2476.
    134. Stevens, C., et al., Ventricular mechanics in diastole:material parameter sensitivity. Journal of Biomechanics,2003.36(5):p.737-748.
    135. Jouk, P.S., et al., Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anatomy and Embryology,2000. 202(2):p.103-118.
    136. Jouk, P.S., et al., Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. European Journal of Cardio-Thoracic Surgery,2007.31(5):p.915-921.
    137. Ragan, T., et al., High-resolution whole organ imaging using two-photon tissue cytometry. Journal of Biomedical Optics,2007.12(1):p.-
    138. Anderson, K.R., S.Y. Ho, and R.H. Anderson, Location and vascular supply of sinus node in human heart. Br Heart J,1979.41(1):p.28-32.
    139. James, T.N., Structure and function of the sinus node, AV node and His bundle of the human heart:part I-structure. Prog Cardiovasc Dis,2002.45(3):p. 235-67.
    140. Tellez, J.O., et al., Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circulation Research,2006.99(12):p. 1384-93.
    141. Marionneau, C., et al., Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol,2005.562(Pt 1):p.223-34.
    142. Fedorov, V.V., et al., Optical mapping of the isolated coronary-perfused human sinus node. Journal of the American College of Cardiology,2010.56(17):p. 1386-94.
    143. Tawara, S., Das Reizleitungssystem Des Saugetierherzens. Eine Anatomisch-Histologische Studie Uber Das Atrioventrikularbundel Und Die Purkinjeschen Faden.1906, Jena, Germany:Verlag von Gustav Fischer.
    144. James, T.N. and L. Sherf, Ultrastructure of the human atrioventricular node. Circulation,1968.37(6):p.1049-70.
    145. Anderson, R.H., et al., A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circulation Research, 1974.35(6):p.909-22.
    146. Anderson, R.H. and S.Y. Ho, The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol,1998.9(11):p.1233-48.
    147. Racker, D.K., The AV junction region of the heart:a comprehensive study correlating gross anatomy and direct three-dimensional analysis. Part I. Architecture and topography. Anat Rec,1999.256(1):p.49-63.
    148. Anderson, R.H., S.Y. Ho, and A.E. Becker, Anatomy of the human atrioventricular junctions revisited. Anat Rec,2000.260(1):p.81-91.
    149. Ko, Y.S., et al., Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation,2004.109(9):p.1172-9.
    150. Li, J., et al., Computer three-dimensional reconstruction of the atrioventricular node. Circulation Research,2008.102(8):p.975-85.
    151. Billette, J., What is the atrioventricular node? Some clues in sorting out its structure-function relationship. Journal of Cardiovascular Electrophysiology, 2002.13(5):p.515-518.
    152. Hucker, W.J., et al., Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat Rec (Hoboken),2008.291(2):p. 204-15.
    153. Decarvalho, A.P. and D.F. Dealmeida, Spread of Activity through the Atrioventricular Node. Circulation Research,1960.8(4):p.801-809.
    154. Lemery, R., G. Guiraudon, and J.P. Veinot, Anatomic description of Bachmann's bundle and its relation to the atrial septum. American Journal of Cardiology, 2003.91(12):p.1482-1485.
    155. Platonov, P.G., et al., Morphology of inter-atrial conduction routes in patients with atrialfibrillation. Europace,2002.4(2):p.183-92.
    156. Saremi, F., et al., Bachmann bundle and its arterial supply:Imaging with multidetector CT-Implications for interatrial conduction abnormalities and arrhythmias. Radiology,2008.248(2):p.447-457.
    157. Dolber, P.C. and M.S. Spach, Thin collagenous septa in cardiac muscle. Anat Rec,1987.218(1):p.45-55.
    158. Khaja, A. and G. Flaker, Bachmann's bundle:Does it play a role in atrial fibrillation? Pace-Pacing and Clinical Electrophysiology,2005.28(8):p. 855-863.
    159. Vassalle, M. and B.F. Hoffman, The spread of sinus activation during potassium administration. Circulation Research,1965.17(4):p.285-95.
    160. Wagner, M.L., et al., Specialized conducting fibers in the interatrial band. Circulation Research,1966.18(5):p.502-18.
