1、大动脉转位患儿左室训练术后血浆生物标记物的鉴定和功能学研究 2、先天性心脏病患儿肥厚右室心肌Ca~(2+)调节蛋白表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:完全性先天性大动脉转位(Transposition of great arteries, TGA)患儿左心室与肺动脉相连,随着出生后肺血流阻力的下降,左心室压力后负荷也逐渐下降。长期的左室后负荷低压状态,将导致左室心肌发生功能性退化。在肺动脉放置环扎带的左室训练术通过增加左室压力后负荷,使左室在较高的压力负荷刺激后再度发育,心肌细胞出现肥大反应,这也为我们研究压力负荷下未成熟心肌肥厚、发育的分子机制提供了独特而宝贵的人类疾病模型。识别并鉴定TGA患儿左室训练术后的血浆中出现的特异性生物标记物,一方面可以为研究人未成熟心肌的肥厚、发育的分子机制提供新的线索;另一方面,将这些生物标志物作为新的潜在的分子靶点,为开发新的心肌肥厚干预药物带来新的希望。
     方法:用差异凝胶电泳(Differential gel electrophoresis, DIGE)蛋白质组学技术筛选并鉴定TGA病人行左室训练术后48hrs血浆中的差异表达蛋白。然后应用ELISA方法检测差异表达蛋白血浆铜蓝蛋白(Ceruloplasmin, CP),α1-抗胰蛋白酶(Alpha-1-antitrypsin, SERPINA1),转铁蛋白(Transferrin, TF),和小清蛋白(Parvalbumin, PVALB)在TGA病人左室训练术前、术后血浆,非体外循环心脏手术病人术前、术后血浆,以及非先心病手术病人术前血浆中的表达情况。进一步用TF和促肥厚因子内皮素-1(Endothelin-1,ET-1)处理体外培养乳鼠心肌细胞,观察心肌细胞形态大小变化,心肌肥厚标志物利钠肽前体A (Natriuretic peptide precursor A, Nppa).利钠肽前体B (Natriuretic peptide precursor B, Nppb) mRNA的表达变化,以及PVALB的表达变化。
     结果:采用DIGE蛋白质组学技术,成功鉴定出TGA病人行左室训练术后血浆差异表达蛋白25种,其中19种蛋白与心脏发育、铁离子稳态、蛋白质生物合成与折叠、物质代谢、信号转导等方面相关;ELISA分析结果显示:CP、TF和PVALB3种差异蛋白在TGA病人行左室训练术后48hrs血浆中的表达水平较其术前水平显著升高,而在非体外循环心脏手术病人中则无类似的显著改变。TF和ET-1处理乳鼠心肌细胞48hrs后,细胞面积显著增大,肥厚标志物Nppa. Nppb mRNA表达显著增强,PVALB mRNA表达水平、PVALB蛋白阳性百分率显著升高;去铁转铁蛋白(apotransferrin, apo-TF)和铁饱和转铁蛋白(holotransferrin, holo-TF)均能诱导心肌细胞肥大和增强肥厚标志物Nppa, Nppb mRNA的表达。
     结论:铁离子稳态相关蛋白CP、TF和心脏发育相关蛋白PVALB是TGA患儿左室训练术后的血浆特异性蛋白生物标志物,是与人未成熟心肌肥厚、发育相关的蛋白生物标志物;TF诱导乳鼠心肌细胞肥大的体外实验研究证实TF是有效的未成熟心肌细胞促肥厚因子,且同剂量的apo-TF和holo-TF的促肥厚效应类似;体外细胞水平研究证实PVALB是未成熟心肌细胞肥大的生物标志物。
     背景:先天性心脏病(Congenital heart disease, CHD)是主要的出生缺陷之一。缺氧和肥厚能够诱导Ca2+调节蛋白的表达改变,抑制心肌收缩力,是CHD主要病理生理改变。Ca2+调节蛋白调节细胞内游离Ca2+浓度,维持细胞内Ca2+稳态,因此在兴奋-收缩偶联过程中发挥核心作用,其表达变化可以影响心肌细胞的收缩能力。当前较少有关于人右心室在肥厚和/或缺氧条件下Ca2+调节蛋白变化特点的研究。我们期望通过研究缺氧和肥厚对人右心室Ca2+调节蛋白表达的影响,加深我们对CHD患儿右心室肥厚和缺氧的分子机制的认识,进而为此类疾病的治疗提供新的思路。
     方法:25例不伴缺氧的肺动脉瓣狭窄患儿作为单纯肥厚组(Hypertrophy group, H group),25例法乐四联症患儿作为缺氧肥厚组(Hypoxia and hypertrophy group, HH group),25例不伴缺氧和肥厚的限制性小室间隔缺损患儿作为对照组(Control group, C group),在行手术矫治时收集右室流出道心肌组织标本。心肌组织的石蜡切片用细胞膜绿色荧光探针DiO进行染色后用于心肌细胞形态大小比较。用Real-time PCR、Western Blot或免疫荧光技术检测Ca2+调节蛋白肌浆网Ca2+-ATPase (Sarcoplasmic reticulum Ca2+-ATPase, SERCA2a)、兰尼碱受体2(Ryanodine receptor2,RyR2)、钠钙交换体(Sodiumcalcium exchanger, NCX)、肌脂蛋白(Sarcolipin,SLN)、受磷蛋白(Phospholamban, PLN)的表达水平。另外,用Western Blot检测RyR和PLN的磷酸化水平以及检测蛋白磷酸酶1(protein phosphatase1, PP1)的表达水平。
     结果:通过细胞形态大小比较,证实了肥厚组(+31%,P<0.001vs对照组)和缺氧肥厚组(+22%,P<0.001vs对照组)病人右室心肌细胞存在轻微的肥大改变。与对照组相比,缺氧肥厚组SERCA2a mRNA水平显著降低(P<0.01),单纯肥厚组SERCA2a mRNA水平也有下降趋势,但无统计学意义。与对照组相比,无论是单纯肥厚组还是缺氧肥厚组,右心室心肌细胞RyR2、NCX、SLN和PLN的mRNA和蛋白表达均无变化。与对照组相比,缺氧肥厚组的PLN-Ser16表达下调(P<0.01),PP1表达增强(P<0.01)。
     结论:SERCA2a mRNA表达水平的下调是同时存在缺氧和右室肥厚的先天性心脏病早期阶段病理过程的生物标志物;缺氧和肥厚的共同作用诱导了PLN-Ser16脱磷酸化这一不利效应,对同时存在缺氧和右室肥厚的先天性心脏病患儿进行早期的外科手术矫治,可能可以加速PLN-Ser16磷酸化水平的恢复,进而改善心肌收缩能力。增强的PP1表达使PLN-Ser16水平下降,抑制PP1的表达是儿科病人心功能不全的潜在的治疗靶点。
Background:The left ventricle of complete congenital transposition of great arteries (TGA) children was connected with pulmonary artery. With the decline in pulmonary vascular resistance after birth, the left ventricular pressure load decreased gradually. The long-term low left ventricular pressure load will lead the functional degradation of left ventricle. Increased left ventricular pressure load induced by left ventricle training with pulmonary artery banding surgery would stimulate left ventricular development and cardiomyocyte hypertrophy, which provides an unique and valuable human disease model to study pressure overload hypertrophy and development of immature myocardium. Identification of the plasma biomarkers involved in transposition of great arteries children undergoing left ventricular training surgery will provide new clues for studying the molecular mechanisms of hypertrophy and development of immature myocardium. Additionally, using these biomarkers as a new potential molecular target can bring hope for developing new myocardial hypertrophy intervention drugs.
     Methods:Differential gel electrophoresis (DIGE) proteomics was used to screen and identify the differential proteins from the plasma of the anterior and posterior left ventricular training surgery in TGA children. Then, enzyme linked immunosorbent assay (ELISA) was used to detect the expression level of the differential proteins including ceruloplasmin (CP), alpha-1-antitrypsin (SERPINA1), transferrin (TF), and parvalbumin (PVALB) in the preoperative and postoperative plasma of TGA children undergoing left ventricular training surgery, the preoperative and postoperative plasma of children undergoing off-pump cardiac surgery, and the preoperative plasma of children undergoing non-congenital heart disease surgery. Furthermore, the in vitro cultured neonatal rat cardiomyocytes was treated with TF or Endothelin-1(ET-1) to observe changes in the size of cells, in the mRNA expression of myocardial hypertrophy biomarkers including natriuretic peptide precursor A (Nppa) and natriuretic peptide precursor B (Nppb), as well as in the PVALB expression.
     Results:By using DIGE proteomics,25differential proteins were successfully identified in postoperative plasma of TGA children undergoing left ventricular training surgery.19of them were involved in heart development, iron ion homeostasis, protein biosynthesis and protein folding, metabolism, signal transduction and others. ELISA analysis showed that compared with the levels in their preoperative plasma,3differential proteins including CP, TF and PVALB levels rose significantly in postoperative plasma of TGA children undergoing left ventricular training surgery, while there was no significant change in children undergoing off-pump cardiac surgery. The in vitro study showed that after48hours'incubation with TF or ET-1, the size of cardiomyocytes increased significantly, the expression of hypertrophic biomarkers including Nppa and Nppb was significantly enhanced, as well as the PVALB mRNA expression level and PVALB positive protein percentage rose significantly. Both the apotransferrin (apo-TF) and holotransferrin (holo-TF) could induce cardiomyocyte hypertrophy and enhanced expression of Nppa and Nppb mRNA.
