60kD SSA/Ro抗原不同表位ScFv抗体对相关自身免疫病致病机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     60kD SSA/Ro(Ro60)抗原广泛分布于正常人体的肝、肾、淋巴细胞、成纤维细胞、上皮细胞等组织细胞的胞浆和胞核中,抗Ro60抗体存在于多种自身免疫性疾病如:系统性红斑狼疮(SLE)、干燥综合征(SS)、亚急性皮肤型红斑狼疮(SCLE)、新生儿狼疮(NLE)和系统性硬化症(SSc)等,并与这些疾病中的多种临床损害如皮疹、反复腮腺肿大、肺损害、白细胞减少、心脏传导阻滞等相关。研究表明,Ro60抗原拥有20个独立的抗原表位,不同表位的自身抗体可能会导致不同的临床损害,表现为不同的自身免疫病出现不同表位的自身抗体。本课题组的初步临床研究发现,不同的自身免疫病患者,抗Ro60抗体所识别的表位组成不同,且不同表位自身抗体与不同的临床损伤相关。
     有研究证实,根据Ro60蛋白20个抗原表位氨基酸序列,人工合成的多肽仍保留其相应表位的抗原活性。为进一步探讨Ro60不同表位自身抗体与临床损害间的关系,本课题组首先成功构建了抗Ro抗体单链可变区(Single-chain Fv,ScFv)噬菌体抗体库,根据课题组初步临床研究的结果,人工合成Ro60抗原3个表位多肽(P1表位:482~493,P2表位:310~323,P3表位:230~241),用3个多肽从ScFv噬菌体抗体库中筛选获得3个ScFv单抗。为了能直接观察这3个单抗可能导致的不同组织器官损害,了解它们在不同自身免疫病发生及发展中的作用,需要通过动物实验,分别用它们作用正常和各种自身免疫病的模型动物。缺少正常抗体Fc片断的ScFv单抗,只具有特异性抗原结合能力,没有免疫损害效能。将ScFv单抗与铜绿假单胞菌外毒素A(Pseudomonasaeruginosa exotoxin A,PE)中的PE40片断重组融合为免疫毒素ScFv-PE40,该免疫毒素兼有类似天然抗体的特异性抗原结合能力和对组织细胞定点损害功能。以此作用于实验动物,探讨Ro60抗原不同表位的自身抗体是否具有导致不同损害的潜能。
     【研究目的】
     1.获取Ro60抗原3个不同表位的ScFv单抗与毒素PE40的重组融合蛋白(免疫毒素EP1P、EP2P和EP3P)、实验对照用重组蛋白(单抗P1、P2、P3及毒素蛋白PE40),并鉴定它们应有的生物活性。
     2.Ro60抗原3个不同表位的自身抗体,能否导致正常BABL/c鼠的重要脏器损害。
     3.正常BABL/c鼠体内,抗Ro60抗原3个不同表位的自身抗体,能否导致各自特异的组织细胞损害。
     【方法】
     1.用PCR方法扩增Ro60抗原3个表位的ScFv单抗序列、PE40序列,并将扩增的3个ScFv分别与PE40连接(ScFv-PE40),将3个ScFv-PE40、3个ScFv、1个PE40片断分别插入载体pET32a(+),获得7个表达克隆,DNA测序确定插入序列及插入载体的位点是否正确。
     2.IPTG诱导7个克隆分别在大肠杆菌内表达,通过改变诱导剂IPTG的浓度、表达温度和表达时间,探索每种重组蛋白可溶性表达的最佳条件,并在此条件下诱导其大量表达。
     3.用NTA-Ni亲和层析柱纯化7种可溶性表达的载体融合蛋白,并用肠激酶切除其中4种蛋白(3个ScFv-PE40、PE40)中的载体标签蛋白,从酶切体系中纯化不含标签蛋白的相应重组蛋白:EP1P、EP2P、EP3P、EPE40。
     4.使用ELISA方法鉴定6个重组蛋白(P1、P2、P3、EP1P、EP2P和EP3P)的特异性抗原结合功能,采用蛋白转染试剂将4个重组蛋白(EP1P、EP2P、EP3P、PE40)转入体外培养的血管内皮细胞(EA.hy 926),MTT法测定4种蛋白的细胞毒活性。
     5.48只正常BALB/c鼠随机平均分为8组,分别间隙尾静脉注射7种经鉴定的重组蛋白和PBS共2周,眼静脉放血处死小鼠,取其脑、腮腺、肺脏、心脏、肝脏、肾脏制作组织切片,常规HE染色后病理检查,并分析检查结果。
     【结果】
     1.获得7种重组蛋白(EP1P、EP2P、EP3P、EPE40、P1、P2、P3),经鉴定,EP1P/P1、EP2P/P2、EP3P/P3分别特异性识别Ro60抗原表位482~493、310~323、230~241,重组蛋白EP1P、EP2P、EP3P和EPE40均具有明显的细胞毒活性。
     2.动物实验的病理检查显示:全部实验小鼠的脑、腮腺、心脏、肝脏、肾脏组织切片HE染色检查结果正常,但EP1P处理组小鼠较其他实验组出现明显的肺脏出血。
     【结论】
     1.成功获得Ro60抗原3个不同表位的免疫毒素(EP1P、EP2P和EP3P)、实验对照用重组蛋白(P1、P2、P3单抗及PE40毒素蛋白),并证实他们具备应有的特异性抗原结合能力和/或细胞毒活性。
     2.初步动物实验的结果显示:所研究的3个Ro60抗原表位自身抗体可能不能独立导致正常个体始发自身免疫病,但部分Ro60表位自身抗体在慢性炎症的背景下,可以成为损害组织器官的致病抗体,在这种背景下,不同Ro60表位的自身抗体,可能导致不同的组织器官损害。
     3.实验获得的3个Ro60表位免疫毒素及其实验对照用重组蛋白克隆、重组它们的方法、条件以及初步动物实验结果,为本课题进一步深入研究提供了工具和参考手段。
【Background】
     The 60kD SSA/Ro(Ro60) antigen is present in a wide variety of human tissues, including kidney and liver parenchymal cells,lymphocytes,fibroblasts,epithelioid cells and etc.In various autoimmune diseases(AIDs),such as systemic lupus erythematosus(SLE),Sjogren's syndrome(SS),subacute cutaneous lupus erythematosus(SCLE),neonatal lupus erythematosus(NLE),systemic sclerosis and so on,antoantibodies against Ro60 were found to be associated with different clinic lesions in these diseases.The clinic lesions involved skin rash,recurrent parotid gland enlargement,pulmonary damage,hypoleukia,heart block and etc.It was proved that the antigenicity of Ro60 was comprised of 20 epitopes,which might be responsible for the associations between various clinic pictures and distinctive profiles of antoantibodies against different Ro60 epitopes in AIDs.Our prelimillary clinic investigaton showed patients with different antoimmune diseases had their distinctive profile of antoantibodies against different Ro60 epitops,and antibodies to different Ro60 epitopes had relationships with different clinic manifestations.