    161. Duytschaever, M., et al., Is there an optimal pacing site to prevent atrial fibrillation?':An experimental study in the chronically instrumented goat. Journal of Cardiovascular Electrophysiology,2002.13(12):p.1264-1271.
    162. Anderson, R.H., N.A. Brown, and S. Webb, Development and structure of the atrial septum. Heart,2002.88(1):p.104-10.
    163. Anderson, R.H. and N.A. Brown, The anatomy of the heart revisited. Anat Rec, 1996.246(1):p.1-7.
    164. Lemery, R., et al., Human study of biatrial electrical coupling-Determinants of endocardial septal activation and conduction over interatrial connections. Circulation,2004.110(15):p.2083-2089.
    165. De, P.R., et al., Electroanatomic analysis of sinus impulse propagation in normal human atria. J Cardiovasc Electrophysiol,2002.13(1):p.1-10.
    166. Kasai, A., F. Anselme, and N. Saoudi, Myocardial connections between left atrial myocardium and coronary sinus musculature in man. Journal of Cardiovascular Electrophysiology,2001.12(9):p.981-985.
    167. Mitrofanova, L., V. Ivanov, and P.G. Platonov, Anatomy of the inferior interatrial route in humans. Europace,2005.7:p. S49-S55.
    168. El-Maasarany, S., et al., The coronary sinus conduit function:anatomical study (relationship to adjacent structures). Europace,2005.7(5):p.475-81.
    169. Jurkko, R., et al., Non-invasive detection of conduction pathways to left atrium using magnetocardiography:validation by intra-cardiac electroanatomic mapping. Europace,2009.11(2):p.169-77.
    170. Chauvin, M., et al., The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation,2000.101(6):p. 647-652.
    171. James, T.N., Connecting Pathways between Sinus Node and a-V Node and between Right and Left Atrium in Human Heart. American Heart Journal,1963. 66(4):p.498-&.
    172. Merideth. J. and J.L. Titus, Anatomic Atrial Connections between Sinus and a-V Node. Circulation,1968.37(4):p.566-&.
    173. Hogan. P.M. and L.D. Davis, Evidence for Specialized Fibers in Canine Right Atrium. Circulation Research,1968.23(3):p.387-&.
    174. Holsinge.Jw, A.G. Wallace, and W.C. Sealy, Identification and Surgical Significance of At rial Internodal Conduction Tracts. Annals of Surgery,1968. 167(4):p.447-&.
    175. Pastelin, G., R. Mendez, and G.K. Moe, Participation of Atrial Specialized Conduction Pathways in Atrial-Flutter. Circulation Research,1978.42(3):p. 386-393.
    176. Goodman, D., Vanderst.Ab, and R.T. Vandam, Endocardial and Epicardial Activation Pathways of Canine Right Atrium. American Journal of Physiology, 1971.220(1):p.1-&.
    177. Yamashita, K., M. Hiraoka, and H. Adaniya, Conduction Blocks in and around Preferential Pathway of Dog Right Atrium. American Journal of Physiology, 1987.253(1):p. H16-H24.
    178. Pavlovich, E.R. and I.A. Chervova, Morphometric Detection of Specialized Internodal Conducting Pathways of the Heart. Bulletin of Experimental Biology and Medicine,1981.92(10):p.1446-1449.
    179. Liebman, J., Are There Internodal Tracts-Yes. International Journal of Cardiology,1985.7(2):p.174-185.
    180. Hiraoka, M. and H. Adaniya, Function of Atrial Preferential Conduction Routes under Normal and Abnormal Conditions. Journal of Electrocardiology.1983. 16(2):p.123-132.
    181. Hayashi, H., et al., Relation of canine atrial activation sequence to anatomic landmarks. American Journal of Physiology,1982.242(3):p. H421-8.
    182. Hoffman, B.F., Fine-Structure of Internodal Pathways. American Journal of Cardiology,1979.44(2):p.385-386.
    183. Janse, M.J. and R.H. Anderson, Specialized Internodal Atrial Pathways-Fact or Fiction. European Journal of Cardiology,1974.2(2):p.117-136.
    184. Sanchez-Quintana, D. and S.Y. Ho, Anatomy of cardiac nodes and atrioventricular specialized conduction system. Revista Espanola De Cardiologia,2003.56(11):p.1085-1092.