     Conclusions:Iron homeostasis related proteins CP and TF and heart development-associated protein PVALB were plasma biomarkers of posterior left ventricular training surgery in TGA children, so were the biomarkers associated with hypertrophy and development of human immature myocardium. The in vitro study confirmed that TF was a factor which can induce immature cardiomyocyte hypertrophy effectively, and the same dose of apo-TF or holo-TF has similar effect on cardiomyocyte hypertrophy. The in vitro study also confirmed that PVALB was a biomarker of the immature cardiomyocyte hypertrophy.
     Background:Congenital heart disease (CHD) is a major birth defect around the world. Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart disease which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Ca2+-regulatory proteins regulate intracellular free Ca2+concentrations and maintain intracellular Ca2+homeostasis so they are very important for excitation-contraction coupling and for myocyte contractility. Few studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic right ventricle with or without hypoxia. Research about the alteration of Ca2+-regulatory proteins in right ventricular hypertrophy (RVH) with or without hypoxia will help to understand the cellular and molecular bases of RVH and hypoxia in the populations of children with CHD.
     Methods:Right ventricle tissues were collected from children with pulmonary stenosis [n=25, hypertrophy group (H group)], tetralogy of Fallot [n=25, hypoxia and hypertrophy group (HH group)], or small isolated ventricular septal defect [n=25, control group (C group)] during open-heart surgery. Paraffin sections of tissues were stained with3,3'-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), ryanodine receptor2(RyR2), sodiumcalcium exchanger (NCX), sarcolipin (SLN) and phospholamban (PLN)] were analysed by means of real-time PCR, western blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein phosphatase1(PP1) were evaluated using western blot.
     Results:Mild cardiomyocyte hypertrophy of the right ventricle in H (+31%, P<0.001vs C group) and HH groups (+22%, P<0.001vs C group) was confirmed by comparing cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P<0.01) was observed in the HH group compared with the C group, and a similar trend of decrease was detected in the H group, but there was not a statistically significant difference. No change in the mRNA or protein expression of RyR2, NCX, SLN and PLN in H group and HH group when compared with the C group. The level of Ser16-phosphorylated PLN was down-regulated (P<0.01) and PP1was increased (P<0.01) in the HH group compared to that in the C group.
     Conclusions:The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the adverse effect of PLN-Ser'6dephosphorylation, and early surgical repair might accelerate the recovery of the phosphorylated state of PLN and thereby contribute to improved cardiac contractility in cyanotic CHD with right ventricular hypertrophy. Increased PP1could result in the decreased PLN-Ser16and inhibition of PP1is a potential therapeutic target for heart dysfunction in pediatrics.
引文
[1]Sadoshima J, Takahashi T, Jahn L, et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes [J]. Proc Natl Acad Sci U S A,1992,89(20):9905-9909.
    [2]Ho YL, Wu CC, Lin LC, et al. Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography:Effect of the left ventricular hypertrophy [J]. Cardiology,1998,89(1):52-58.
    [3]Lorell BH, Carabello BA. Left ventricular hypertrophy:Pathogenesis, detection, and prognosis [J]. Circulation,2000,102(4):470-479.
    [4]Frey N, Olson EN. Cardiac hypertrophy:The good, the bad, and the ugly [J]. Annu Rev Physiol, 2003,65(45-79.
    [5]Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways [J]. Nat Rev Mol Cell Biol,2006,7(8):589-600.
    [6]Chien KR. Genomic circuits and the integrative biology of cardiac diseases [J]. Nature, 2000,407(6801):227-232.
    [7]Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy [J]. Pharmacol Res,2010,61(4):269-280.
    [8]Park SH, Stenvinkel P, Lindholm B. Cardiovascular biomarkers in chronic kidney disease [J]. J Ren Nutr,2012,22(1):120-127.
    [9]Sattar N. Biomarkers for diabetes prediction, pathogenesis or pharmacotherapy guidance? Past, present and future possibilities [J]. Diabet Med,2012,29(1):5-13.
    [10]Matt P, Carrel T, White M, et al. Proteomics in cardiovascular surgery [J]. J Thorac Cardiovasc Surg, 2007,133(1):210-214.
    [11]Gonzalez A, Lopez B, Ravassa S, et al. Cardiotrophin-1 in hypertensive heart disease [J]. Endocrine, 2012.
    [12]Tibbits GF, Xu L, Sedarat F. Ontogeny of excitation-contraction coupling in the mammalian heart [J]. Comp Biochem Physiol A Mol Integr Physiol,2002,132(4):691-698.
    [13]Hammon JW, Jr. Myocardial protection in the immature heart [J]. Ann Thorac Surg, 1995,60(3):839-842.
    [14]Yamamoto F. Metabolic characteristics of immature myocardium [J]. Gen Thorac Cardiovasc Surg, 2010,58(4):171-173.
    [15]Rolph TP, Jones CT. Regulation of glycolytic flux in the heart of the fetal guinea pig [J]. J Dev Physiol,1983,5(1):31-49.
    [16]Sheikh AM, Barrett C, Villamizar N, et al. Right ventricular hypertrophy with early dysfunction:A proteomics study in a neonatal model [J]. J Thorac Cardiovasc Surg,2009,137(5):1146-1153.
    [17]Marouga R, David S, Hawkins E. The development of the dige system:2d fluorescence difference gel analysis technology [J]. Anal Bioanal Chem,2005,382(3):669-678.
    [18]Sheikh AM, Barrett C, Villamizar N, et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest [J]. J Thorac Cardiovasc Surg, 2006,132(4):820-828.
    [19]Friedman DB, Hill S, Keller JW, et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics,2004,4(3):793-811.
    [20]Kullo IJ, Cooper LT. Early identification of cardiovascular risk using genomics and proteomics [J]. Nat Rev Cardiol,2010,7(6):309-317.
    [21]de la Cuesta F, Alvarez-Llamas G, Gil-Dones F, et al. Tissue proteomics in atherosclerosis: Elucidating the molecular mechanisms of cardiovascular diseases [J]. Expert Rev Proteomics, 2009,6(4):395-409.
    [22]Dubois E, Fertin M, Burdese J, et al. Cardiovascular proteomics:Translational studies to develop novel biomarkers in heart failure and left ventricular remodeling [J]. Proteomics Clin Appl, 2011,5(1-2):57-66.
    [23]Gonzalez A, Lopez B, Beaumont J, et al. Cardiovascular translational medicine (ⅲ). Genomics and proteomics in heart failure research [J]. Rev Esp Cardiol,2009,62(3):305-313.
    [24]Lull ME, Freeman WM, Myers JL, et al. Plasma proteomics:A noninvasive window on pathology and pediatric cardiac surgery [J]. ASAIO J,2006,52(5):562-566.
    [25]Issaq HJ, Xiao Z, Veenstra TD. Serum and plasma proteomics [J]. Chem Rev, 2007,107(8):3601-3620.
    [26]Di Girolamo F, Righetti PG. Plasma proteomics for biomarker discovery:A study in blue [J]. Electrophoresis,2011,32(24):3638-3644.
    [27]Liao PC, Yu L, Kuo CC, et al. Proteomics analysis of plasma for potential biomarkers in the diagnosis of alzheimer's disease [J]. Proteomics Clin Appl,2007,1(5):506-512.
    [28]Blumenstein M, McMaster MT, Black MA, et al. A proteomic approach identifies early pregnancy biomarkers for preeclampsia:Novel linkages between a predisposition to preeclampsia and cardiovascular disease [J]. Proteomics,2009,9(11):2929-2945.
    [29]Care A, Catalucci D, Felicetti F, et al. Microrna-133 controls cardiac hypertrophy [J]. Nat Med, 2007,13(5):613-618.
    [30]Hullin R, Asmus F, Ludwig A, et al. Subunit expression of the cardiac 1-type calcium channel is differentially regulated in diastolic heart failure of the cardiac allograft [J]. Circulation, 1999,100(2):155-163.
    [31]Vittorini S, Storti S, Parri MS, et al. Serca2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects [J]. Mol Med,2007,13(1-2):105-111.
    [32]Schmittgen TD, Livak KJ. Analyzing real-time per data by the comparative c(t) method [J]. Nat Protoc,2008,3(6):1101-1108.
    [33]Miller CL, Oikawa M, Cai Y, et al. Role of ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy [J]. Circ Res,2009,105(10):956-964.
    [34]Petretto E, Sarwar R, Grieve I, et al. Integrated genomic approaches implicate osteoglycin (ogn) in the regulation of left ventricular mass [J]. Nat Genet,2008,40(5):546-552.
    [35]Lin Z, Murtaza I, Wang K, et al. Mir-23a functions downstream of nfatc3 to regulate cardiac hypertrophy [J]. Proc Natl Acad Sci U S A,2009,106(29):12103-12108.