     Based on our prelimillary clinical findings above,and the discovery that every monoantigen peptide(MAP),synthetized according to amino-acid residue sequences of the 20 epitopes on Ro60 antigen,remained its antigenicity,we synthetized 3 MAPs which were comprised of Ro60 amino-acid residue 482~493,310~323,230~241 named as epitope P1,epitope P2 and epitope P3,respectively.By panning with the 3 MAPs from Ro60 phagmid ScFv antibodies library which we had successfully constructed before,three ScFv monoclone antibodies(McAb) called P1,P2 and P3 against epitope P1,epitope P2 and epitope P3,respectively,were obtained.In order to demonstrate if the 3 ScFv McAb could cause their distinctive damages and to understand their exact roles in the onset and development of AIDs,it is necessary to get direct evidences whether the 3 different ScFv McAbs could result in different damages in the health or AIDs model animals.However,whithout Fc fragment,any ScFv McAbs only remained the function to combind with their specific antigen and losted their damage-causing functions caused by Fc fragment.Recombinant immunotoxin in which the cell-binding domain of pseudomonas exotoxin was replaced with ScFv McAb,possesed both the antigen-binding and local damage abilities,which was similar to and might represent of intact antibodies. Recombinating 3 immunotoxins by every one of the 3 ScFv McAb with PE40,and using them as 3 native autoantibodies targeting the 3 epitopes on Ro60 in animal experiments,we could detect if each of the 3 autoantibodies had its potency to induce its characteristic lesions.
     【Objectives】
     1.To obtain and identify 3 recombinant immunotoxins(EP1P,EP2P and EP3P) which are made from each of the 3 ScFv McAbs against different epitopes of Ro60 antigen and PE40,and 4 other recombinant proteins including 3 McAbs(P1,P2 and P3) and PE40 which served as controls.
     2.To detect if each of the 3 immunotoxins(represent of related native antoantibodies) can independently make damages on the main organs from health BALB/c mice.
     3.To explore if each of the 3 autoantibodies targeting the different epitopes of Ro60 can result in its specific lesions profiles in normal BALB/c mice.
     【Methods】
     1.After the DNA sequences of PE40 and the 3 ScFv McAbs were amplificated by polymerase chain reactions(PCR),Three immunotoxins(ScFv-PE40) DNA sequences were obtained by ligating each of the DNA sequences of the 3 ScFv McAbs with the DNA segment of PE40.All the 7 amplificated DNA sequences for the 3 ScFv,the 3 ScFv-PE40 and PE40 were put into vector pET32a(+) to construct 7 clones for the 7 RP expressions.Sequence analyses to all the 7 clones constructed were employed to find whether each of the 7 inserted sequences and their inserted sites were correct.
     2.To detect the optimum conditions of soluble expression for each of the 7 RPs encoded by the 7 constructed clones in Escherichia toli,various concentrations of IPTG,several protein-expressive temperatures and different time-span for protein expression were tried.Then,each of the 7 RPs was induced to abundantly express at its optimum conditions.
     3.When the 7 soluble expressive RPs were purified by NTA-Ni affinity column,all of them actually consisted of the recombinant interest protein and the tag protein from the expressive vectoer pET32a(+).For further experiments,the tag proteins were cut off from the 3 purified recombinant immunotoxins and PE40, which(EP1P,EP2P,EP3P and EPE40) then were purified again from their enterokinase(EK) cleavage reaction systems.
     4.For identification of the 7 recombinant protiens,ELISA process was employed to detect whether the 6 RPs(P1,P2,P3,EP1P,EP2P and EP3P),each of which contained one of the 3 ScFv McAbs constituents,had the abilities to combine with their specific epitopes from Ro60 antigen.After all the 4 RPs(EP1P,EP2P,EP3P and EPE40),each of which contained PE40 constituents,were separately transfected into one strain of vascular endothelial cell(EA,hy 926) cultured in vitro,MTT assay were taken to evaluate the cytotoxicity of the 4 proteins to EA. hy 926.
     5.48 health BALB/c mice were randomly divided into 8 goups,and each of groups had 6 mice.Each groups interstitially received one of the identified RPs or phosphate buffered solution(PBS) intravenously for 2 weeks.After all the mice were killed by exanguinating from ophthalmic vein,tissue slices from brain, parotid,lung,heart,liver,kidney of every mice were made and stained routinely by hematoxylin and eosin(HE).Pathologic examinations for all slices were performed and the datum obtained were analysized statistically.
     【Results】
     1.7 RPs including EP1P,EP2P,EP3P,EPE40,P1,P2 and P3 were obtained.It was identified that EP1P and P1,EP2P and P2,EP3P and P3 could selectively combine with the Ro60 epitopes 482~493,310~323,230~241,respectively,and that EP1P、EP2P、EP3P and EPE40 owned cytotoxicities to eukaryocytes.
     2.Pathological inspections on the histological sections from the mice showed none of the slices from brain,parotid,heart,liver and kidney were suspected to be abnomal.But only the pulmonary slices from the group treated by EP1P displaied severer pneumorrhagia than that from any other groups.
     【Conclusions】
     1.Three recombinant immunotoxins(EP1P,EP2P,EP3P) against 3 different epitopes of Ro60 antigen,3 recombinant ScFv McAbs(P1,P2,P3) targeting the same epitops as the 3 immunotoxins,and recombinant EPE40 were successfully obtained.It was proved that all of them had their proper physiologic functions.
     2.The preliminary results from the experiments with health BALB/c mice showed that it is very likely that none of the 3 autoantibodies against different epitopes of Ro60 antigen could independently induce health individuals to have AIDs as an initial factor,but in certain circumstances,for instance,in an occurrence of chronic imflammations,autoantibodies targeting some Ro60 epitopes might act as harmful factors to damage individuals.At these circumstances,autoantibodies against different epitopes on Ro60 antigen might result in different lesions in different situs in AIDs,which might be responsible for different clinic manifestations.
     3.The clones obtained in this experiment for expression of the 3 recombinant immunotoxins and the other RPs serving as controls,and the processes and the conditions to recombine them,as well as the preliminary results from the health mouse experiment would be valuable for further studies in this field.
引文
1Harmon CE,Deng iS,Peebles CL,et al.The importance of tissue substrate in the SS-A/Ro antigen-antibody system.Arthritis Rheum,1984,27(2):166-73.
    2Manoussakis MN,Tzioufas AG,Pange PJ,et al.Serological profiles in subgroups of patients with Sjogren's syndrome.Scand J Rheumatol Suppl,1986,61:89-92.
    3Buyon JP,C]ancy RM.Neonatal lupus:basic research and clinical perspectives.Rheum Dis Clin North Am,2005,31(2):299-313,ⅶ.
