P2X7受体在全脑缺血复灌损伤中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     缺血性脑血管病危害人类健康,目前已经成为我国居民的第一大死亡原因。随着人口老龄化加剧,缺血性脑血管病的发病率逐年增高。在心脏骤停、溺水以及手术失血过多导致的严重低血压等急诊事件中,全脑缺血是最常见并且最严重的并发症。经常遗留严重的神经功能缺损。目前,治疗全脑缺血最有效的方法是尽快的恢复大脑的血供,临床上常采用药物或者介入手段改善脑部循环,但在大脑灌注恢复过程中钙超载、氧自由基过饱和等产生的兴奋性毒性作用反而可能会进一步加重脑组织的损伤,称为脑缺血再灌注损伤(Cerebral ischemia/reperfusion injury, cerebral I/R injury)。所以目前对于治疗脑缺血的研究不应只局限在如何恢复和保留脑部血流,也应该针对缺血再灌注损伤的机制采取措施。
     脑缺血后病变以神经元损伤和脑组织炎症为主要特点,其中脑组织炎症又是以星形胶质细胞、小胶质细胞的激活和细胞毒性物质(如细胞因子、基质金属蛋白酶、一氧化氮和活性氧物质等)的释放为特点,这些毒性物质可以导致血脑屏障破坏和神经元死亡,从而产生更多的细胞毒性物质激活更多的免疫细胞,形成恶性循环,加重炎症反应和脑损伤。因此针对脑缺血再灌注损伤后炎症机制的关键环节加以干预可能成为治疗脑缺血再灌注损伤的有效途径。
     P2X7受体(P2X7receptor, P2X7R)是一种嘌呤受体,首先在巨噬细胞中被发现。在中枢神经系统(central nervous system,CNS)中主要表达在小胶质细胞中,P2X7R可以被较高浓度的ATP激活继而导致小胶质细胞的活化、活性氧物质释放以及一些前炎症因子如白介素-1β (Interleukin-1β, IL-1β),肿瘤坏死因子-α (Tumor necrosis factor-α, TNF-α)和白介素-6(Interleukin-6, IL-6)等的释放。近年来,研究提示P2X7R参与了多种中枢神经系统疾病的发生和发展如阿尔兹海默病(Alzheimer's disease, AD)、癫痫、脊髓损伤以及多发性硬化等。应用P2X7R阻断剂可以减轻这些疾病模型中的炎症反应。但P2X7R是否参与脑缺血再灌注损伤,是否调节脑缺血再灌注损伤后的炎症反应以及其机制,有关的研究较少,并且存在争议,值得深入探索。
     研究目的:
     本文拟观察P2X7R对脑缺血再灌注损伤诱导的神经元死亡及炎症反应的影响,做以下3个方面的研究:
     (1)制备大鼠全脑缺血再灌注损伤模型,观察全脑缺血再灌注损伤敏感部位海马CA1区P2X7R的表达分布变化。
     (2)应用P2X7R阻断剂干预,观察P2X7R在全脑缺血再灌注损伤模型中的作用及其对炎症水平的调节。
     (3)探索P2X7R与NADPH氧化酶(NADPH Oxidiase, NOX)之间的相互作用以及其对炎症水平的调节。
     第一部分P2X7R在大鼠全脑缺血再灌注损伤模型中的表达变化
     研究方法:取体重280g-360g的成年SD雄性大鼠,应用四血管法(four-vessel occlusion,4-VO)建立全脑缺血再灌注损伤模型,缺血时间20分钟,使用激光多普勒脑血流仪检测缺血前10分钟到复灌后90分钟内大鼠区域脑血流(regional cerebral blood flow, rCBF)的变化情况,再灌注时间选取6小时,1天,3天,7天,14天。在上述时间点进行HE染色观察海马CA1区神经元死亡;免疫组织化学法观察星形胶质细胞(GFAP+)、小胶质细胞(Iba-1+)在海马CA1区的分布变化,免疫组织化学法和、Western blot法观察P2X7R在在海马CA1区的表达、分布变化。
     结果:四血管法全脑缺血可以有效降低大鼠区域脑血流至20%以下,20min缺血复灌损伤7天后海马CA1区神经元90%发生死亡,随着复灌时间的延长星形胶质细胞及小胶质细胞增生活化明显增多。缺血复灌损伤后P2X7R在海马CA1区表达明显增加,主要表达在小胶质细胞样细胞中。
     结论:P2X7R参与全脑缺血再灌注损伤,并与损伤后炎症有关。