    [36]Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy [J]. Int J Biochem Cell Biol,2008,40(10):2023-2039.
    [37]Izumo S, Nadal-Ginard B, Mahdavi V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload [J]. Proc Natl Acad Sci U S A,1988,85(2):339-343.
    [38]Petering DH, Stemmer KL, Lyman S, et al. Iron deficiency in growing male rats:A cause of development of cardiomyopathy [J]. Ann Nutr Metab,1990,34(4):232-243.
    [39]Medeiros DM, Beard JL. Dietary iron deficiency results in cardiac eccentric hypertrophy in rats [J]. Proc Soc Exp Biol Med,1998,218(4):370-375.
    [40]Dong F, Zhang X, Culver B, et al. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release:Involvement of nitric oxide synthase and protein tyrosine nitration [J]. Clin Sci (Lond),2005,109(3):277-286.
    [41]Sluhots'ka IB, Serediuk NM, Vakaliuk IP, et al. [clinical and hemodynamic characteristics of heart dysfunction in patients with iron deficiency anemia] [J]. Lik Sprava,2002,2):141-142.
    [42]Okonko DO, Anker SD. Anemia in chronic heart failure:Pathogenetic mechanisms [J]. J Card Fail, 2004,10(1 Suppl):S5-9.
    [43]Yang T, Dong WQ, Kuryshev YA, et al. Bimodal cardiac dysfunction in an animal model of iron overload [J]. J Lab Clin Med,2002,140(4):263-271.
    [44]Vongvatcharanon U, Udomuksorn W, Vongvatcharanon S, et al. Age-related changes in parvalbumin in the heart of female rats [J]. Acta Histochem,2010,112(1):96-100.
    [45]Vongvatcharanon U, Imsonpang S, Promwikorn W, et al. Up-regulation of parvalbumin expression in newborn and adult rat heart [J]. Acta Histochem,2006,108(6):447-454.
    [46]Arredondo M, Nunez MT. Iron and copper metabolism [J]. Mol Aspects Med,2005,26(4-5):313-327.
    [47]Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function [J]. Annu Rev Nutr, 2002,22(439-458.
    [48]Elsherif L, Ortines RV, Saari JT, et al. Congestive heart failure in copper-deficient mice [J]. Exp Biol Med (Maywood),2003,228(7):811-817.
    [49]Prohaska JR, Heller LJ. Calcium reintroduction decreases viability of cardiac myocytes from copper-deficient rats [J]. JNutr,1999,129(10):1842-1845.
    [50]Medeiros DM, Jiang Y, Klaahsen D, et al. Mitochondrial and sarcoplasmic protein changes in hearts from copper-deficient rats:Up-regulation of pgc-1 alpha transcript and protein as a cause for mitochondrial biogenesis in copper deficiency [J]. J Nutr Biochem,2009,20(10):823-830.
    [51]Steere AN, Miller BF, Roberts SE, et al. Ionic residues of human serum transferrin affect binding to the transferrin receptor and iron release [J]. Biochemistry,2012,51(2):686-694.
    [52]Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice [J]. Nat Med,2010,16(2):177-182.
    [53]Vaidya B, Vyas SP. Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer:Development and characterization [J]. J Drug Target,2012,20(4):372-380.
    [54]Silverman EK, Sandhaus RA. Clinical practice. Alphal-antitrypsin deficiency [J]. N Engl J Med, 2009,360(26):2749-2757.
    [55]Aldonyte R, Jansson L, Ljungberg O, et al. Polymerized alpha-antitrypsin is present on lung vascular endothelium. New insights into the biological significance of alpha-antitrypsin polymerization [J]. Histopathology,2004,45(6):587-592.
    [56]Carrell RW. Alpha 1-antitrypsin:Molecular pathology, leukocytes, and tissue damage [J]. J Clin Invest,1986,78(6):1427-1431.
    [57]Krivit W, Miller J, Nowicki M, et al. Contribution of monocyte-macrophage system to serum alpha 1-antitrypsin [J]. J Lab Clin Med,1988,112(4):437-442.
    [58]Graziadei I, Kaserbacher R, Braunsteiner H, et al. The hepatic acute-phase proteins alpha 1-antitrypsin and alpha 2-macroglobulin inhibit binding of transferrin to its receptor [J]. Biochem J, 1993,290 (Pt1)(109-113.
    [59]Graziadei I, Gaggl S, Kaserbacher R, et al. The acute-phase protein alpha 1-antitrypsin inhibits growth and proliferation of human early erythroid progenitor cells (burst-forming units-erythroid) and of human erythroleukemic cells (k562) in vitro by interfering with transferrin iron uptake [J]. Blood, 1994,83(1):260-268.
    [60]Weiss G, Graziadei I, Urbanek M, et al. Divergent effects of alpha 1-antitrypsin on the regulation of iron metabolism in human erythroleukaemic (k562) and myelomonocytic (thp-1) cells [J]. Biochem J, 1996,319 (Pt 3)(897-902.
    [61]Rotig A, Chantrel-Groussard K, Munnich A, et al. Expression study of genes involved in iron metabolism in human tissues [J]. Biochem Biophys Res Commun,2001,281(3):804-809.
    [62]Gao X, Qian M, Campian JL, et al. Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload [J]. Free Radic Biol Med,2010,49(3):401-407.
    [63]Lesnefsky EJ. Tissue iron overload and mechanisms of iron-catalyzed oxidative injury [J]. Adv Exp Med Biol,1994,366(129-146.
    [64]Wang J, Pantopoulos K. Regulation of cellular iron metabolism [J]. Biochem J,2011,434(3):365-381.
    [65]Hou TT, Johnson JD, Rall JA. Role of parvalbumin in relaxation of frog skeletal muscle [J]. Adv Exp Med Biol,1993,332(141-151; discussion 151-143.
    [66]Muntener M, Kaser L, Weber J, et al. Increase of skeletal muscle relaxation speed by direct injection of parvalbumin cdna [J]. Proc Natl Acad Sci U S A,1995,92(14):6504-6508.
    [67]Lannergren J, Elzinga G, Stienen GJ. Force relaxation, labile heat and parvalbumin content of skeletal muscle fibres of xenopus laevis [J]. J Physiol,1993,463(123-140.
    [68]Pauls TL, Cox JA, Berchtold MW. The ca2+(-)binding proteins parvalbumin and oncomodulin and their genes:New structural and functional findings [J]. Biochim Biophys Acta,1996,1306(1):39-54.
    [69]Coutu P, Hirsch JC, Szatkowski ML, et al. Targeting diastolic dysfunction by genetic engineering of calcium handling proteins [J]. Trends Cardiovasc Med,2003,13(2):63-67.
    [70]Vongvatcharanon U, Khomchatri K, Udomuksorn W, et al. Influence of aging and long-term swimming exercise on parvalbumin distribution in rat hearts [J]. Acta Histochem,2010,112(1):72-80.
    [71]Brandsma ME, Jevnikar AM, Ma S. Recombinant human transferrin:Beyond iron binding and transport [J]. Biotechnol Adv,2011,29(2):230-238.
    [72]Brandsma ME, Diao H, Wang X, et al. Plant-derived recombinant human serum transferrin demonstrates multiple functions [J]. Plant Biotechnol J,2010,8(4):489-505.
    [73]de Jong G, van Dijk JP, van Eijk HG. The biology of transferrin [J]. Clin Chim Acta, 1990,190(1-2):1-46.
    [74]Shapiro LE, Wagner N. Transferrin is an autocrine growth factor secreted by reuber h-35 cells in serum-free culture [J]. In Vitro Cell Dev Biol,1989,25(7):650-654.
    [75]Hayashi O, Noguchi S, Oyasu R. Transferrin as a growth factor for rat bladder carcinoma cells in culture [J]. Cancer Res,1987,47(17):4560-4564.
    [76]Gaston JS, Bacon PA, Strober S. Enhancement of human t-lymphocyte growth by human transferrin in the presence of fetal bovine serum [J]. Cell Immunol,1987,106(2):366-375.
    [77]Hoist N, Bertheussen K, Forsdahl F, et al. Optimization and simplification of culture conditions in human in vitro fertilization (ivf) and preembryo replacement by serum-free media [J]. J In Vitro Fert Embryo Transf,1990,7(1):47-53.
    [78]Suzuki A, Raya A, Kawakami Y, et al. Maintenance of embryonic stem cell pluripotency by nanog-mediated reversal of mesoderm specification [J]. Nat Clin Pract Cardiovasc Med,2006,3 Suppl 1(S114-122.
    [79]Liu Y, Sun J, Zhang J, et al. Effects of transferrin on the growth and proliferation of porcine hepatocytes:A comparison with epidermal growth factor and nicotinamide [J]. Chin Med J (Engl), 2003,116(8):1223-1227.
    [80]Denstman S, Hromchak R, Guan XP, et al. Identification of transferrin as a progression factor for ml-1 human myeloblastic leukemia cell differentiation [J]. J Biol Chem,1991,266(23):14873-14876.
    [81]Takahashi H, Takeishi Y, Seidler T, et al. Adenovirus-mediated overexpression of diacylglycerol kinase-zeta inhibits endothelin-1-induced cardiomyocyte hypertrophy [J]. Circulation, 2005,111(12):1510-1516.