    4Kurien BT,Newland J,Paczkowski C,et al.Association of neutropenia in systemic lupus erythematosus(SLE) with anti-Ro and binding of an immunologically cross-reactive neutrophil membrane antigen.Clin Exp Immunol,2000,120(1):209-17.
    5Gordon P,Khamashta MA,Rosenthal E,et al.Anti-52 kDa Ro,anti-60 kDa Ro,and anti-La antibody profiles in neonatal lupus.J Rheumatol,2004,31(12):2480-7.
    6Harley JB,Scofield RH,Reichlin M.Anti-Ro in Sjogren's syndrome and systemic lupus erythematosus.Rheum Dis Clin North Am,1992,18(2):337-58.
    7Hedgpeth MT,Boulware DW.Interstitial pneumonitis in antinuc]ear antibody-negative systemic lupus erythematosus:a new clinical manifestation and possible association with anti-Ro(SS-A)antibodies.Arthritis Rheum,1988,31(4):545-8.
    8Huang SC,Yu H,Scofield RH,et al.Human anti-Ro autoantibodies bind peptides accessible to the surface of the native Ro autoantigen.Scand J Immunol,1995,41(3):220-8.
    9Barakat S,Meyer O,Torterotot F,et al.IgG antibodies from patients with primary Sjogren's syndrome and systemic lupus erythematosus recognize different epitopes in 60-kD SSA/Ro protein.Clin Exp Immunol,1992,89(1):38-45.
    10Wahren M,Solomin L,Pettersson I,et al.Autoantibody repertoire to Ro/SSA and La/SSB antigens in patients with primary and secondary Sjogren's syndrome.J Autoimmun,1996,9(4):537-44.
    11Routsias JG,Tzioufas AG,Sakarellos-Daitsiotis M,et al.Epitope mapping of the Ro/SSA6OKD autoantigen reveals disease-specific antibody-binding profiles.Eur J Clin Invest,1996,26(6):514-21.
    12李娅杰,刘莉.SSA抗原及其不同阳性表位的临床意义.中华内科杂志,2003,42(3):165-168.
    13张奉春,Harley,JB.60kD人SSA抗原表位免疫反应的特异性.中华风湿病学杂志,1998,002(000):5-9.
    14Voulhoux R,Taupiac MP,Czjzek M,et al.Influence of deletions within domain Ⅱ of exotoxin A on its extraceilular secretion from Pseudomonas aeruginosa.J Bacteriol,2000,182(14):4051-8.
    15李娅杰,彭劲民,张奉春.特异性抗SSA/Ro噬菌体抗体的制备及其基因序列分析.中华医学杂志,2004.84(22):1904-1908.
    16周炜,张奉春,唐福林,等.抗SSA噬菌体抗体库的构建及鉴定.中华风湿病学杂志,2003.7(7):394-398.
    17李鸿斌.抗SSA表位特异性单链噬菌体抗体的可溶性表达及其致病机理的研究.张奉春(博士);中国协和医科大学、中国医学科学院;2006.
    18Ben-Chetrit E,Chan EK,Sullivan KF,et al.A 52-kD protein is a novel component of the SS-A/Ro antigenic particle.J Exp Med,1988,167(5):1560-71.
    19Wolin SL,Steitz JA.The Ro small cytoplasmic ribonucleoproteins:identification of the antigenic protein and its binding site on the Ro RNAs.Proc Natl Acad Sci U S A,1984,81(7):1996-2000.
    20von Muhlen CA,Tan EM.Autoantibodies in the diagnosis of systemic rheumatic diseases.Semin Arthritis Rheum,1995,24(5):323-58.
    21Wahren-Herlenius M,Muller S,Isenberg D.Analysis of B-cell epitopes of the Ro/SS-A autoantigen.Immunol Today,1999,20(5):234-40.
    22Franceschini F,Cavazzana I.Anti-Ro/SSA and La/SSB antibodies.Autoimmunity,2005,38(1):55-63.
    23Parodi A,Puiatti P,Rebora A.Serological profiles as prognostic clues for progressive systemic scleroderma:the Italian experience.Dermatologica,1991,183(1):15-20.
    24Chou MJ,Lee SL,Chert TY,et al.Specificity of antinuclear antibodies in primary biliary cirrhosis.Ann Rheum Dis,1995,54(2):148-51.
    25Penner E.Demonstration of immune complexes containing the ribonucleoprotein antigen Ro in primary biliary cirrhosis.Gastroenterology,1986,90(3):724-7.
    26Selva-O'Callaghan A,Labrador Horrillo M,Solans-Laque R,et al.Myositis-specific and myositis-associated antibodies in a series of eighty-eight Mediterranean patients with idiopathic inflammatory myopathy. Arthritis Rheum, 2006,55(5):791-8.
    27 Moutsopoulos HM, Skopouli FN, Sarras AK, et al. Anti-Ro(SSA) positive rheumatoid arthritis (RA): a clinicoserological group of patients with high incidence of D-penicillamine side effects. Ann Rheum Dis, 1985, 44(4): 215-9.
    28 DeutscherSL, Harley JB, Keene JD. Molecular analysis of the 60-kDa human Ro ribonucleoprotein. Proc Natl Acad Sci U S A, 1988, 85(24) :9479-83.
    
    29 Wedekind JE, Trame CB, DorywalskaM, et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J Mol Biol, 2001, 314(4) :823-37.
    30 Chung CT, Miller RH. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res, 1988, 16(8):3580.
    31 Matsusaka T, Xin J, Niwa S, et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol, 2005, 16 (4): 1013-23.
    32 Kobayashi K, Morita S, Sawada H, et al. Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci U S A, 1995, 92(4): 1132-6.
    33 Sawada H, Nishii K, Suzuki T, et al. Autonomic neuropathy in transgenic mice caused by immunotoxin targeting of the peripheral nervous system. J Neurosci Res, 1998, 51 (2): 162-73.
    34 Armstrong S, Merrill AR. Toward the elucidation of the catalytic mechanism of the mono-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exotoxin A. Biochemistry, 2004,43(1): 183-94.
    35 Yates SP, Merrill AR. Elucidation of eukaryotic elongation factor-2 contact sites within the catalytic domain of Pseudomonas aeruginosa exotoxin A. Biochem J, 2004, 379(Pt 3) :563-72.
    36 Hwang J, Fitzgerald DJ, Adhya S, et al. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell, 1987,48(1): 129-36.
    37 FitzGerald DJ, Waldmann TA, Willingham MC, et al. Pseudomonas exotoxin-anti-TAC. Cell-specific immunotoxin active against cells expressing the human T cell growth factor receptor. J Clin Invest, 1984, 74(3) :966-71.
    38 Pastan I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother, 2003, 52(5) : 338-41.
    39 Pastan I, Lovelace ET, Gallo MG, et al. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res, 1991,51 (14):3781-7.
    40 Pai LH, Wittes R, Setser A, et al. Treatment of advanced solid tumors with immunotoxin LMB-1: an antibody linked to Pseudomonas exotoxin. Nat Med, 1996,2(3):350-3.