     第二部分P2X7R抑制剂通过抑制炎症反应减轻全脑全脑缺血再灌注损伤
     研究方法:在全脑缺血再灌注损伤前分别给予大鼠生理盐水(Saline); P2X7R阻断剂BBG (Brilliant blue G)、OxATP (adenosine5'-triphosphate-2',3'-dialdehyde)以及A-438079侧脑室注射,统计7天动物死亡率,HE染色观察海马复灌7天时CA1区神经元死亡,TUNEL染色观察复灌3天时CA1区神经元DNA断裂,Morris水迷宫检测大鼠学习记忆能力,免疫组织化学法检测复灌3天时胶质细胞增生,使用RT-PCR方法检测三种细胞因子IL-1B,TNF-a和IL-6复灌3天时在海马中的表达变化,使用丙二醛(Malondialdehyde, MDA)试剂盒检测复灌3天时海马内脂质过氧化水平。
     结果:三种P2X7R阻断剂均有剂量依赖的脑缺血再灌注损伤保护作用,与生理盐水组相比,阻断剂组大鼠生存率增加;Morris水迷宫显示BBG和A-438079组大鼠训练第二天后逃避潜伏期较生理盐水组明显缩短,OxATP组大鼠训练4天后逃避潜伏期较生理盐水组明显缩短,空间探索实验中生理盐水组在平台象限逗留时间较三种阻断剂组均缩短;HE染色提示阻断剂组大鼠海马CA1区神经元死亡率较生理盐水组减少,以BBG和A-438079两种抑制剂效果更为明显;三种阻断剂组大鼠CA1区神经元DNA断裂均减少;星形胶质细胞和小胶质细胞的激活以及细胞因子表达也较生理盐水组下降,A-438079组大鼠海马中MDA含量较生理盐水组下降。
     结论:阻断P2X7R通过抑脑内炎症反应减轻全脑缺血再灌注损伤。
     第三部分P2X7R-NOX参与调节全脑缺血再灌注损伤后炎症反应
     研究方法:将大鼠分为假手术(Shaml, Sham2)组、全脑缺血复灌(Saline, Vehicle)组、侧脑室注射A-438079组以及腹腔注射NOX抑制剂Apocynin组。HE染色观察海马CA1区神经元存活;western bolt方法观察NOX的两种亚基gp91phox以及p47phox蛋白表达变化;Lucigenin化学发光法检测海马内NOX活性;免疫组织化学法检测复灌3天时胶质细胞增生。
     结果:全脑缺血再灌注损伤后脑内NOX被激活,表现在NOX酶活性增强和gp91phox, p47phox蛋白表达升高以及p47phox蛋白的向膜转位。A-438079和apocynin预处理均可以抑制全脑缺血再灌注损伤诱导的NOX激活。Apocynin可以减少全脑缺血再灌注损伤诱导的海马CA1区神经元死亡和星形胶质细胞、小胶质细胞的增生活化。
     结论:P2X7R-NOX参与全脑缺血再灌注损伤以及损伤后炎症调节。
Background
     Transient global cerebral ischemia is one of the major complications of clinical emergencies such as cardiac arrest, drowning or severe systemic hypotension during a surgical procedure. Currently, the most adequate treatment for these patients is re-establishing perfusion of the brain as soon as possible. However, reperfusion may
     paradoxically exacerbate brain injury, which is called cerebral ischemia/reperfusion (I/R) injury. Therefore, efforts need to be made that not only to preserve cerebral blood flow, but also to prevent the actual mechanisms that trigger brain damage after I/R injury.