    [82]Choukroun G, Hajjar R, Kyriakis JM, et al. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy [J]. J Clin Invest,1998,102(7):1311-1320.
    [83]Ingley E. Integrating novel signaling pathways involved in erythropoiesis [J]. IUBMB Life, 2012,64(5):402-410.
    [84]Wallace DF, Summerville L, Crampton EM, et al. Combined deletion of hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload [J]. Hepatology, 2009,50(6):1992-2000.
    [85]Sato Y, Yamauchi N, Takahashi M, et al. In vivo gene delivery to tumor cells by transferrin-streptavidin-DNA conjugate [J]. FASEB J,2000,14(13):2108-2118.
    [86]Bai Y, Ann DK, Shen WC. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent [J]. Proc Natl Acad Sci U S A,2005,102(20):7292-7296.
    [87]Beutler E, Gelbart T, Lee P, et al. Molecular characterization of a case of atransferrinemia [J]. Blood, 2000,96(13):4071-4074.
    [88]Hamman JH, Demana PH, Olivier El. Targeting receptors, transporters and site of absorption to improve oral drug delivery [J]. Drug Target Insights,2007,2(71-81.
    [1]Gilboa SM, Salemi JL, Nembhard WN, et al. Mortality resulting from congenital heart disease among children and adults in the united states, 1999 to 2006 [J]. Circulation, 2010,122(22):2254-2263.
    [2]Wang D, Liu YL, Lu XD, et al. Expression of ghrelin and insulin-like growth factor-1 in immature piglet model of chronic cyanotic congenital heart defects with decreased pulmonary blood flow [J]. Chin Med J (Engl), 2011,124( 15):2354-2360.
    [3]Hoffman JI, Kaplan S. The incidence of congenital heart disease [J]. J Am Coll Cardiol, 2002,39(12): 1890-1900.
    [4]Vittorini S, Storti S, Parri MS, et al. Serca2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects [J]. Mol Med, 2007,13(l-2):105-lll.
    [5]Nef HM, Mollmann H, Troidl C, et al. Abnormalities in intracellular ca2+ regulation contribute to the pathomechanism of tako-tsubo cardiomyopathy [J]. Eur Heart J, 2009,30(17):2155-2164.
    [6]Qi M, Shannon TR, Euler DE, et al. Downregulation of sarcoplasmic reticulum ca(2+)-atpase during progression of left ventricular hypertrophy [J]. Am J Physiol, 1997,272(5 Pt 2):H2416-2424.
    [7]Bartelds B, Borgdorff MA, Smit-van Oosten A, et al. Differential responses of the right ventricle to abnormal loading conditions in mice: Pressure vs. Volume load [J]. Eur J Heart Fail, 2011.
    [8]Wong K, Boheler KR, Bishop J, et al. Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features [J]. Cardiovasc Res, 1998,37(1):115-122.
    [9]Okayama H, Hamada M, Kawakami H, et al. Alterations in expression of sarcoplasmic reticulum gene in dahl rats during the transition from compensatory myocardial hypertrophy to heart failure [J]. J Hypertens, 1997,15(12 Pt 2):1767-1774.
    [10]Sharma S, Taegtmeyer H, Adrogue J, et al. Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy [J]. Am J Physiol Heart Circ Physiol, 2004,286(3):Hl 185-1192.
    [11]Bansal DD, Klein RM, Hausmann EH, et al. Secretion of cardiac plasminogen activator during hypoxia-induced right ventricular hypertrophy [J]. J Mol Cell Cardiol, 1997,29(11):3105-3114.
    [12]Ronkainen VP, Skoumal R, Tavi P. Hypoxia and hif-1 suppress serca2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements [J]. J Mol Cell Cardiol, 2011,50(6):1008-1016.
    [13]Kubo H, Margulies KB, Piacentino V, 3rd, et al. Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance [J]. Circulation,2001,104(9):1012-1018.
    [14]Chen J, Hu CF, Hou JH, et al. Epstein-barr virus encoded latent membrane protein 1 regulates mtor signaling pathway genes which predict poor prognosis of nasopharyngeal carcinoma [J]. J Transl Med, 2010,8(30.
    [15]Care A, Catalucci D, Felicetti F, et al. Microrna-133 controls cardiac hypertrophy [J]. Nat Med, 2007,13(5):613-618.
    [16]Wu YH, Wang J, Gong DX, et al. Effects of low-level laser irradiation on mesenchymal stem cell proliferation:A microarray analysis [J]. Lasers Med Sci,2011.
    [17]Jiang HK, Qiu GR, Li-Ling J, et al. Reduced actcl expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis [J]. Circ J,2010,74(11):2410-2418.
    [18]Hullin R, Asmus F, Ludwig A, et al. Subunit expression of the cardiac 1-type calcium channel is differentially regulated in diastolic heart failure of the cardiac allograft [J]. Circulation, 1999,100(2):155-163.
    [19]Schmittgen TD, Livak K.J. Analyzing real-time per data by the comparative c(t) method [J]. Nat Protoc,2008,3(6):1101-1108.
    [20]Sun C, Zhao X, Xu K, et al. Periostin:A promising target of therapeutical intervention for prostate cancer [J]. J Transl Med,2011,9(99.
    [21]Porrello ER, Mahmoud Al, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart [J]. Science,2011,331 (6020):1078-1080.
    [22]Boerth SR, Zimmer DB, Artman M. Steady-state mrna levels of the sarcolemmal na(+)-ca2+ exchanger peak near birth in developing rabbit and rat hearts [J]. Circ Res,1994,74(2):354-359.
    [23]Chen F, Ding S, Lee BS, et al. Sarcoplasmic reticulum ca(2+)atpase and cell contraction in developing rabbit heart [J]. J Mol Cell Cardiol,2000,32(5):745-755.
    [24]Lompre AM, Lambert F, Lakatta EG, et al. Expression of sarcoplasmic reticulum ca(2+)-atpase and calsequestrin genes in rat heart during ontogenic development and aging [J]. Circ Res, 1991,69(5):1380-1388.
    [25]Vetter R, Studer R, Reinecke H, et al. Reciprocal changes in the postnatal expression of the sarcolemmal na+-ca(2+)-exchanger and serca2 in rat heart [J]. J Mol Cell Cardiol,1995,27(8):1689-1701.
    [26]DiPaola NR, Sweet WE, Stull LB, et al. Beta-adrenergic receptors and calcium cycling proteins in non-failing, hypertrophied and failing human hearts:Transition from hypertrophy to failure [J]. J Mol Cell Cardiol,2001,33(6):1283-1295.
    [27]Apitz C, Webb GD, Redington AN. Tetralogy of fallot [J]. Lancet,2009,374(9699):1462-1471.
    [28]Kouchoukos NT, Blackstone EH, Doty DB, et al. Kirklin/barratt-boyes cardiac surgery [J]. Volume 1 3rd edition Salt Lake City:Churchill Livingstone;,2003:852.
    [29]Gupta SC, Varian KD, Bal NC, et al. Pulmonary artery banding alters the expression of ca2+ transport proteins in the right atrium in rabbits [J]. Am J Physiol Heart Circ Physiol,2009,296(6):H 1933-1939.
    [30]Song LS, Pi Y, Kim SJ, et al. Paradoxical cellular ca2+ signaling in severe but compensated canine left ventricular hypertrophy [J]. Circ Res,2005,97(5):457-464.
    [31]Wong K, Boheler KR, Petrou M, et al. Pharmacological modulation of pressure-overload cardiac hypertrophy:Changes in ventricular function, extracellular matrix, and gene expression [J]. Circulation, 1997,96(7):2239-2246.
    [32]Carvalho BM, Bassani RA, Franchini KG, et al. Enhanced calcium mobilization in rat ventricular myocytes during the onset of pressure overload-induced hypertrophy [J]. Am J Physiol Heart Circ Physiol, 2006,291(4):H1803-1813.
    [33]Diaz ME, Graham HK, Trafford AW. Enhanced sarcolemmal ca2+ efflux reduces sarcoplasmic reticulum ca2+ content and systolic ca2+ in cardiac hypertrophy [J]. Cardiovasc Res,2004,62(3):538-547.
    [34]Yeung HM, Kravtsov GM, Ng KM, et al. Chronic intermittent hypoxia alters ca2+ handling in rat cardiomyocytes by augmented na+/ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion [J]. Am J Physiol Cell Physiol,2007,292(6):C2046-2056.
    [35]Larsen KO, Sjaastad I, Svindland A, et al. Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice [J]. Am J Physiol Heart Circ Physiol, 2006,291(2):H507-516.
    [36]Mittmann C, Munstermann U, Weil J, et al. Analysis of gene expression patterns in small amounts of human ventricular myocardium by a multiplex rnase protection assay [J]. J Mol Med (Berl), 1998,76(2):133-140.
    [37]Bers DM. Cardiac excitation-contraction coupling [J]. Nature,2002,415(6868):198-205.
    [38]MacDougall LK, Jones LR, Cohen P. Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban [J]. Eur J Biochem,1991,196(3):725-734.