    185. Anderson, R.H., et al., The anatomy of the cardiac conduction system. Clin Anat. 2009.22(1):p.99-113.
    186. Ryu. S.. et al.. Intramural Purkinje Cell Network of Sheep Ventricles as the Terminal Pathway of Conduction System. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology,2009.292(1):p.12-22.
    187. Aoki. M., et al.,3-Dimensional Computer-Simulation of Depolarization and Repolarization Processes in the Myocardium. Japanese Heart Journal.1986.27: p.225-234.
    188. Aoki. M., et al., Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials:normal heart and bundle branch block. IEEE Trans Biomed Eng.1987.34(6):p.454-62.
    189. Wei, D., et al., Computer simulation of the Wolff-Parkinson-While syndrome utilizing a human heart model. Japanese Heart Journal.1987.28(5):p.707-18.
    190. Xu. Z., et al., A computer heart model incorporating anisotropic propagation. Ⅲ. Simulation of ectopic beats. Journal of Electrocardiology,1996.29(2):p. 73-90.
    191. Siregar, P., et al., An interactive 3D anisotropic cellular automata model of the heart. Computers and Biomedical Research,1998.31(5):p.323-47.
    192. Ten Tusscher, K.H.W.J. and A.V. Panfilov, Modelling of the ventricular conduction system. Progress in Biophysics & Molecular Biology,2008.96(1-3): p.152-170.
    193. Ijiri, T., et al., A Procedural Method for Modeling the Purkinje Fibers of the Heart. Journal of Physiological Sciences,2008.58(7):p.481-486.
    194. Zimmerman, V., et al., Modeling the Purkinje Conduction System with a Non Deterministic Rule Based Iterative Method. Cine:2009 36th Annual Computers in Cardiology Conference,2009:p.461-464.
    195. Romero, D., et al., Flexible modeling for anatomically-based cardiac conduction system construction. Conf Proc IEEE Eng Med Biol Soc,2010.2010: p.779-82.
    196. Dobrzynski, H., et al., Computer three-dimensional reconstruction of the sinoatrial node. Circulation,2005.111(7):p.846-54.
    197. Cifuentes, A.O. and A. Kalbag, A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elements in Analysis and Design,1992.12(3-4):p.313-318.
    198. Shewchuk, J.R., Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations, in Proceedings of the sixteenth annual symposium on Computational geometry.2000, ACM:Clear Water Bay, Kowloon, Hong Kong. p.350-359.
    199. Shewchuk, J.R., Updating and constructing constrained delaunay and constrained regular triangulations by flips, in Proceedings of the nineteenth annual symposium on Computational geometry.2003, ACM:San Diego, California, USA. p.181-190.
    200. Miller, G., Control volume meshes using sphere packing, in Solving Irregularly Structured Problems in Parallel, A. Ferreira, et al., Editors.1998, Springer Berlin/Heidelberg, p.128-131.
    201. Mall, F.P., On the muscular architecture of the ventricles of the human heart. American Journal of Anatomy,1911.11(3):p.211-266.
    202. Streeter, D.D., et al., Fiber Orientation in Canine Left Ventricle during Diastole and Systole. Circulation Research,1969.24(3):p.339-&.
    203. Streeter, D.D., Jr. and W.T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium.Ⅱ. Fiber angle and sarcomere length. Circulation Research.1973.33(6):p.656-64.
    204. Carew. T.E. and J.W. Covell. Fiber orientation in hypertrophied canine left ventricle. American Journal of Physiology,1979.236(3):p. H487-93.
    205. Greenbaum, R.A., et al., Left ventricular fibre architecture in man. Br Heart J. 1981.45(3):p.248-63.
    206. Bouvagnet. P., et al., Fiber types and myosin types in human a trial and ventricular myocardium. An anatomical description. Circulation Research,1984. 55(6):p.794-804.
    207. Scollan, D.F., et al., Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. American Journal of Physiology-Heart and Circulatory Physiology,1998.44(6):p. H2308-H2318.
    208. Cheng, A., et al., Transmural sheet strains in the lateral wall of the ovine left ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 2005.289(3):p. H1234-H1241.