     Neuroinflammation, which is characterized by microglial and astroglial activation, as well as the release of cytotoxic agents (cytokines, matrix metalloproteinases, nitric oxide and reactive oxygen species) can be triggered by cerebral I/R injury, which can contribute to blood-brain barrier disruption and delayed neuronal death. Subsequently, these damaged cells release more toxic mediators, which in turn activate more immune cells. Thus, prolonged inflammation caused by this vicious circle exacerbates brain damage. Taken together, anti-inflammation therapy may become a promising therapeutic strategy for the treatment of cerebral I/R injury.
     The P2X7receptor(P2X7R), a purinergic receptor, was first discovered in macrophages. In the central nervous system (CNS), the P2X7R is predominantly expressed in microglia which are the resident macrophages of the brain. The P2X7R can be activated by high concentrations of ATP. Stimulating the P2X7R leads to microglial activation, reactive oxygen species production and increased secretion of pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6. Recently, the P2X7R has been reported to be involved in neuroinflammation in many CNS diseases
     including A lzheimer's disease (AD), epilepsy, spinal cord injury and multiple sclerosis, and treatment with P2X7R antagonists reduces experimentally induced neuroinflammation in animal models of such diseases.
     The P2X7receptor(P2X7R), a purinergic receptor, was first discovered in macrophages. In the central nervous system (CNS), the P2X7R is predominantly expressed in microglia which are the resident macrophages of the brain. The P2X7R can be activated by high concentrations of ATP. Stimulating the P2X7R leads to microglial activation, reactive oxygen species production and increased secretion of pro-inflammatory cytokines such as Interleukin-1β(IL-1β), Tumor necrosis factor-α (TNF-a) and Interleukin-6(IL-6). Recently, the P2X7R has been reported to be involved in neuroinflammation in many CNS diseases including Alzheimer's disease (AD), epilepsy, spinal cord injury and multiple sclerosis, and treatment with P2X7R antagonists reduces experimentally induced neuroinflammation in animal models of such diseases. Only a few study have reported the effect of P2X7R in cerebral ischemic injury, and the results are inconsistent. So it is still worth to be discussed.
     Aim
     To clarify the role of P2X7R in global cerebral I/R-induced injury and neruoinflammation, in the present study we performed the following investigations.
     (1) We examined the P2X7R expression of P2X7R after global cerebral I/R-induced injury in rats.
     (2) Using P2X7R antagonist, we investigated the role of P2X7R in global cerebral I/R injury. We also explored the association between the P2X7R and neuroinflammation after transient global cerebral I/R injury.
     (3) We also investigated the interaction between P2X7R and NADPH Oxidiase(NOX), and thier effect in the regulation on neuroinflammation.
     Part Ⅰ Expression properties of P2X7R in the hippocampal CA1region after global cerebral I/R injury.
     Methods:Twenty mins global cerebral I/R injury was conducted on male Sprague-Dawley rats weighing260-320g using four-vessel occlusion (4-VO) method. Regional cerebral blood flow (rCBF) from10mins before ischemia to90mins after reperfusion was measured using a laser Doppler flowmetry; HE staining was performing to observe the neuronal death6hours,1day,3days,7days and14days after reperfusion; activated microglia and astrocytes were detected by immunohistochemical staining; P2X7R expression was examined by western bolts and immunobistochemical staining.
     Results:During the ischemic period, the rCBF was lower than20%; more than90%CA1neurons dead after3days-reperfusion. glial activation, gliosis and P2X7R expression were increased in a time-dependent manner after reperfusion. P2X7R mainly expressed on microglia-like cells.
     Conclusion:P2X7R is involved in global cerebral I/R injury and is associated with I/R-induced neuroinflammation.
     Part Ⅱ Inhibition of P2X7R ameliorates transient global cerebral I/R injury via modulating inflammatory responses in the rat hippocampus
     Methods:Immediately after infusion with the P2X7R antagonists Brilliant blue G (BBG), adenosine5'-triphosphate-2',3'-dialdehyde (OxATP) or A-438079, tweenty minutes of transient global cerebral I/R was induced using the4-VO method in rats. Survival rate was calculated, neuronal death in the hippocampal CA1region was observed using HE staining, and DNA cleavage was observed by deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL). In addition, behavioral deficits were measured using the Morris water maze, and RT-PCR and immunohistochemical staining were performed to measure the expression of IL-1β,TNF-α and IL-6, and to identify activated microglia and astrocytes.