    [39]Aoyama H, Ikeda Y, Miyazaki Y, et al. Isoform-specific roles of protein phosphatase 1 catalytic subunits in sarcoplasmic reticulum-mediated ca(2+) cycling [J]. Cardiovasc Res,2011,89(1):79-88.
    [40]Boknik P, Fockenbrock M, Herzig S, et al. Protein phosphatase activity is increased in a rat model of long-term beta-adrenergic stimulation [J]. Naunyn Schmiedebergs Arch Pharmacol,2000,362(3):222-231.
    [41]Dragon S, Offenhauser N, Baumann R. Camp and in vivo hypoxia induce tob, ifrl, and fos expression in erythroid cells of the chick embryo [J]. Am J Physiol Regul Integr Comp Physiol, 2002,282(4):R1219-1226.
    [42]Dragon S, Carey C, Martin K, et al. Effect of high altitude and in vivo adenosine/(&bgr;)-adrenergic receptor blockade on atp and 2,3bpg concentrations in red blood cells of avian embryos [J]. J Exp Biol, 1999,202 (Pt 20)(2787-2795.
    [43]Vatner DE, Homcy CJ, Sit SP, et al. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines [J]. J Clin Invest,1984,73(5):1473-1482.
    [44]Carr AN, Schmidt AG, Suzuki Y, et al. Type 1 phosphatase, a negative regulator of cardiac function [J]. Mol Cell Biol,2002,22(12):4124-4135.
    [45]Pathak A, del Monte F, Zhao W, et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1 [J]. Circ Res,2005,96(7):756-766.
    [I]Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy [J]. Int J Biochem Cell Biol,2008,40(10):2023-2039.
    [2]Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy [J]. Pharmacol Res,2010,61(4):269-280.
    [3]Ho YL, Wu CC, Lin LC, et al. Assessment of the coronary artery disease and systolic dysfunction in hypertensive patients with the dobutamine-atropine stress echocardiography:Effect of the left ventricular hypertrophy [J]. Cardiology,1998,89(1):52-58.
    [4]Lorell BH, Carabello BA. Left ventricular hypertrophy:Pathogenesis, detection, and prognosis [J]. Circulation,2000,102(4):470-479.
    [5]Frey N, Olson EN. Cardiac hypertrophy:The good, the bad, and the ugly [J]. Annu Rev Physiol, 2003,65(45-79.
    [6]Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways [J]. Nat Rev Mol Cell Biol,2006,7(8):589-600.
    [7]Dorn GW,2nd, Robbins J, Sugden PH. Phenotyping hypertrophy:Eschew obfuscation [J]. Circ Res, 2003,92(11):1171-1175.
    [8]Aaronson KD, Sackner-Bernstein J. Risk of death associated with nesiritide in patients with acutely decompensated heart failure [J]. JAMA,2006,296(12):1465-1466.
    [9]Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure [J]. Circ Res,2003,92(2):139-150.
    [10]Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction [J]. N Engl J Med,2001,344(23):1750-1757.
    [11]Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study [J]. N Engl J Med,1990,322(22):1561-1566.
    [12]Wakatsuki T, Schlessinger J, Elson EL. The biochemical response of the heart to hypertension and exercise [J]. Trends Biochem Sci,2004,29(11):609-617.
    [13]Sadoshima J, Takahashi T, Jahn L, et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes [J]. Proc Natl Acad Sci U S A,1992,89(20):9905-9909.
    [14]Kajstura J, Zhang X, Liu Y, et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy [J]. Circulation,1995,92(8):2306-2317.
    [15]Mehra MR, Uber PA, Francis GS. Heart failure therapy at a crossroad:Are there limits to the neurohormonal model? [J]. J Am Coll Cardiol,2003,41 (9):1606-1610.
    [16]Passier R, Zeng H, Frey N, et al. Cam kinase signaling induces cardiac hypertrophy and activates the mef2 transcription factor in vivo [J]. J Clin Invest,2000,105(10):1395-1406.
    [17]Chien KR. Genomic circuits and the integrative biology of cardiac diseases [J]. Nature, 2000,407(6801):227-232.
    [18]Molkentin JD, Dorn GW,2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy [J]. Annu Rev Physiol,2001,63(391-426.
    [19]Vatner DE, Yang GP, Geng YJ, et al. Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac gsalpha [J]. Circ Res,2000,86(7):802-806.
    [20]Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways [J]. Curr Opin Cell Biol,1999,11 (2):211-218.
    [21]Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death [J]. Circ Res,2002,91(9):776-781.
    [22]Bueno OF, De Windt LJ, Tymitz KM, et al. The mekl-erkl/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice [J]. EMBO J,2000,19(23):6341-6350.
    [23]Clerk A, Fuller SJ, Michael A, et al. Stimulation of "stress-regulated" mitogen-activated protein kinases (stress-activated protein kinases/c-jun n-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses [J]. J Biol Chem,1998,273(13):7228-7234.
    [24]Purcell NH, Wilkins BJ, York A, et al. Genetic inhibition of cardiac erkl/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo [J]. Proc Natl Acad Sci U S A, 2007,104(35):14074-14079.
    [25]LaMorte VJ, Thorburn J, Absher D, et al. Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation [J]. J Biol Chem, 1994,269(18):13490-13496.
    [26]Wang Y. Signal transduction in cardiac hypertrophy--dissecting compensatory versus pathological pathways utilizing a transgenic approach [J]. Curr Opin Pharmacol,2001,1(2):134-140.
    [27]Paul A, Wilson S, Belham CM, et al. Stress-activated protein kinases:Activation, regulation and function [J]. Cell Signal,1997,9(6):403-410.
    [28]Davis FJ, Pillai JB, Gupta M, et al. Concurrent opposite effects of trichostatin a, an inhibitor of histone deacetylases, on expression of alpha-mhc and cardiac tubulins:Implication for gain in cardiac muscle contractility [J]. Am J Physiol Heart Circ Physiol,2005,288(3):H1477-1490.
    [29]Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress [J]. Annu Rev Physiol, 1993,55(55-75.
    [30]Soeki T, Kishimoto I, Okumura H, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction [J]. J Am Coll Cardiol, 2005,45(4):608-616.
    [31]De Windt LJ, Lim HW, Haq S, et al. Calcineurin promotes protein kinase c and c-jun nh2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways [J]. J Biol Chem, 2000,275(18):13571-13579.
    [32]Takeishi Y, Ping P, Bolli R, et al. Transgenic overexpression of constitutively active protein kinase c epsilon causes concentric cardiac hypertrophy [J]. Circ Res,2000,86(12):1218-1223.
    [33]Nemoto S, Sheng Z, Lin A. Opposing effects of jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy [J]. Mol Cell Biol,1998,18(6):3518-3526.
    [34]Wang D, Chang PS, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor [J]. Cell,2001,105(7):851-862.
    [35]Chesley A, Lundberg MS, Asai T, et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through g(ⅰ)-dependent coupling to phosphatidylinositol 3'-kinase [J]. Circ Res, 2000,87(12):1172-1179.
    [36]Zhu WZ, Zheng M, Koch WJ, et al. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes [J]. Proc Natl Acad Sci U S A, 2001,98(4):1607-1612.
    [37]Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase b signalling:Aktion on multiple fronts [J]. Trends Biochem Sci,2004,29(5):233-242.
    [38]McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(pll0alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy [J]. Proc Natl Acad Sci U S A, 2003,100(21):12355-12360.
    [39]Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo [J]. Proc Natl Acad Sci U S A,2002,99(2):907-912.
    [40]Oudit GY, Crackower MA, Eriksson U, et al. Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure [J]. Circulation,2003,108(17):2147-2152.
    [41]Ding B, Price RL, Borg TK, et al. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin [J]. Circ Res,1999,84(6):729-734.
    [42]Marian AJ. Beta-adrenergic receptors signaling and heart failure in mice, rabbits and humans [J]. J Mol Cell Cardiol,2006,41(1):11-13.
    [43]Arimoto T, Takeishi Y, Takahashi H, et al. Cardiac-specific overexpression of diacylglycerol kinase zeta prevents gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice [J]. Circulation,2006,113(1):60-66.
    [44]D'Angelo DD, Sakata Y, Lorenz JN, et al. Transgenic galphaq overexpression induces cardiac contractile failure in mice [J]. Proc Natl Acad Sci U S A,1997,94(15):8121-8126.
    [45]Engelhardt S, Hein L, Wiesmann F, et al. Progressive hypertrophy and heart failure in betal-adrenergic receptor transgenic mice [J]. Proc Natl Acad Sci U S A,1999,96(12):7059-7064.
    [46]Iwase M, Bishop SP, Uechi M, et al. Adverse effects of chronic endogenous sympathetic drive induced by cardiac gs alpha overexpression [J]. Circ Res,1996,78(4):517-524.
    [47]Paradis P, Dali-Youcef N, Paradis FW, et al. Overexpression of angiotensin ⅱ type ⅰ receptor in cardiomyocytes induces cardiac hypertrophy and remodeling [J]. Proc Natl Acad Sci U S A, 2000,97(2):931-936.