    41 Chaudhary VK, Queen C, Junghans RP, et al. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature, 1989, 339(6223):394-7.
    42 Brinkmann U, Reiter Y, Jung SH, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci U S A, 1993, 90(16):7538-42.
    43 Weetall M, Digan ME, Hugo R, et al. T-cell depletion and graft survival induced by anti-human CD3 immunotoxins in human CD3epsilon transgenic mice. Transplantation, 2002, 73(10): 1658-66.
    44 Nagai T, Tanaka M, Tsuneyoshi Y, et al. In vitro and in vivo efficacy of a recombinant immunotoxin against folate receptor beta on the activation and proliferation of rheumatoid arthritis synovial cells. Arthritis Rheum, 2006, 54(10):3126-34.
    45 Studier FW, Rosenberg AH, Dunn JJ, et al. Use of T7 RNA polvmerase to direct expression of cloned genes. Methods Enzymol, 1990, 185:60-89.
    46 Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polvmerase to direct selective high-level expression of cloned genes. J Mol Biol, 1986, 189(1): 113-30.
    47 Rosenberg AH, Studier FW. T7 RNA polvmerase can direct expression of influenza virus cap-binding protein (PB2) in Escherichia coli. Gene, 1987, 59(2-3):191-200.
    48 Rosenberg AH, Lade BN, Chui DS, et al. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 1987, 56(1): 125-35.
    49 Kim SH. Expression and purification of recombinant immunotoxin—a fusion protein stabilizes a single-chain Fv (scFv) in denaturing condition. Protein Expr Purif, 2003, 27(1):85~9.
    50 LaVallie ER, DiBlasio EA, Kovacic S, et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y), 1993, 11(2): 187-93.
    51 Jiang ST, Tzeng SS, Wu WT, et al. Enhanced expression of chicken cystatin as a thioredoxin fusion form in Escherichia coli AD494(DE3)pLysS and its effect on the prevention of surimi gel softening. J Agric Food Chem, 2002, 50(13) :3731-7.
    52 Song S, Xue J, Fan K, et al. Preparation and characterization of fusion protein truncated Pseudomonas Exotoxin A (PE38KDEL) in Escherichia coli. Protein Expr Purif, 2005, 44(1):52-7.
    53 Matthey B, Engert A, Klimka A, et al. A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene, 1999, 229(1-2):145-53.
    54 Xiong AS, Yao QH, Peng RH, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res, 2004, 32(12) :e98.
    55 Mukai H, Nakagawa T. [Long and accurate PCR (LA PCR)]. Nippon Rinsho, 1996, 54(4):917-22.
    56 Joseph Sambrook, David W. Russel. Molecular Cloning:A Laboratory Manual. 3rd ed:Cold Spring Harbor Laboratory Press, 2001.
    57 Roitt I, Brostoff J, Male D. Immunology. sixth ed. London:Harcourt Publisher Limited, 2001. 65.
    58 Allured VS, Collier RJ, Carroll SF, et al. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A, 1986, 83(5): 1320-4.
    59 Derman AI, Prinz WA, Belin D, et al. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science, 1993, 262(5140): 1744-7.
    60 Bessette PH, Aslund F, Beckwith J, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A, 1999, 96(24): 13703-8.
    61 Prinz WA, Aslund F, Holmgren A, et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem, 1997, 272 (25): 15661-7.
    62 Georgiou G, Valax P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol, 1996, 7 (2): 190-7.
    63 Schein CH. Optimizing protein folding to the native state in bacteria. Curr Opin Biotechnol, 1991, 2(5): 746-50.
    64 Mitraki A, King J. Protein folding intermediates and inclusion body formation. Bio/Technology, 1989, 7 (6): 690-7.
    
    65 Chrunyk BA, Evans J, Lillquist J, et al. Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J Biol Chem, 1993, 268(24):18053-61.
    66 Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry, 1991, 30(13) :3147-61.
    67 Derbyshire V, Astatke M, Joyce CM. Re-engineering the polymerase domain of Klenow fragment and evaluation of overproduction and purification strategies. Nucleic Acids Res, 1993, 21 (23): 5439-48.
    68 Schoner C. H, Noteborn M. H.M. Formation of soluble recombinant proteins in Escherichia coli is fevored by lower growth temperature. Bio/Technology, 1988, 6(3):291-4.
    69 Schmid EL, Keller TA, Dienes Z, et al. Reversible oriented surface immobilization of functional proteins on oxide surfaces. Anal Chem, 1997, 69(11): 1979-85.
    70 Yang H, He D, Chao K, et al. [Studies of the expression, purification, renaturation and biologic activity of an anti-CEA immunotoxin]. Sheng Wu Gong Cheng Xue Bao, 2004, 20(3):348-51.
    71 Chao K, He D, Yang H, et al. [Soluble expression of recombinant immunotoxin against human bladder carcinoma and its anti-tumor activity]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2004, 20(5): 568-71.
    72 Zhao J, Sun ZW, Liu YF, et al. [Construction, expression and functional characterization of disulfide-stabilized anti-hepatocarcinoma single chain Fv fused with truncated Pseudomonas exotoxin]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2003,19(6):585-7.
    73 Erickson HA, Jund MD, Pennell CA. Cytotoxicity of human RNase-based immunotoxins requires cytosolic access and resistance to ribonuclease inhibition. Protein Eng Des Sel, 2006,19(1): 37-45.
    74 Voss E, Wehkamp J, Wehkamp K, et al. N0D2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem, 2006, 281(4):2005-11.
    75 Wang L, Liu B, Schmidt M, et al. Antitumor effect of an HER2-specific antibody-toxin fusion protein on human prostate cancer cells. Prostate, 2001, 47(1) :21-8.
    76 Wang B, Dong X, Yuan Z, et al. SSA/Ro antigen expressed on membrane of UVB-induced apoptotic keratinocytes is pathogenic but not detectable in supernatant of cell culture. Chin Med J (Engl), 1999,112(6): 512-5.
    77 Gandhi R, Hussain E, Das J, et al. Anti-idiotype-mediated epitope spreading and diminished phagocytosis by a human monoclonal antibody recognizing late-stage apoptotic cells. Cell Death Differ, 2006, 13(10): 1715-26.
    78 Clancy RM, Neufing PJ, Zheng P, et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block.J Clin Invest,2006,116(9):2413-22.
    79Miranda-Carus ME,Askanase AD,Clancy RM,et al.Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages.J Immunol,2000,165(9):5345-51.
    80Miranda ME,Tseng CE,Rashbaum W,et al.Accessibility of SSA/Ro and SSB/La antigens to maternal autoantibodies in apoptotic human fetal cardiac myocytes.J Immunol,1998,161(9):5061-9.