     Results:The P2X7R antagonists protected against transient global cerebral I/R injury in a dosage-dependent manner. A high dosage of BBG (10μg) and A-438079(3μg). and a low dosage of OxATP (1μg) significantly increased survival rates, reduced I/R-induced learning memory deficit, and reduced I/R-induced neuronal death, DNA cleavage, glial activation and inflammatory cytokine overexpression in the hippocampus.
     Conclusions:Our study indicates that inhibiting P2X7R.S protects against transient global cerebral I/R injury by reducing the I/R-induced inflammatory response, which suggests inhibition of P2X7Rs may be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.
     Part Ⅲ P2X7R-NOX participates in transient global cerebral I/R-induced neuroinflammation
     Methods:Rats were divided into six group:Sham1, Sham2, Saline, Vehicle, A-438079(3μg i.c.v.), Apocynin (10mg/kg i.p. twice). NOX activity was measured with Lucigenin-enhanced chemiluminescence; expression of gp91phox and p47phox, p47phox translocation were detected by western bloting; neuronal death in the hippocampal CA1region was observed using HE staining and immunohistochemical staining were performed to identify activated microglia and astrocytes.
     Results:NOX activity was elevated at the third day after global cerebral ischemia reflected by elevated relative light units (RLU) values, and increased gp91phox, p47phox expression and less p47phox translocation. The P2X7R antagonists A-438079suppressed the I/R-induced NOX activity elevation. NOX antagonist apocynin protected against transient global cerebral I/R injury and reduced I/R-induced glial activation.
     Conclusions:P2X7R-NOX participated in the I/R-induced brain injury and neurolinflammation after I/R injury.
引文
1. Shichita T, Sakaguchi R, Suzuki M,Yoshimura A, Post-ischemic inflammation in the brain. Front Immunol.3:p.132.
    2. Candelario-Jalil E, Injury and repair mechanisms in ischemic stroke: Con(?)derations for the development of novel neurotherapeutics. Curr Opin Investig Drugs,2009.10(7):p.644-54.
    3.Nexandrov AV, Current and future recanalization strategies for acute ischemic stroke. J Intern Med.267(2):p.209-19.
    4. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Pinto A,Licata G, Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem,2009.9(14):p.1317-34.
    5. Amantea D, Nappi G, Bernardi G, Bagetta G,Corasaniti MT, Post-ischemic brain damage:pathophysiology and role of inflammatory mediators. FEBS J,2009. 276(1):p.13-26.
    6. Dirnagl U, Simon RP,Hallenbeck JM, Ischemic tolerance and endogenous neuroprotection. Trends Neurosci,2003.26(5):p.248-54.
    7. Kriz J, Inflammation in ischemic brain injury:timing is important. Crit Rev Neurobiol,2006.18(1-2):p.145-57.
    8. Wang Q, Tang XN,Yenari MA, The inflammatory response in stroke. J Neuroimmunol,2007.184(1-2):p.53-68.
    9. Mehta SL, Manhas N,Raghubir R, Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev,2007.54(1):p.34-66.
    10. Meisel C,Meisel A, Suppressing immunosuppression after stroke. N Engl J Med. 365(22):p.2134-6.
    11. Muir KW, Tyrrell P, Sattar N,Warburton E, Inflammation and ischaemic stroke. Curr Opin Neural,2007.20(3):p.334-42.
    12. Jin R, Yang G,Li G, Inflammatory mechanisms in ischemic stroke:role of inflammatory cells. J Leukoc Biol.87(5):p.779-89.
    13. Danton GH,Dietrich WD, Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol,2003.62(2):p.127-36.
    14. Chamorro A,Hallenbeck J, The harms and benefits of inflammatory and immune responses in vascular disease. Stroke,2006.37(2):p.291-3.
    15. Kamel H,Iadecola C, Brain-immune interactions and ischemic stroke:clinical implications. Arch Neurol.69(5):p.576-81.
    16. van der Spuy WJ,Pretorius E, Interrelation between inflammation, thrombosis, and neuroprotection in cerebral ischemia. Rev Neurosci.23(3):p.269-78.