    [48]Harada K, Komuro I, Shiojima I, et al. Pressure overload induces cardiac hypertrophy in angiotensin ⅱ type 1a receptor knockout mice [J]. Circulation,1998,97(19):1952-1959.
    [49]Proud CG. Ras, pi3-kinase and mtor signaling in cardiac hypertrophy [J]. Cardiovasc Res, 2004,63(3):403-413.
    [50]Lezoualc'h F, Metrich M, Hmitou I, et al. Small gtp-binding proteins and their regulators in cardiac hypertrophy [J]. J Mol Cell Cardiol,2008,44(4):623-632.
    [51]Van Vliet PD, Burchell HB, Titus JL. Focal myocarditis associated with pheochromocytoma [J]. N Engl J Med,1966,274(20):1102-1108.
    [52]Harris IS, Zhang S, Treskov I, et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload [J]. Circulation,2004,110(6):718-723.
    [53]Ichida M, Finkel T. Ras regulates nfat3 activity in cardiac myocytes [J]. J Biol Chem, 2001,276(5):3524-3530.
    [54]Charron F, Tsimiklis G, Arcand M, et al. Tissue-specific gata factors are transcriptional effectors of the small gtpase rhoa [J]. Genes Dev, 2001,15(20):2702-2719.
    [55]Hoshijima M, Sah VP, Wang Y, et al. The low molecular weight gtpase rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of rho kinase [J]. J Biol Chem, 1998,273(13):7725-7730.
    [56]Mochly-Rosen D, Wu G, Hahn H, et al. Cardiotrophic effects of protein kinase c epsilon: Analysis by in vivo modulation of pkcepsilon translocation [J]. Circ Res, 2000,86(11):1173-1179.
    [57]Hirota H, Chen J, Betz UA, et al. Loss of a gpl30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress [J]. Cell, 1999,97(2): 189-198.
    [58]Pennica D, Shaw K.J, Swanson TA, et al. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gpl30 signaling complex [J]. J Biol Chem, 1995,270( 18): 10915-10922.
    [59]Jin H, Yang R, Keller GA, et al. In vivo effects of cardiotrophin-1 [J]. Cytokine, 1996,8( 12):920-926.
    [60]Sheng Z, Pennica D, Wood WI, et al. Cardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival [J]. Development, 1996,122(2):419-428.
    [61]Wollert KC, Taga T, Saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gpl30/leukemia inhibitory factor receptor-dependent pathways [J]. J Biol Chem, 1996,271 (16):9535-9545.
    [62]Craig R, Wagner M, McCardle T, et al. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of nf-kappa b [J]. J Biol Chem, 2001,276(40):37621 -37629.
    [63]Brar BK, Stephanou A, Pennica D, et al. Ct-1 mediated cardioprotection against ischaemic re-oxygenation injury is mediated by pi3 kinase, akt and mekl/2 pathways [J]. Cytokine, 2001,16(3):93-96.
    [64]Sheng Z, Knowlton K, Chen J, et al. Cardiotrophin 1 (ct-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream ct-1 signals for myocardial cell hypertrophy [J]. J Biol Chem, 1997,272(9):5783-5791.
    [65]Ishikawa M, Saito Y, Miyamoto Y, et al. Cdna cloning of rat cardiotrophin-1 (ct-1): Augmented expression of ct-1 gene in ventricle of genetically hypertensive rats [J]. Biochem Biophys Res Commun, 1996,219(2):377-381.
    [66]Pan J, Fukuda K, Kodama H, et al. Involvement of gpl30-mediated signaling in pressure overload-induced activation of the jak/stat pathway in rodent heart [J]. Heart Vessels, 1998,13(4):199-208.
    [67]Lopez B, Gonzalez A, Lasarte JJ, et al. Is plasma cardiotrophin-1 a marker of hypertensive heart disease? [J]. J Hypertens, 2005,23(3):625-632.
    [68]Talwar S, Squire IB, Downie PF, et al. Plasma n terminal pro-brain natriuretic peptide and cardiotrophin 1 are raised in unstable angina [J]. Heart, 2000,84(4):421-424.
    [69]Talwar S, Squire IB, Downie PF, et al. Elevated circulating cardiotrophin-1 in heart failure: Relationship with parameters of left ventricular systolic dysfunction [J]. Clin Sci (Lond), 2000,99(l):83-88.
    [70]Talwar S, Squire IB, O'Brien R J, et al. Plasma cardiotrophin-1 following acute myocardial infarction: Relationship with left ventricular systolic dysfunction [J]. Clin Sci (Lond), 2002,102(1):9-14.
    [71]Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy [J]. J Am Coll Cardiol, 2001,38(5):1485-1490.
    [72]Tsutamoto T, Asai S, Tanaka T, et al. Plasma level of cardiotrophin-1 as a prognostic predictor in patients with chronic heart failure [J]. Eur J Heart Fail, 2007,9(10):1032-1037.
    [73]Zolk O, Ng LL, O'Brien RJ, et al. Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance [J]. Circulation, 2002,106(12):1442-1446.
    [74]Gonzalez A, Ravassa S, Loperena 1, et al. Association of depressed cardiac gp130-mediated antiapoptotic pathways with stimulated cardiomyocyte apoptosis in hypertensive patients with heart failure [J]. J Hypertens,2007,25(10):2148-2157.
    [75]Funamoto M, Fujio Y, Kunisada K, et al. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes [J]. J Biol Chem,2000,275(14):10561-10566.
    [76]Fukuzawa J, Booz GW, Hunt RA, et al. Cardiotrophin-1 increases angiotensinogen mrna in rat cardiac myocytes through stat3:An autocrine loop for hypertrophy [J]. Hypertension,2000,35(6):1191-1196.
    [77]Sano M, Fukuda K, Kodama H, et al. Interleukin-6 family of cytokines mediate angiotensin ii-induced cardiac hypertrophy in rodent cardiomyocytes [J]. J Biol Chem,2000,275(38):29717-29723.
    [78]Kodama H, Fukuda K, Pan J, et al. Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, activates the jak/stat pathway in rat cardiomyocytes [J]. Circ Res,1997,81(5):656-663.
    [79]Kunisada K, Hirota H, Fujio Y, et al. Activation of jak-stat and map kinases by leukemia inhibitory factor through gp130 in cardiac myocytes [J]. Circulation,1996,94(10):2626-2632.
    [80]Villegas S, Villarreal FJ, Dillmann WH. Leukemia inhibitory factor and interleukin-6 downregulate sarcoplasmic reticulum ca2+atpase (serca2) in cardiac myocytes [J]. Basic Res Cardiol,2000,95(1):47-54.
    [81]Takahashi E, Fukuda K, Miyoshi S, et al. Leukemia inhibitory factor activates cardiac 1-type ca2+ channels via phosphorylation of serine 1829 in the rabbit cavl.2 subunit [J]. Circ Res, 2004,94(9):1242-1248.
    [82]Kato T, Sano M, Miyoshi S, et al. Calmodulin kinases ii and iv and calcineurin are involved in leukemia inhibitory factor-induced cardiac hypertrophy in rats [J]. Circ Res,2000,87(10):937-945.
    [83]Kunisada K, Tone E, Fujio Y, et al. Activation of gp130 transduces hypertrophic signals via stat3 in cardiac myocytes [J]. Circulation,1998,98(4):346-352.
    [84]Eiken HG, Oie E, Damas JK, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure [J]. Eur J Clin Invest, 2001,31(5):389-397.
    [85]Janssens S, Pokreisz P, Schoonjans L, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction [J]. Circ Res,2004,94(9):1256-1262.
    [86]Stephanou A. Role of stat-1 and stat-3 in ischaemia/reperfusion injury [J]. J Cell Mol Med, 2004,8(4):519-525.
    [87]Harada M, Qin Y, Takano H, et al. G-csf prevents cardiac remodeling after myocardial infarction by activating the jak-stat pathway in cardiomyocytes [J]."Nat Med,2005,11(3):305-311.
    [88]Wang TL, Yang YH, Chang H, et al. Angiotensin ii signals mechanical stretch-induced cardiac matrix metalloproteinase expression via jak-stat pathway [J]. J Mol Cell Cardiol,2004,37(3):785-794.
    [89]Mascareno E, Siddiqui MA. The role of jak/stat signaling in heart tissue renin-angiotensin system [J]. Mol Cell Biochem,2000,212(1-2):171-175.
    [90]Yasukawa H, Hoshijima M, Gu Y, et al. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp 130-mediated cardiac myocyte hypertrophy and survival pathways [J]. J Clin Invest,2001,108(10):1459-1467.
    [91]Kunisada K, Negoro S, Tone E, et al. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy [J]. Proc Natl Acad Sci U S A,2000,97(1):315-319.
    [92]Berry MF, Pirolli TJ, Jayasankar V, et al. Targeted overexpression of leukemia inhibitory factor to preserve myocardium in a rat model of postinfarction heart failure [J]. J Thorac Cardiovasc Surg, 2004,128(6):866-875.
    [93]Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction [J]. Circulation, 2003,108(6):748-753.
    [94]Ritter O, Hack S, Schuh K, et al. Calcineurin in human heart hypertrophy [J]. Circulation, 2002,105(19):2265-2269.