    209. Costa, K.D., et al., Three-dimensional residual strain in midanterior canine left ventricle. American Journal of Physiology,1997.273(4 Pt 2):p. H1968-76.
    210. Deng, D., et al. Registering myocardial fiber orientations with heart geometry using iterative closest points algorithms.2009:SPIE.
    211. Besl, P.J. and N.D. Mckay, A Method for Registration of 3-D Shapes. Ieee Transactions on Pattern Analysis and Machine Intelligence,1992.14(2):p. 239-256.
    212. Bentley, J.L., Multidimensional Binary Search Trees Used for Associative Searching. Communications of the Acm,1975.18(9):p.509-517.
    213. Sproull, R.F., Refinements to Nearest-Neighbor Searching in K-Dimensional Trees. Algorithmica,1991.6(4):p.579-589.
    214. McNames, J., A fast nearest-neighbor algorithm based on a principal axis search tree. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2001.23(9):p.964-976.
    215. Betke, M., H. Hong, and J.P. Ko, Automatic 3D Registration of Lung Surfaces in Computed Tomography Scans, in Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2001, Springer-Verlag. p.725-733.
    216. Yaniv, Z., O. Sadowsky, and L. Joskowicz, In-vitro accuracy study of contact and image-based registration:Materials, methods, and experimental results. Cars 2000:Computer Assisted Radiology and Surgery,2000.1214:p.141-146.
    217. Gong, J.X., et al., Restricted surface matching a new approach to registration in computer assisted surgery. Cvrmed-Mrcas'97,1997.1205:p.597-605.
    218. Bachler, R., H. Bunke. and L.-P. Nolte, Restricted surface matching—Numerical optimization and technical evaluation. Computer Aided Surgery,2001.6(3):p. 143-152.
    219. Penney, G.P., et al., A Stochastic Iterative Closest Point Algorithm (stochastICP), in Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention.2001. Springer-Verlag. p.762-769.
    220. Verkerk. A.O., et al.,Single cells isolated from human sinoatrial node:Action potentials and numerical reconstruction of pacemaker current.2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Vols 1-16.2007:p.904-907.
    221. Xu. W.F. and D. Lipscombe. Neuronal Ca(v)1.3 alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. Journal of Neuroscience.2001.21(16):p. 5944-5951.
    222. Liu, G.X., et al., Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol,2001.532(Pt 1):p.115-26.
    223. Maltsev, V.A. and E.G. Lakatta, Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res,2008.77(2):p.274-84.
    224. DiFrancesco, D. and J.A. Camm, Heart rate lowering by specific and selective I(f) current inhibition with ivabradine:a new therapeutic perspective in cardiovascular disease. Drugs,2004.64(16):p.1757-65.
    225. Dobrzynski, H., M.R. Boyett, and R.H. Anderson, New insights into pacemaker activity - Promoting understanding of sick sinus syndrome. Circulation,2007. 115(14):p.1921-1932.
    226. Gaborit, N., et al., Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. Journal of Physiology-London, 2007.582(2):p.675-693.
    227. Beeler, G.W. and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres. J Physiol,1977.268(1):p.177-210.
    228. Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circulation Research,1994.74(6):p.1097-113.
    229. Li, G.R., et al., Transmural heterogeneity of action potentials and Itol in myocytes isolated from the human right ventricle. American Journal of Physiology,1998.275(2 Pt 2):p. H369-77.
    230. Nabauer, M., et al., Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation,1996.93(1):p.168-77.
    231. Wettwer, E., et al., Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circulation Research,1994.75(3):p. 473-82.
    232. Schmitt, O.H., Biological information processing using the concept of interpenetrating domains. In:Information Processing in the Nervous System, K. N. Leibovic, ed.,1969:p.325-331.
    233. Tung, L., A bi-domain model for describing cardiac ischemic potentials., in Dept. Electrical and Computer Engineering.1978, M.I.T., Cambridge,:MA,.
    234. Potse, M., et al., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng,2006.53(12 Pt 1):p.2425-35.
    235. Kim, J. and S.Y. Cho, Computation accuracy and efficiency of the time-splitting method in solving atmospheric transport/chemistry equations. Atmospheric Environment,1997.31(15):p.2215-2224.