    17. Magnus T, Wiendl H,Kleinschnitz C, Immune mechanisms of stroke. Curr Opin Neurol.25(3):p.334-40.
    18. Denes A, Thornton P, Rothwell NJ,Allan SM, Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun.24(5):p.708-23.
    19. Di Virgilio F, The P2Z purinoceptor:an intriguing role in immunity, inflammation and cell death. Immunol Today,1995.16(11):p.524-8.
    20. Surprenant A, Rassendren F, Kawashima E, North RA,Buell G, The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science,1996. 272(5262):p.735-8.
    21. Duan S,Neary JT, P2X(7) receptors:properties and relevance to CNS function. Glia,2006.54(7):p.738-46.
    22. North RA, Molecular physiology of P2X receptors. Physiol Rev,2002.82(4):p. 1013-67.
    23. Sperlagh B, Vizi ES, Wirkner K,Illes P, P2X7 receptors in the nervous system. Prog Neurobiol,2006.78(6):p.327-46.
    24. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P,Di Virgilio F, Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol,1996.156(4):p.1531-9.
    25. Erb L, Lustig KD, Ahmed AH, Gonzalez FA,Weisman GA, Covalent incorporation of 3'-O-(4-benzoyl)benzoyl-ATP into a P2 purinoceptor in transformed mouse fibroblasts. J Biol Chem,1990.265(13):p.7424-31.
    26. Gonzalez FA, Ahmed AH, Lustig KD, Erb L,Weisman GA, Permeabilization of transformed mouse fibroblasts by 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate and the desensitization of the process. J Cell Physiol,1989.139(1): p.109-15.
    27. Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V,Baricordi OR, Cytolytic P2X purinoceptors. Cell Death Differ,1998.5(3):p. 191-9.
    28. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Collo G, Buell G,Di Virgilio F, ATP-mediated cytotoxicity in microglial cells. Neuropharmacology,1997.36(9): p.1295-301.
    29. Skaper SD, Debetto P,Giusti P, The P2X7 purinergic receptor:from physiology to neurological disorders. FASEB J.24(2):p.337-45.
    30. Gunosewoyo H, Coster MJ,Kassiou M, Molecular probes for P2X7 receptor studies. Curr Med Chem,2007.14(14):p.1505-23.
    31. Burnstock G,Knight GE, Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol,2004.240:p.31-304.
    32. Evans RJ, Lewis C, Buell G, Valera S, North RA,Surprenant A, Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol Pharmacol,1995.48(2):p.178-83.
    33. Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF,van Biesen T, Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol,1999.376(1-2):p.127-38.
    34. Communi D, Robaye B,Boeynaems JM, Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol,1999.128(6):p.1199-206.
    35. Friedle SA, Curet MA,Watters JJ, Recent patents on novel P2X(7) receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat CNS Drug Discov.5(1):p.35-45.
    36. Di Virgilio F, Novel data point to a broader mechanism of action of oxidized ATP: the P2X7 receptor is not the only target. Br J Pharmacol,2003.140(3):p.441-3.
    37. Beigi RD, Kertesy SB, Aquilina G,Dubyak GR, Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol,2003.140(3):p.507-19.
    38. Craighead MW, Middlehurst KM, LeFeuvre R, Kimber I,Rothwell NJ, Oxidised adenosine 5'-triphosphate, a P2X(7) antagonist, is toxic to rat cerebellar granule neurones in vitro. Neurosci Lett,2001.311(2):p.77-80.
    39. Humphreys BD, Virginio C, Surprenant A, Rice J,Dubyak GR, Isoquinolines as antagonists of the P2X7 nucleotide receptor:high selectivity for the human versus rat receptor homologues. Mol Pharmacol,1998.54(1):p.22-32.
    40. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA,Nedergaard M, Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A,2009.106(30):p.12489-93.
    41. Wang LY, Cai WQ, Chen PH, Deng QY,Zhao CM, Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia. Glia,2009.57(3):p.307-19.