    [95]Hornig B, Arakawa N, Kohler C, et al. Vitamin c improves endothelial function of conduit arteries in patients with chronic heart failure [J]. Circulation,1998,97(4):363-368.
    [96]Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy [J]. Cell,1998,93(2):215-228.
    [97]Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy. Where have we been? Where are we going? [J]. J Physiol,2002,541(Pt 1):1-8.
    [98]Molkentin JD. Calcineurin and beyond:Cardiac hypertrophic signaling [J]. Circ Res, 2000,87(9):731-738.
    [99]Wilkins BJ, Dai YS, Bueno OF, et al. Calcineurin/nfat coupling participates in pathological, but not physiological, cardiac hypertrophy [J]. Circ Res,2004,94(1):110-118.
    [100]Pereira AH, Clemente CF, Cardoso AC, et al. Mef2c silencing attenuates load-induced left ventricular hypertrophy by modulating mtor/s6k pathway in mice [J]. PLoS One,2009,4(12):e8472.
    [101]Lattion AL, Michel JB, Arnauld E, et al. Myocardial recruitment during anf mrna increase with volume overload in the rat [J]. Am J Physiol,1986,251(5 Pt 2):H890-896.
    [102]Obata K, Nagata K, Iwase M, et al. Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway [J]. Biochem Biophys Res Commun,2005,338(2):1299-1305.
    [103]Metrich M, Berthouze M, Morel E, et al. Role of the camp-binding protein epac in cardiovascular physiology and pathophysiology [J]. Pflugers Arch,2010,459(4):535-546.
    [104]Fiedler B, Wollert K.C. Interference of antihypertrophic molecules and signaling pathways with the ca2+-calcineurin-nfat cascade in cardiac myocytes [J]. Cardiovasc Res,2004,63(3):450-457.
    [105]Mendelsohn ME. Viagra:Now mending hearts [J]. Nat Med,2005,11(2):115-116. [106] Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide, atrial natriuretic peptide, and cyclic gmp inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts [J]. J Clin Invest,1998,101(4):812-818.
    [107]Rosenkranz AC, Woods RL, Dusting GJ, et al. Antihypertrophic actions of the natriuretic peptides in adult rat cardiomyocytes:Importance of cyclic gmp [J]. Cardiovasc Res,2003,57(2):515-522.
    [108]Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic gmp phosphodiesterase 5a prevents and reverses cardiac hypertrophy [J]. Nat Med,2005,11(2):214-222.
    [109]Wollert K.C, Fiedler B, Gambaryan S, et al. Gene transfer of cgmp-dependent protein kinase i enhances the antihypertrophic effects of nitric oxide in cardiomyocytes [J]. Hypertension, 2002,39(1):87-92.
    [110]Fiedler B, Lohmann SM, Smolenski A, et al. Inhibition of calcineurin-nfat hypertrophy signaling by cgmp-dependent protein kinase type i in cardiac myocytes [J]. Proc Natl Acad Sci U S A, 2002,99(17):11363-11368.
    [111]Meguro T, Hong C, Asai K, et al. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure [J]. Circ Res,1999,84(6):735-740.
    [112]McKinsey TA, Zhang CL, Olson EN. Mef2:A calcium-dependent regulator of cell division, differentiation and death [J]. Trends Biochem Sci,2002,27(1):40-47.
    [113]Youn HD, Chatila TA, Liu JO. Integration of calcineurin and inef2 signals by the coactivator p300 during t-cell apoptosis [J]. EMBO J,2000,19(16):4323-4331.
    [114]Bohm M, Gierschik P, Knorr A, et al. Cardiac adenylyl cyclase, beta-adrenergic receptors, and g proteins in salt-sensitive hypertension [J]. Hypertension,1993,22(5):715-727.
    [115]Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes [J]. J Clin Invest,1990,85(2):507-514.
    [116]Cummins P. Fibroblast and transforming growth factor expression in the cardiac myocyte [J]. Cardiovasc Res,1993,27(7):1150-1154.
    [117]Long CS, Henrich CJ, Simpson PC. A growth factor for cardiac myocytes is produced by cardiac nonmyocytes [J]. Cell Regul,1991,2(12):1081-1095.
    [118]Ren J, Samson WK, Sowers JR. Insulin-like growth factor i as a cardiac hormone:Physiological and pathophysiological implications in heart disease [J]. J Mol Cell Cardiol,1999,31(11):2049-2061.
    [119]Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in tgf-beta superfamily signaling [J]. FASEB J,1999,13(15):2105-2124.
    [120]Massague J. How cells read tgf-beta signals [J]. Nat Rev Mol Cell Biol,2000,1(3):169-178.
    [121]Xenophontos XP, Watson PA, Chua BH, et al. Increased cyclic amp content accelerates protein synthesis in rat heart [J]. Circ Res,1989,65(3):647-656.
    [122]Chua BH, Russo LA, Gordon EE, et al. Faster ribosome synthesis induced by elevated aortic pressure in rat heart [J]. Am J Physiol,1987,252(3 Pt 1):C323-327.
    [123]Kent RL, Hoober JK., Cooper Gt. Load responsiveness of protein synthesis in adult mammalian myocardium:Role of cardiac deformation linked to sodium influx [J]. Circ Res,1989,64(1):74-85.
    [124]Bustamante JO, Ruknudin A, Sachs F. Stretch-activated channels in heart cells:Relevance to cardiac hypertrophy [J]. J Cardiovasc Pharmacol,1991,17 Suppl 2(S110-113.
    [125]Dhand R, Hara K, Hiles 1, et al. Pi 3-kinase:Structural and functional analysis of intersubunit interactions [J]. EMBO J,1994,13(3):511-521.
    [126]Delaughter MC, Taffet GE, Fiorotto ML, et al. Local insulin-like growth factor i expression induces physiologic, then pathologic, cardiac hypertrophy in transgenic mice [J]. FASEB J, 1999,13(14):1923-1929.
    [127]Spirito P, Fu YM, Yu ZX, et al. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart [J]. Circulation,1991,84(1):322-332.
    [128]Shiota N, Rysa J, Kovanen PT, et al. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease [J]. J Hypertens,2003,21(10):1935-1944.
    [129]Barnes PJ, Karin M. Nuclear factor-kappab:A pivotal transcription factor in chronic inflammatory diseases [J].N Engl J Med,1997,336(15):1066-1071.
    [130]Frantz S, Fraccarollo D, Wagner H, et al. Sustained activation of nuclear factor kappa b and activator protein 1 in chronic heart failure [J]. Cardiovasc Res,2003,57(3):749-756.
    [131]Luedde M, Katus HA, Frey N. Novel molecular targets in the treatment of cardiac hypertrophy [J]. Recent Pat Cardiovasc Drug Discov,2006,1(1):1-20.
    [132]Takano H, Komuro I, Zou Y, et al. Activation of p70 s6 protein kinase is necessary for angiotensin ii-induced hypertrophy in neonatal rat cardiac myocytes [J]. FEBS Lett,1996,379(3):255-259.
    [133]Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection [J]. Cardiovasc Res,2006,69(2):318-328.
    [134]Schwartz JC, Gros C, Lecomte JM, et al. Enkephalinase (ec 3.4.24.11) inhibitors:Protection of endogenous anf against inactivation and potential therapeutic applications [J]. Life Sci, 1990,47(15):1279-1297.
    [135]Gardner DG, Chen S, Glenn DJ, et al. Molecular biology of the natriuretic peptide system: Implications for physiology and hypertension [J]. Hypertension,2007,49(3):419-426.
    [136]Hum D, Besnard S, Sanchez R, et al. Characterization of a cgmp-response element in the guanylyl cyclase/natriuretic peptide receptor a gene promoter [J]. Hypertension,2004,43(6):1270-1278.
    [137]Gardner DG. Natriuretic peptides:Markers or modulators of cardiac hypertrophy? [J]. Trends Endocrinol Metab,2003,14(9):411-416.
    [138]Richards AM. Natriuretic peptides:Update on peptide release, bioactivity, and clinical use [J]. Hypertension,2007,50(1):25-30.
    [139]Wang D, Oparil S, Feng JA, et al. Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse [J]. Hypertension,2003,42(1):88-95.
    [140]Mori T, Chen YF, Feng JA, et al. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse [J]. Cardiovasc Res,2004,61(4):771-779.
    [141]Feng JA, Perry G, Mori T, et al. Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice [J]. Clin Exp Pharmacol Physiol,2003,30(5-6):343-349.
    [142]Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide [J]. Proc Natl Acad Sci U S A,2000,97(8):4239-4244.
    [143]Lopez MJ, Garbers DL, Kuhn M. The guanylyl cyclase-deficient mouse defines differential pathways of natriuretic peptide signaling [J]. J Biol Chem,1997,272(37):23064-23068.
    [144]Knowles JW, Esposito G, Mao L, et al. Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor a-deficient mice [J]. J Clin Invest,2001,107(8):975-984.
    [145]Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-a) inhibits cardiac ventricular myocyte hypertrophy [J]. Proc Natl Acad Sci U S A,2001,98(5):2703-2706.