    236. Verwer, J.G., et al., A comparison of stiff ODE solvers for atmospheric chemistry problems. Atmospheric Environment,1996.30(1):p.49-58.
    237. Lanser, D. and J.G. Verwer, Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math.,1999.111(1-2):p.201-216.
    238. Qu, Z. and A. Garfinkel, An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng,1999.46(9):p. 1166-8.
    239. Knio, O.M., H.N. Najm, and P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow. I1. Stiff, operator-split formulation. Journal:Journal of Computational Physics; Journal Volume:154; Journal Issue:2; Other Information:PBD:20 Sep 1999,1999:p. Size:page 428-467.
    240. Najim, H.N., P.S. Wyckoff, and O.M. Knio, A semi-implicit numerical scheme for reacting flow.1:Stiff chemistry. Journal of Computational Physics; VOL. 143; ISSUE:2; PBD:1 Jul 1998,1998:p. pp.381-402; PL:
    241. Zhang, H., et al., Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol,2000. 279(1):p. H397-421.
    242. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic mechanisms underlying human alrial action potential properties:insights from a mathematical model. Am J Physiol,1998.275(1 Pt 2):p. H301-21.
    243. ten Tusscher, K.H., et al., A model for human ventricular tissue. Am J Physiol Heart Circ Physiol,2004.286(4):p. H1573-89.
    244. Markides, V., et al., Characterization of left atrial activation in the intact human heart. Circulation,2003.107(5):p.733-9.
    245. Jurkko, R., et al., Interatrial conduction in patients with paroxysmal atrial fibrillation and in healthy subjects. International Journal of Cardiology,2009.
    246. Anderson, R.H. and A.C. Cook, The structure and components of the atrial chambers. Europace,2007.9 Suppl 6:p. vi3-9.
    247. Boineau. J.P., et al., Demonstration of a Widely Distributed Atrial Pacemaker Complex in the Human-Heart. Circulation,1988.77(6):p.1221-1237.
    248. Lemery, R., et al., Normal atrial activation and voltage during sinus rhythm in the human heart:an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J Cardiovasc Electrophysiol,2007.18(4):p. 402-8.
    249. Tapanainen. J.M.. et al.,Interatrial right-to-left conduction in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol.2009.25(2):p. 117-22.
    250. Fedorov. V.V., et al.. Optical Mapping of the Isolated Coronary-Perfused Human Sinus Node. Journal of the American College of Cardiology,2010. 56(17):p.1386-1394.
    251. Boineau. J.P., Atrial flutter:a synthesis of concepts. Circulation.1985.72(2):p. 249-57.
    252. Boineau. J.P.. et al.. Widespread distribution and rate differentiation of the atrial pacemaker complex. American Journal of Physiology.1980.239(3):p. 11406-15.
    253. Wu. T.J., et al., Role of pectinate muscle bundles in the generation and maintenance of intra-atrial reentry:potential implications for the mechanism of conversion between atrial fibrillation and atrial flutter. Circulation Research, 1998.83(4):p.448-62.
    254. Hansson, A., et al., Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. European Heart Journal,1998.19(2):p.293-300.
    255. Cox, J.L., et al., The surgical treatment of atrial fibrillation. II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J Thorac Cardiovasc Surg,1991.101(3):p. 406-26.
    256. Canavan, T.E., et al., Computerized global electrophysiological mapping of the atrium in patients with Wolff-Parkinson-White syndrome. Ann Thorac Surg, 1988.46(2):p.223-31.
    257. Roithinger, F.X., et al., Use of electroanatomic mapping to delineate transseptal atrial conduction in humans. Circulation,1999.100(17):p.1791-1797.
    258. Lin, J.L., et al., Electrophysiological determinant for induction of isthmus dependent counterclockwise and clockwise atrial flutter in humans. Heart,1999. 81(1):p.73-81.
    259. Feld, G.K., et al., Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type I atrial flutter compared to those without a history of atrial flutter. Journal of Cardiovascular Electrophysiology,1997. 8(12):p.1338-1348.
    260. Da Costa, A., et al., Anatomic and electrophysiological differences between chronic and paroxysmal forms of common atrial flutter and comparison with controls:An observational study. Pace-Pacing and Clinical Electrophysiology, 2004.27(9):p.1202-1211.