    42. Duan S, Anderson CM, Keung EC, Chen Y,Swanson RA, P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci, 2003.23(4):p.1320-8.
    43. Zhou D, Chen ML, Zhang YQ,Zhao ZQ, Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J Neurosci. 30(23):p.8042-7.
    44. Anderson CM,Nedergaard M, Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci,2006.29(5):p. 257-62.
    45. Potucek YD, Crain JM,Watters JJ, Purinergic receptors modulate MAP kinases and transcription factors that control microglial inflammatory gene expression. Neurochem Int,2006.49(2):p.204-14.
    46. Ferrari D, Stroh C,Schulze-Osthoff K, P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem,1999. 274(19):p.13205-10.
    47. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E,Di Virgilio F, The P2X7 receptor:a key player in IL-1 processing and release. J Immunol,2006.176(7):p.3877-83.
    48. Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M,Inoue K, Activation of P2X7 receptors induces CCL3 production in microglial cells through transcription factor NFAT. J Neurochem,2009.108(1):p.115-25.
    49. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K,Nakata Y, Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci,2004.24(1):p.1-7.
    50. Le Feuvre R, Brough D,Rothwell N, Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol,2002.447(2-3):p.261-9.
    51. Guan Z, Buckman SY, Miller BW, Springer LD,Morrison AR, Interleukin-1 beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem,1998.273(44):p.28670-6.
    52. McLarnon JG, Ryu JK, Walker DG,Choi HB, Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol, 2006.65(11):p.1090-7.
    53. Marcellino D, Suarez-Boomgaard D, Sanchez-Reina MD, Aguirre JA, Yoshitake T, Yoshitake S, Hagman B, Kehr J, Agnati LF, Fuxe K,Rivera A, On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease:studies with the P2X(7) receptor antagonist A-438079. J Neural Transm.117(6):p.681-7.
    54. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR,Anand P, COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol,2006.6:p.12.
    55. Choi HK, Ryu HJ, Kim JE, Jo SM, Choi HC, Song HK,Kang TC, The roles of P2X7 receptor in regional-specific microglial responses in the rat brain following status epilepticus. Neurol Sci.33(3):p.515-25.
    56. Kim JE, Ryu HJ, Yeo SI,Kang TC, P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus. J Neuroinflammation.7:p.
    57. Kimbler DE, Shields J, Yanasak N, Vender JR,Dhandapani KM, Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One.7(7):p. e41229.
    58. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW,Rueter LE, Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety:relevance for neuropsychiatric disorders. Behav Brain Res, 2009.198(1):p.83-90.
    59. Arulkumaran N, Unwin RJ,Tam FW, A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs.20(7):p.897-915.
    60. Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y,Taniguchi T, Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull,2008.31(6):p.1121-30.
    61. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, Pedata F,Sancesario G, P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab,2006.26(7):p.974-82.
    62. Kukley M, Barden JA, Steinhauser C,Jabs R, Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia,2001.36(1):p.11-21.
    63. Sim JA, Young MT, Sung HY, North RA,Surprenant A, Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci,2004.24(28):p.6307-14.
    64. Sanchez-Nogueiro J, Marin-Garcia P,Miras-Portugal MT, Characterization of a functional P2X(7)-like receptor in cerebellar granule neurons from P2X(7) knockout mice. FEBS Lett,2005.579(17):p.3783-8.
    65. Hracsko Z, Baranyi M, Csolle C, Goloncser F, Madarasz E, Kittel A,Sperlagh B, Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease. Mol Neurodegener.6:p.28.
    66. McBean DE,Kelly PA, Rodent models of global cerebral ischemia:a comparison of two-vessel occlusion and four-vessel occlusion. Gen Pharmacol,1998.30(4):p. 431-4.
    67. Vannucci RC,Vannucci SJ, Perinatal hypoxic-ischemic brain damage:evolution of an animal model. Dev Neurosci,2005.27(2-4):p.81-6.
    68. Melani A, Pantoni L, Corsi C, Bianchi L, Monopoli A, Bertorelli R, Pepeu G,Pedata F, Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion:correlations with neurological deficit and histopathological damage. Stroke,1999.30(11):p.2448-54; discussion 2455.