    [146]Oliver PM, Fox JE, Kim R, et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor a [J]. Proc Natl Acad Sci U S A,1997,94(26):14730-14735.
    [147]Holtwick R, van Eickels M, Skryabin BV, et al. Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-a [J].J Clin Invest,2003,111(9):1399-1407.
    [148]Rubattu S, Bigatti G, Evangelista A, et al. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension [J]. J Am Coll Cardiol,2006,48(3):499-505.
    [149]Ahluwalia A, Hobbs AJ. Endothelium-derived c-type natriuretic peptide:More than just a hyperpolarizing factor [J]. Trends Pharmacol Sci,2005,26(3):162-167.
    [150]Tokudome T, Horio T, Soeki T, et al. Inhibitory effect of c-type natriuretic peptide (cnp) on cultured cardiac myocyte hypertrophy:Interference between cnp and endothelin-1 signaling pathways [J]. Endocrinology,2004,145(5):2131-2140.
    [151]Wang Y, de Waard MC, Sterner-Kock A, et al. Cardiomyocyte-restricted over-expression of c-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice [J]. Eur J Heart Fail,2007,9(6-7):548-557.
    [152]Langenickel TH, Buttgereit J, Pagel-Langenickel I, et al. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor b [J]. Proc Natl Acad Sci U S A, 2006,103(12):4735-4740.
    [153]Del Ry S, Passino C, Maltinti M, et al. C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity [J]. Eur J Heart Fail, 2005,7(7):1145-1148.
    [154]Kalra PR, Clague JR, Bolger AP, et al. Myocardial production of c-type natriuretic peptide in chronic heart failure [J]. Circulation,2003,107(4):571-573.
    [155]Sharma GD, Nguyen HT, Antonov AS, et al. Expression of atrial natriuretic peptide receptor-a antagonizes the mitogen-activated protein kinases (erk2 and p38mapk) in cultured human vascular smooth muscle cells [J]. Mol Cell Biochem,2002,233(1-2):165-173.
    [156]Kilic A, Velic A, De Windt LJ, et al. Enhanced activity of the myocardial na+/h+ exchanger nhe-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice [J]. Circulation, 2005,112(15):2307-2317.
    [157]Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide study group [J]. N Engl J Med, 2000,343(4):246-253.
    [158]Mentzer RM, Jr., Oz MC, Sladen RN, et al. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery:The napa trial [J]. J Am Coll Cardiol, 2007,49(6):716-726.
    [159]Moe GW. B-type natriuretic peptide in heart failure [J]. Curr Opin Cardiol,2006,21(3):208-214.
    [160]McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure:Analysis from breathing not properly (bnp) multinational study [J]. Circulation,2002,106(4):416-422.
    [161]de Denus S, Pharand C, Williamson DR. Brain natriuretic peptide in the management of heart failure:The versatile neurohormone [J]. Chest,2004,125(2):652-668.
    [162]Koglin J, Pehlivanli S, Schwaiblmair M, et al. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure [J]. J Am Coll Cardiol,2001,38(7):1934-1941.
    [163]Yamamoto K, Ohki R, Lee RT, et al. Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes [J]. Circulation,2001,104(14):1670-1675.
    [164]Planavila A, Laguna JC, Vazquez-Carrera M. Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa b activation [J]. Biochim Biophys Acta,2005,1687(1-3):76-83.
    [165]Young ME, Laws FA, Goodwin GW, et al. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart [J]. J Biol Chem, 2001,276(48):44390-44395.
    [166]Czubryt MP, McAnally J, Fishman GI, et al. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (pgc-1 alpha) and mitochondrial function by mef2 and hdac5 [J]. Proc Natl Acad Sci U S A,2003,100(4):1711-1716.
    [167]Moncada S, Palmer RM, Higgs EA. Nitric oxide:Physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev,1991,43(2):109-142.
    [168]Horn GJ, Grant SK, Wolfe G, et al. Lipopolysaccharide-induced hypotension and vascular hyporeactivity in the rat:Tissue analysis of nitric oxide synthase mrna and protein expression in the presence and absence of dexamethasone, ng-monomethyl-1-arginine or indomethacin [J]. J Pharmacol Exp Ther,1995,272(1):452-459.
    [169]Vidal MJ, Romero JC, Vanhoutte PM. Endothelium-derived relaxing factor inhibits renin release [J]. Eur J Pharmacol,1988,149(3):401-402.
    [170]Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells [J]. J Clin Invest, 1989,83(5): 1774-1777.
    [171]Barrett ML, Willis AL, Vane JR. Inhibition of platelet-derived mitogen release by nitric oxide (edrf) [J]. Agents Actions, 1989,27(3-4):488-491.
    [172]Baker KM, Singer HA, Aceto JF. Angiotensin ⅱ receptor-mediated stimulation of cytosolic-free calcium and inositol phosphates in chick myocytes [J]. J Pharmacol Exp Ther, 1989,251(2):578-585.
    [173]Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin ⅱ-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kd s6 kinase in angiotensin ⅱ-induced cardiac hypertrophy [J]. Circ Res, 1995,77(6): 1040-1052.
    [174]Yamazaki T, Komuro I, Shiojima I, et al. The molecular mechanism of cardiac hypertrophy and failure [J]. Ann N Y Acad Sci, 1999,874(38-48.
    [175]Mallat Z, Philip I, Lebret M, et al. Elevated levels of 8-iso-prostaglandin f2alpha in pericardial fluid of patients with heart failure: A potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure [J]. Circulation, 1998,97(16): 1536-1539.
    [176]Maack C, Kartes T, Kilter H, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of racl-gtpase and represents a target for statin treatment [J]. Circulation, 2003,108(13):1567-1574.
    [177]Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial nadph oxidase activity in human heart failure [J]. J Am Coll Cardiol, 2003,41(12):2164-2171.
    [178]Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy [J]. Circulation, 2001,104(20):2407-2411.
    [179]Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian micrornas on mrna repression and evolution [J]. Science, 2005,310(5755):1817-1821.
    [180]Ambros V. Microrna pathways in flies and worms: Growth, death, fat, stress, and timing [J]. Cell, 2003,113(6):673-676.
    [181]Liu N, Olson EN. Microrna regulatory networks in cardiovascular development [J]. Dev Cell, 2010,18(4):510-525.
    [182]Cullen BR. Transcription and processing of human microrna precursors [J]. Mol Cell, 2004,16(6):861-865.
    [183]Pasquinelli AE, Hunter S, Bracht J. Micrornas: A developing story [J]. Curr Opin Genet Dev, 2005,15(2):200-205.
    [184]Lee Y, Jeon K, Lee JT, et al. Microrna maturation: Stepwise processing and subcellular localization [J]. EMBO J, 2002,21 (17):4663-4670.
    [185]Lee Y, Ahn C, Han J, et al. The nuclear rnase ⅲ drosha initiates microrna processing [J]. Nature, 2003,425(6956):415-419.
    [186]Bartel DP. Micrornas: Genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    [187]Small EM, Frost RJ, Olson EN. Micrornas add a new dimension to cardiovascular disease [J]. Circulation, 2010,121(8):1022-1032.
    [188]Scalbert E, Bril A. Implication of micrornas in the cardiovascular system [J]. Curr Opin Pharmacol, 2008,8(2):181-188.
    [189]Valencia-Sanchez MA, Liu J, Hannon GJ, et al. Control of translation and mrna degradation by mirnas and sirnas [J]. Genes Dev, 2006,20(5):515-524.
    [190]Bauersachs J, Thum T. Micrornas in the broken heart [J]. Eur J Clin Invest, 2007,37(11):829-833.
    [191]Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development [J]. Nat Genet,2003,35(3):215-217.
    [192]Krek A, Grun D, Poy MN, et al. Combinatorial microrna target predictions [J]. Nat Genet, 2005,37(5):495-500.
    [193]van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive micrornas that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci U S A,2006,103(48):18255-18260.
    [194]Thum T, Galuppo P, Wolf C, et al. Micrornas in the human heart:A clue to fetal gene reprogramming in heart failure [J]. Circulation,2007,116(3):258-267.
    [195]Cheng Y, Ji R, Yue J, et al. Micrornas are aberrantly expressed in hypertrophic heart:Do they play a role in cardiac hypertrophy? [J]. Am J Pathol,2007,170(6):1831-1840.
    [196]Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking mirna-1-2 [J]. Cell,2007,129(2):303-317.
    [197]Giraldez AJ, Cinalli RM, Glasner ME, et al. Micrornas regulate brain morphogenesis in zebrafish [J]. Science,2005,308(5723):833-838.
    [198]Sayed D, Hong C, Chen IY, et al. Micrornas play an essential role in the development of cardiac hypertrophy [J]. Circ Res,2007,100(3):416-424.
    [199]Care A, Catalucci D, Felicetti F, et al. Microrna-133 controls cardiac hypertrophy [J]. Nat Med, 2007,13(5):613-618.
    [200]van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microrna [J]. Science,2007,316(5824):575-579.
    [201]Callis TE, Wang DZ. Taking micrornas to heart [J]. Trends Mol Med,2008,14(6):254-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700