    81Chen X,Wurtmann EJ,Van Batavia J,et al.An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D.radiodurans.Genes Dev,2007,21(11):1328-39.
    82Chen X,Smith JD,Shi H,et al.The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation.Curr Biol,2003,13(24):2206-11.
    83Stein AJ,Fuchs G,Fu C,et al.Structural insights into RNA quality control:the Ro autoantigen binds misfolded RNAs via its central cavity.Cell,2005,121(4):529-39.
    84O'Brien CA,Wolin SL.A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors.Genes Dev,1994,8(23):2891-903.
    85Pellizzoni L,Lotti F,Rutjes SA,et al.Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5'UTR of L4 ribosomal protein mRNA.J Mol Biol,1998,281(4):593-608.
    86Fuchs G,Stein AJ,Fu C,et al.Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen.Nat Struct Mol Biol,2006,13(11):1002-9.
    87Chen X,QuinnAM,Wolin SL.Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation.Genes Dev,2000,14(7):777-82.
    88Xue D,Shi H,Smith JD,et al.A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein,a major lupus autoantigen.Proc Natl Acad Sci U S A,2003,100(13):7503-8.
    89Koscec M,Koren E,Wolfson-Reichlin M,et al.Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture.J Immunol,1997,159(4):2033-41.
    90Zack DJ,Stempniak M,Wong AL,et al.Mechanisms of cellular penetration and nuclear localization of an anti-double strand DNA autoantibody.J Immunol,1996,157(5):2082-8.
    91 Golan TD, Gharavi AE, Elkon KB. Penetration of autoantibodies into living epithelial cells. J Invest Dermatol, 1993,100(3): 316-22.
    92 Franceschini F, Cretti L, Quinzanini M, et al. Deforming arthropathy of the hands in systemic lupus erythematosus is associated with antibodies to SSA/Ro and to SSB/La. Lupus, 1994, 3 (5): 419-22.
    93 Alexander EL, Arnett FC, Provost TT, et al. Sjogren' s syndrome: association of anti-Ro(SS-A) antibodies with vasculitis, hematologic abnormalities, and serologic hyperreactivity. Ann Intern Med, 1983,98(2): 155-9.
    94 Deshmukh US, Bagavant H, Lewis J, et al. Epitope spreading within lupus-associated ribonucleoprotein antigens. Clin Immunol, 2005,117(2): 112-20.
    95 McArthur C, Wang Y, Veno P, et al. Intracellular trafficking and surface expression of SS-A (Ro), SS-B (La), poly(ADP-ribose) polymerase and alpha-fodrin autoantigens during apoptosis in human salivary gland cells induced by tumour necrosis factor-alpha. Arch Oral Biol, 2002, 47(6): 443-8.
    96 Ohlsson M, Jonsson R, Brokstad KA. Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells: a possible mechanism in the pathogenesis of Sjogren's syndrome. Scand J Immunol, 2002, 56(5):456-69.
    97 Hayashi Y, Arakaki R, Ishimaru N. The role of caspase cascade on the development of primary Sjogren's syndrome. J Med Invest, 2003, 50(1-2):32-8.
    98 Reed JH, Neufing PJ, Jackson MW, et al. Different temporal expression of immunodominant R060/60 kDa-SSA and La/SSB apotopes. Clin Exp Immunol, 2007,148(1): 153-60.
    99 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med, 1994, 179(4) :1317-30.
    100 Arnett FC, Hamilton RG, Reveille JD, et al. Genetic studies of Ro (SS-A) and La (SS-B) autoantibodies in families with systemic lupus erythematosus and primary Sjogren' s syndrome. Arthritis Rheum, 1989, 32(4):413-9.
    101 Deshmukh US, Lewis JE, Gaskin F, et al. R060 peptides induce antibodies to similar epitopes shared among lupus-related autoantigens. J Immunol, 2000,164(12) :6655-61.
    102 Scofield RH, Henry WE, Kurien BT, et al. Immunization with short peptides from the sequence of the systemic lupus erythematosus-associated 60-kDa Ro autoantigen results in anti-Ro ribonucleoprotein autoimmanity.J Immunol,1996,156(10):4059-66.
    103Kurien BT,Asfa S,Li C,et al.Induction of oral tolerance in experimental Sjogren's syndrome autoimmunity.Scand J Immunol,2005,61(5):418-25.
    104Scofield RH,Asfa S,Obeso D,et al.Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjogren's syndrome.J Immunol,2005,175(12):8409-14.
    105Scofield RH,Kaufman KM,Baber U,et al.Immunization of mice with human 60-kd Ro peptides results in epitope spreading if the peptides are highly homologous between human and mouse.Arthritis Rheum,1999,42(5):1017-24.
    106Kinoshita G,Keech CL,SontheimerRD,et al.Spreading of the immune response from 52 kDaRo and 60 kDaRo to calreticulin in experimental autoimmunity.Lupus,1998,7(1):7-11.
    107Xu YM,Wang LF,Jia LT,et al.A caspase-6 and anti-human epidermal growth factor receptor-2(HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors.J Immunol,2004,173(1):61-7.
    108Schmidt M,Maurer-Gebhard M,Groner B,et al.Suppression of metastasis formation by a recombinant single chain antibody-toxin targeted to full-length and oncogenic variant EGF receptors.Oncogene,1999,18(9):1711-21.
    109Maurer-Gebhard M,Schmidt M,Azemar M,et al.Systemic treatment with a recombinant erbB-2receptor-specific tumor toxin efficiently reduces pulmonary metastases in mice injected with genetically modified carcinoma cells.Cancer Res,1998,58(12):2661-6.
    110Tseng CE,Chart EK,Miranda E,et al.The 52-kd protein as a target of intermolecu]ar spreading of the immune response to components of the SS-A/Ro-SS-B/La complex.Arthritis Rheum,1997,40(5):936-44.
    111Herrera-Esparza R,Villalobos R,Bollain-Y-Goytia JJ,et al.Apoptosis and redistribution of the Ro autoantigen in Balb/c mouse like in subacute cutaneous lupus erythematosus.Clin Dev Immunol,2006,13(2-4):163-6.
    112Scofield RH,Pierce PG,3ames 3A,et al.Immunization with peptidesfrom 60 kDa Ro in diverse mouse strains.Scand J Immunol,2002,56(5):477-83.
    113Zhu J.Cytomegalovirus infection induces expression of 60 KD/Ro antigen on human keratinocytes.Lupus,1995,4(5):396-406.
    114Ross PV,Koenig RJ,Arscott P,et al.Tissue specificity and serologic reactivity of an autoantigen associated with autoimmune thyroid disease.J Clin Endocrinol Metab,1993,77(2):433-8.
    115Ion DA,Chivu RD,Chivu LI.[Aspects of pleural/pulmonary involvement in systemic lupus erythematosus].Pneumologia,2006,55(4):151-5.