    261. Yamaguchi, N., et al., Electrophysiological properties of the right atrial Septum in patients with atrial tachyarrhythmias. Tohoku Journal of Experimental Medicine,2008.215(1):p.13-22.
    262. Tai, C.T. and S.A. Chen, Cavotricuspid Isthmus:Anatomy, Electrophysiology, and Long-Term Outcome of Radiofrequency Ablation. Pace-Pacing and Clinical Electrophysiology,2009.32(12):p.1591-1595.
    263. Kojodjojo, P., et al., Age-related changes in human left and right atrial conduction. Journal of Cardiovascular Electrophysiology,2006.17(2):p. 120-127.
    264. Dolber, P.C. and M.S. Spach, Structure of canine Bachmann's bundle related to propagation of excitation. American Journal of Physiology,1989.257(5 Pt 2):p. H1446-57.
    265. Jurkko, R., Atrial Electric Signal During Sinus Rhythm in Lone Paroxysmal Atrial Fibrillation, in Department of Medicine.2009. Helsinki University Central Hospital:Helsinki, p.108.
    266. Sun, H. and D.S. Khoury. Electrical conduits within the inferior atrial region exhibit preferential roles in interatrial activation. Journal of Electrocardiology. 2001.34(1):p.1-14.
    267. Koura, T., et al., Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping:preferential direction of conduction block changes from longitudinal to transverse with increasing age. Circulation,2002. 105(17):p.2092-8.
    268. Everett, T.H.t., et al., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation:a comparison in canine models of structural and electrical atrial remodeling. Am J Physiol Heart Circ Physiol,2006.291(6):p. H2911-23.
    269. Tanaka, K., et al., Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circulation Research, 2007.101(8):p.839-47.
    270. Kamkin, A., et al., Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol,2003. 82(1-3):p.111-20.
    271. Waktare, J.E., Cardiology patient page. Atrial fibrillation. Circulation,2002. 106(1):p.14-6.
    272. Meurling, C.J., et al., Non-invasive assessment of atrial fibrillation (AF) cycle length in man:potential application for studying AF. Ann Ist Super Sanita,2001. 37(3):p.341-9.
    273. Levy, S., et al., International consensus on nomenclature and classification of atrial fibrillation:A collaborative project of the Working Group on Arrhythmias and the Working Group of Cardiac Pacing of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J Cardiovasc Electrophysiol,2003.14(4):p.443-5.
    274. Allessie, M.A., et al., Pathophysiology and prevention of atrial fibrillation. Circulation,2001.103(5):p.769-77.
    275. Holm, M., et al., Epicardial right atrial free wall mapping in chronic atrial fibrillation. Documentation of repetitive activation with a focal spread--a hitherto unrecognised phenomenon in man. Eur Heart J,1997.18(2):p. 290-310.
    276. Konings, K.T., et al., High-density mapping of electrically induced atrial fibrillation in humans. Circulation,1994.89(4):p.1665-80.
    277. Wijffels, M.C., et al., Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation,1995.92(7):p.1954-68.
    278. Bosch, R.F., et al., Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res,1999.44(1):p.121-31.
    279. Zhang, H., et al., Cellular modelling of electrical remodelling in two different models of human atrial myocytes. Computers in Cardiology 2003, Vol 30,2003. 30:p.777-780.
    280. Van Wagoner, D.R., Electrophysiological remodeling in human atrial fibrillation. Pacing Clin Electrophysiol,2003.26(7 Pt 2):p.1572-5.
    281. Kneller, J., et al., Remodeling of Ca2+ -handling by atrial tachycardia:evidence for a role in loss of rate-adaptation. Cardiovascular Research,2002.54(2):p. 416-426.
    282. Van Wagoner, D.R., et al., Outward K+ current densities and Kvl.5 expression are reduced in chronic human atrial fibrillation. Circulation Research,1997. 80(6):p.772-781.
    283. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling:insights from a mathematical model. Cardiovascular Research,1999.42(2):p.477-489.
    284. Goktepe, S., J. Wong, and E. Kuhl, Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue. Archive of Applied Mechanics,2010.80(5):p.569-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700