    116Takei M,Yamakami K,Mitamura K,et al.A case of systemic lupus erythematosus complicated by alveolar hemorrhage and cytomegalovirus colitis.Clin Rheumatol,2007,26(2):274-7.
    117Morton RL,Moore C,Coventry S,et al.Pulmonary Capillaritis and Hemorrhage in Neonatal Lupus Erythematosus(NLE).J Clin Rheumatol,2004,10(3):130-133.
    1JONES BR.Lacrimal and salivary precipitating antibodies in Sjogren's syndrome.Lancet,1958,2(7050):773-6.
    2Alspaugh M,Maddison P.Resolution of the identity of certain antigen-antibody systems in systemic lupus erythematosus and Sjogren's syndrome:an interlaboratory collaboration.Arthritis Rheum,1979,22(7):796-8.
    3Alspaugh MA,Tan EM.Antibodies to cellular antigens in Sjogren's syndrome.J Clin Invest,1975,55(5):1067-73.
    4Clark G,Reichlin M,Tomasi TB Jr.Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythmatosus.J Immunol,1969,102(1):117-22.
    5Wolin SL,Steitz JA.The Ro small cytoplasmic ribonucleoproteins:identification of the antigenic protein and its binding site on the Ro RNAs.Proc Natl Acad Sci U S A,1984,81(7):1996-2000.
    6Hendrick JP,Wolin SL,Rinke J,et al.Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins:further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells.Mol Cell Biol,1981,1(12):1138-49.
    7Locht H,Pelck R,Manthorpe R.Clinical manifestations correlated to the prevalence of autoantibodies in a large(n-321) cohort of patients with primary Sjogren's syndrome:a comparison of patients initially diagnosed according to the Copenhagen classification criteria with the American-European consensus criteria.Autoimmun Rev,2005,4(5):276-81.
    8Franceschini F,Cavazzana I.Anti-Ro/SSA and La/SSB antibodies.Autoimmunity,2005,38(1):55-63.
    9Wahren-Herlenius M,Muller S,Isenberg D.Analysis of B-cell epitopes of the Ro/SS-A autoantigen.Immunol Today,1999,20(5):234-40.
    10von Muhlen CA,Tan EM.Autoantibodies in the diagnosis of systemic rheumatic diseases.Semin Arthritis Rheum,1995,24(5):323-58.
    11Brouwer R,Hengstman GJ,Vree Egberts W,et al.Autoantibody profiles in the sera of European patients with myositis.Ann Rheum Dis,2001,60(2):116-23.
    12Selva-O'Callaghan A,Labrador-Horrillo M,Solans-Laque R,et al.Myositis-specific and myositis-associated antibodies in a series of eighty-eight Mediterranean patients with idiopathic inflammatory myopathy. Arthritis Rheum, 2006,55(5):791-8.
    13 Penner E. Demonstration of immune complexes containing the ribonucleoprotein antigen Ro in primary biliary cirrhosis. Gastroenterology, 1986, 90(3):724-7.
    14 Chou MJ, Lee SL, Chen TY, et al. Specificity of antinuclear antibodies in primary biliary cirrhosis. Ann Rheum Dis, 1995, 54(2): 148-51.
    15 Parodi A, Puiatti P, Rebora A. Serological profiles as prognostic clues for progressive systemic scleroderma: the Italian experience. Dermatologica, 1991, 183(1): 15-20.
    16 Lee LA. Transient autoimmunity related to maternal autoantibodies: neonatal lupus. Autoimmun Rev, 2005, 4(4): 207-13.
    17 Buyon JP, Clancy RM. Neonatal lupus: basic research and clinical perspectives. Rheum Dis Clin North Am, 2005, 31(2):299-313, vii.
    18 Franceschini F, Cretti L, Quinzanini M, et al. Deforming arthropathy of the hands in systemic lupus erythematosus is associated with antibodies to SSA/Ro and to SSB/La. Lupus, 1994, 3(5) :419-22.
    19 Hedgpeth MT, Boulware DW. Interstitial pneumonitis in antinuclear antibody-negative systemic lupus erythematosus: a new clinical manifestation and possible association with anti-Ro (SS-A) antibodies. Arthritis Rheum, 1988, 31(4) :545-8.
    20 Alexander EL, Arnett FC, Provost TT, et al. Sjogren's syndrome: association of anti-Ro(SS-A) antibodies with vasculitis, hematologic abnormalities, and serologic hyperreactivity. Ann Intern Med, 1983, 98 (2): 155-9.
    21 Manoussakis MN, Tzioufas AG, Pange PJ, et al. Serological profiles in subgroups of patients with Sjogren's syndrome. Scand J Rheumatol Suppl, 1986,61:89-92.
    22 Harmon CE, Deng JS, Peebles CL, et al. The importance of tissue substrate in the SS-A/Ro antigen-antibody system. Arthritis Rheum, 1984, 27(2): 166-73.
    23 DeutscherSL, Harley JB, Keene JD. Molecular analysis of the 60-kDa human Ro ribonucleoprotein. Proc Natl Acad Sci U S A, 1988, 85(24) :9479-83.
    24 O'Brien CA, Margelot K, Wolin SL. Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. Proc Natl Acad Sci U S A, 1993, 90(15) :7250-4.
    25 Prui jn GJ, Wingens PA, Peters SL, et al. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim Biophys Acta, 1993, 1216(3) :395-401.
    26 Green CD, Long KS, Shi H, et al. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA, 1998, 4(7):750-65.
    27 Perreault J, Perreault JP, Boire G. The Ro Associated Y RNAs in Metazoans: Evolution and Diversification. Mol Biol Evol, 2007, 24(8): 1678-89.
    28 Kato N, Hoshino H, Harada F. Nucleotide sequence of 4. 5S RNA (C8 or hY5) from HeLa cells. Biochem Biophys Res Commun, 1982, 108(1):363-70.
    29 Wolin SL, Steitz JA. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell, 1983, 32(3):735-44.
    30 Fabini G, Rutjes SA, Zimmermann C, et al. Analysis of the molecular composition of Ro ribonucleoprotein complexes. Identification of novel Y RNA-binding proteins. Eur J Biochem, 2000, 267 (9): 2778-89.
    31 Fouraux MA, Bouvet P, Verkaart S, et al. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J Mol Biol, 2002, 320(3):475-88.
    32 Whittaker CA, Hynes R0. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell, 2002, 13(10): 3369-87.
    33 Stein AJ, Fuchs G, Fu C, et al. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell, 2005, 121(4):529-39.
    34 Ramesh A, Savva CG, Holzenburg A, et al. Crystal structure of Rsr, an ortholog of the antigenic Ro protein, links conformational flexibility to RNA binding activity. J Biol Chem, 2007, 282 (20): 14960-7.
    35 O'Brien CA, Wolin SL. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev, 1994, 8(23):2891-903.
    36 Shi H, O'Brien CA, Van Horn DJ, et al. A misfolded form of 5S rRNA is complexed with the Ro and La autoantigens. RNA, 1996, 2(8) : 769-84.
    37 Chen X, Smith JD, Shi H, et al. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr Biol, 2003, 13(24):2206-11.
    38 Chen X, Wurtmann EJ, Van Batavia J, et al. An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans. Genes Dev, 2007, 21(11): 1328-39.
    39 Fuchs G, Stein AJ, Fu C, et al. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat Struct Mol Biol, 2006,13(11): 1002-9.
    40 Pellizzoni L, Lotti F, Rutjes SA, et al. Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5' UTR of L4 ribosomal protein mRNA. J Mol Biol, 1998, 281(4):593-608.
    41 Christov CP, Gardiner TJ, Szuts D, et al. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol, 2006, 26(18):6993-7004.
    42 Chen X, Quinn AM, Wolin SL. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev, 2000, 14(7):777-82.
    43 Xue D, Shi H, Smith JD, et al. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A, 2003, 100(13): 7503-8.
    44 Labbe JC, Burgess J, Rokeach LA, et al. ROP-1, an RNA quality-control pathway component, affects Caenorhabditis elegans dauer formation. Proc Natl Acad Sci U S A, 2000, 97(24): 13233-8.
    45 Kelly KM, Zhuang H, Nacionales DC, et al. "Endogenous adjuvant" activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis Rheum, 2006, 54(5): 1557-67.
    46 Paisansinsup T, Deshmukh US, Chowdhary VR, et al. HLA class II influences the immune response and antibody diversification to Ro60/Sjogren' s syndrome-A: heightened antibody responses and epitope spreading in mice expressing HLA-DR molecules. J Immunol, 2002,168(11) :5876-84.
    47 Harley JB, Sestak AL, Willis LG, et al. A model for disease heterogeneity in systemic lupus erythematosus. Relationships between histocompatibility antigens, autoantibodies, and lymphopenia or renal disease. Arthritis Rheum, 1989, 32(7):826-36.
    48 Reveille JD, Macleod MJ, Whittington K, et al. Specific amino acid residues in the second hypervariable region of HLA-DQA1 and DQB1 chain genes promote the Ro (SS-A)/La (SS-B) autoantibody responses. J Immunol, 1991, 146(11) :3871-6.
    49 Ricchiuti V, Isenberg D, Muller S. HLA association of anti-Ro60 and anti-Ro52 antibodies in Sjogren's syndrome. J Autoimmun, 1994, 7(5) :611-21.
    50 Tzioufas AG, Wassmuth R, Dafni UG, et al. Clinical, immunological, and immunogenetic aspects of autoantibody production against Ro/SSA, La/SSB and their linear epitopes in primary Sjogren's syndrome (pSS): a European multicentre study. Ann Rheum Dis, 2002, 61 (5) :398~404.
    51 Frank MB, McArthur R, Harley JB, et al. Anti-Ro(SSA) autoantibodies are associated with T cell receptor beta genes in systemic lupus erythematosus patients. J Clin Invest, 1990, 85(1): 33-9.
    52 Scofield RH, Frank MB, Neas BR, et al. Cooperative association of T cell beta receptor and HLA-DQ alleles in the production of anti-Ro in systemic lupus erythematosus. Clin Immunol Immunopathol, 1994, 72(3) :335-41.
    53 Scofield RH, Dickey WD, Jackson KW, et al. A common autoepitope near the carboxyl terminus of the 60-kD Ro ribonucleoprotein: sequence similarity with a viral protein. J Clin Immunol, 1991, 11(6): 378-88.
    54 Hardgrave KL, Neas BR, Scofield RH, et al. Antibodies to vesicular stomatitis virus proteins in patients with systemic lupus erythematosus and in normal subjects. Arthritis Rheum, 1993, 36(7) :962-70.
    55 Huang SC, Pan Z, Kurien BT, et al. Immunization with vesicular stomatitis virus nucleocapsid protein induces autoantibodies to the 60 kD Ro ribonucleoprotein particle. J Investig Med, 1995, 43 (2): 151-8.
    56 Stathopoulou EA, Routsias JG, Stea EA, et al. Cross-reaction between antibodies to the major epitope of Ro60 kD autoantigen and a homologous peptide of Coxsackie virus 2B protein. Clin Exp Immunol, 2005, 141 (1): 148-54.
    57 McClain MT, Heinlen LD, Dennis GJ, et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med, 2005, 11(1):85-9.
    58 Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bull NYU Hosp Jt Dis, 2006, 64 (1-2):45-50.
    59 McClain MT, Poole BD, Bruner BF, et al. An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus. Arthritis Rheum, 2006, 54(1):360-8.
    60 Zhu J. Cytomegalovirus infection induces expression of 60 KD/Ro antigen on human keratinocytes. Lupus, 1995, 4(5) :396-406.
    61 Zhu J, Newkirk MM. Viral induction of the human autoantigen calreticulin. Clin Invest Med,1994, 17(3): 196-205.
    62 LeFeber WP, Norris DA, Ryan SR, et al. Ultraviolet light induces binding of antibodies to selected nuclear antigens on cultured human keratinocytes. J Clin Invest, 1984, 74 (4): 1545-51.
    63 Golan TD, Elkon KB, Gharavi AE, et al. Enhanced membrane binding of autoantibodies to cultured keratinocytes of systemic lupus erythematosus patients after ultraviolet B/ultraviolet A irradiation. J Clin Invest, 1992, 90(3): 1067-76.
    64 Furukawa F, Kashihara-Sawami M, Lyons MB, et al. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol, 1990,94(1):77-85.
    65 Wang B, Dong X, Yuan Z, et al. SSA/Ro antigen expressed on membrane of UVB-induced apoptotic keratinocytes is pathogenic but not detectable in supernatant of cell culture. Chin Med J (Engl), 1999, 112(6): 512-5.
    66 Cohen PL, Caricchio R, Abraham V, et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med, 2002,196(1):135-40.
    67 Napirei M, Karsunky H, Zevnik B, et al. Features of systemic lupus erythematosus in Dnasel-deficient mice. Nat Genet, 2000, 25(2): 177-81.
    68 Mevorach D, Zhou JL, Song X, et al. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med, 1998,188(2):387-92.
    69 Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med, 1994, 179(4): 1317-30.
    70 Reed JH, Neufing PJ, Jackson Ml, et al. Different temporal expression of immunodominant R06O/6O kDa-SSA and La/SSB apotopes. Clin Exp Immunol, 2007,148(1):153-60.
    71 Ohlsson M, Jonsson R, Brokstad KA. Subcellular redistribution and surface exposure of the Ro52, R06O and La48 autoantigens during apoptosis in human ductal epithelial cells: a possible mechanism in the pathogenesis of Sjogren's syndrome. Scand J Immunol, 2002, 56(5):456-69.
    72 Eggleton P. Stress protein-polypeptide complexes acting as autoimmune triggers. Clin Exp Immunol, 2003, 134(1):6-8.
    73 Taylor PR, Carugati A, Fadok VA, et al. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo.J Exp Med,2000,192(3):359-66.
    74Kurien BT,Hensley K,Bachmann M,et al.Oxidatively modified autoantigens in autoimmune diseases.Free Radic Biol Med,2006,41(4):549-56.
    75Comporti M.Lipid peroxidation and biogenic aldehydes:from the identification of 4-hydroxynonenal to further achievements in biopathology.Free Radic Res,1998,28(6):623-35.
    76Grune T,Michel P,Sitte N,et al.Increased levels of 4-hydroxynonenal modified proteins in plasma of children with autoimmune diseases.Free Radic Biol Med,1997,23(3):357-60.
    77Scofield RH,Kurien BT,Ganick S,et al.Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading.Free Radic Biol Med,2005,38(6):719-28.
    78Terzoglou AG,Routsias JG,Moutsopoulos HM,et al.Post-translational modifications of the major linear epitope 169-190aa of Ro60 kDa autoantigen alter the autoantibody binding.Clin Exp Immunol,2006,146(1):60-5.
    79Kapsogeorgou EK,Abu-Helu RF,Moutsopoulos HM,et al.Salivary gland epithelial cell exosomes:A source of autoantigenic ribonucleoproteins.Arthritis Rheum,2005,52(5):1517-21.
    80Keech CL,Gordon TP,McCluskey J.The immune response to 52-kDa Ro and 60-kDa Ro is linked in experimental autoimmunity.J Immunol,1996,157(8):3694-9.
    81Kurien BT,Newland J,Paczkowski C,et al.Association of neutropenia in systemic lupus erythematosus(SLE) with anti Ro and binding of an immunologically cross-reactive neutrophil membrane antigen.Clin Exp Immunol,2000,120(1):209-17.
    82Miranda ME,Tseng CE,Rashbaum W,et al.Accessibility of SSA/Ro and SSB/La antigens to maternal autoantibodies in apoptotic human fetal cardiac myocytes.J Immunol,1998,161(9):5061-9.
    83Miranda-Carus ME,Askanase AD,ClancyRM,et al.Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages.J Immunol,2000,165(9):5345-51.
    84Clancy RM,Neufing PJ,ZhengP,et al.Impaired clearance ofapoptotic cardiocytes is linked to anti-SSA/Roand -SSB/La antibodies in the pathogenesis of congenital heart block.J Clin Invest,2006,116(9):2413-22.
    85Gandhi R,Hussain E,Das J,et al.Anti-idiotype-mediated epitope spreading and diminished phagocytosis by a human monoclonal antibody recognizing late-stage apoptotic cells. Cell Death Differ, 2006, 13(10): 1715-26.
    86 Golan TD, Gharavi AE, Elkon KB. Penetration of autoantibodies into living epithelial cells. J Invest Dermatol, 1993, 100(3):316-22.
    87 Yanase K, Smith RM, Cizraan B, et al. A subgroup of murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time-and temperature-dependent manner. Lab Invest, 1994, 71 (1) :52-60.
    88 Zack DJ, Stempniak M, Wong AL, et al. Mechanisms of cellular penetration and nuclear localization of an anti-double strand DNA autoantibody. J Immunol JT, 1996, 157(5):2082-8.
    89 KoscecM, Koren E, Wolfson-Reichlin M, et al. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J Immunol, 1997,159(4): 2033-41.
    90 Deshmukh US, Bagavant H, Lewis J, et al. Epitope spreading within lupus-associated ribonucleoprotein antigens. Clin Immunol, 2005, 117(2):112-20.
    91 Scofield RH, Henry WE, Kurien BT, et al. Immunization with short peptides from the sequence of the systemic lupus erythematosus-associated 60-kDa Ro autoantigen results in anti-Ro ribonucleoprotein autoimmunity. J Immunol, 1996, 156(10):4059-66.
    92 Scofield RH, Kaufman KM, Baber U, et al. Immunization of mice with human 60-kd Ro peptides results in epitope spreading if the peptides are highly homologous between human and mouse. Arthritis Rheum, 1999, 42(5): 1017-24.
    93 Deshmukh US, Lewis JE, Gaskin F, et al. Ro60 peptides induce antibodies to similar epitopes shared among lupus-related autoantigens. J Immunol, 2000, 164(12) :6655~61.
    94 Pal R, Deshmukh US, Ohyama Y, et al. Evidence for multiple shared antigenic determinants within Ro60 and other lupus-related ribonucleoprotein autoantigens in human autoimmune responses. J Immunol, 2005, 175(11) :7669-77.
    95 Scofield RH, Asfa S, Obeso D, et al. Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjogren's syndrome. J Immunol, 2005, 175(12):8409-14.
    96 Huang SC, Yu H, Scofield RH, et al. Human anti-Ro autoantibodies bind peptides accessible to the surface of the native Ro autoantigen. Scand J Immunol, 1995,41(3):220-8.
    97Scofield RH,Zhang FC,Kurien BT,et al.Anti-No fine specificity defined by multiple antigenic peptides identifies components of tertiary epitopes.Clin Exp Immunol,1997,109(3):480-7.
    98Wahren M,Ruden U,Andersson B,et al.Identification of antigenic regions of the human Ro 60 kDa protein using recombinant antigen and synthetic peptides.J Autoimmun,1992,5(3):319-32.
    99李娅杰,刘莉.SSA抗原及其不同阳性表位的临床意义.中华内科杂志,2003,42(3):165-168.
    100Moutsopoulos HM,Skopouli FN,Sarras AK,et al.Anti-Ro(SSA) positive rheumatoid arthritis (RA):a clinicoserological group of patients with high incidence of D-penicillamine side effects.Ann Rheum Dis,1985,44(4):215-9.
    101Gordon P,Khamashta MA,Rosenthal E,et al.Anti-52 kDa Ro,anti-60 kDa Ro,and anti-La antibody profiles in neonatal lupus.J Rheumatol,2004,31(12):2480-7.
    102Barakat S,Meyer O,rorterotot F,et al.IgG antibodies from patients with primary Sjogren's syndrome and systemic lupus erythematosus recognize different epitopes in 60-kD SSA/Ro protein.Clin Exp Immunol,1992,89(1):38-45.
    103Wahren M,Solomin L,Pettersson I,et al.Autoantibody repertoire to Ro/SSA and La/SSB antigens in patients with primary and secondary Sjogren's syndrome.J Autoimmun,1996,9(4):537-44.
    104Routsias JG,Tzioufas AG,Sakarellos-Daitsiotis M,et al.Epitope mapping of the Ro/SSA6OKD autoantigen reveals disease-specific antibody binding profiles.Eur J Clin Invest,1996,26(6):514-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700