    69. Amadio S, D'Ambrosi N, Trincavelli ML, Tuscano D, Sancesario G, Bernadi G, Martini C,Volonte C, Differences in the neurotoxicity profile induced by ATP and ATPgammaS in cultured cerebellar granule neurons. Neurochem Int,2005.47(5): p.334-42.
    70. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D,Ⅲlles P, P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol,2004.63(7):p.686-99.
    71. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA,Buell G, Tissue distribution of the P2X7 receptor. Neuropharmacology,1997.36(9):p.1277-83.
    72. Wirkner K, Kofalvi A, Fischer W, Gunther A, Franke H, Groger-Arndt H, Norenberg W, Madarasz E, Vizi ES, Schneider D, Sperlagh B,Ⅲes P, Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem,2005.95(5):p.1421-37.
    73. Milius D, Sperlagh B,Illes P, Up-regulation of P2X7 receptor-immunoreactivity by in vitro ischemia on the plasma membrane of cultured rat cortical neurons. Neurosci Lett,2008.446(1):p.45-50.
    74. Schmidt-Kastner R, Paschen W, Ophoff BG,Hossmann KA, A modified four-vessel occlusion model for inducing incomplete forebrain ischemia in rats. Stroke,1989.20(7):p.938-46.
    75. Morris R, Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods,1984.11(1):p.47-60.
    76. Vorhees CV,Williams MT, Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc,2006.1(2):p.848-58.
    77. Wang CX,Shuaib A, Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol,2002.67(2):p.161-72.
    78. Sugawara T, Lewen A, Noshita N, Gasche Y,Chan PH, Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma,2002.19(1):p. 85-98.
    79. Kirino T, Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res,1982.239(1):p.57-69.
    80. Bianco F, Ceruti S, Colombo A, Fumagalli M, Ferrari D, Pizzirani C, Matteoli M, Di Virgilio F, Abbracchio MP,Verderio C, A role for P2X7 in microglial proliferation. J Neurochem,2006.99(3):p.745-58.
    81. Monif M, Reid CA, Powell KL, Smart ML,Williams DA, The P2X7 receptor drives microglial activation and proliferation:a trophic role for P2X7R pore. J Neurosci,2009.29(12):p.3781-91.
    82. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B,Posmantur R, P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J Biol Chem, 2003.278(15):p.13309-17.
    83. Takenouchi T, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Sekigawa A, Sekiyama K, Sato M, Kojima S, Conti B, Hashimoto M,Kitani H, The activation of P2X7 receptor induces cathepsin D-dependent production of a 20-kDa form of IL-lbeta under acidic extracellular pH in LPS-primed microglial cells. J Neurochem.117(4):p.712-23.
    84. Schultz C, Hubbard GB, Rub U, Braak E,Braak H, Age-related progression of tau pathology in brains of baboons. Neurobiol Aging,2000.21(6):p.905-12.
    85. Dixon SJ, Yu R, Panupinthu N,Wilson JX, Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia,2004.47(4):p.367-76.
    86. Wang CM, Chang YY,Sun SH, Activation of P2X7 purinoceptor-stimulated TGF-beta 1 mRNA expression involves PKC/MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal,2003.15(12):p. 1129-37.
    87. Narcisse L, Scemes E, Zhao Y, Lee SC,Brosnan CF, The cytokine IL-lbeta transiently enhances P2X7 receptor expression and function in human astrocytes. Glia,2005.49(2):p.245-58.
    88. Ryu JK,McLarnon JG, Block of purinergic P2X(7) receptor is neuroprotective in an animal model of Alzheimer's disease. Neuroreport,2008.19(17):p.1715-9.
    89. Kim JE, Ryu HJ,Kang TC, P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-alpha-mediated pathway in the rat hippocampus following status epilepticus. J Neuroinflammation.8:p.62.
    90. Friedle SA, Brautigam VM, Nikodemova M, Wright ML,Watters JJ, The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia.59(1):p.1-13.
    91. McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR,Jarvis MF, P2X7-related modulation of pathological nociception in rats. Neuroscience,2007. 146(4):p.1817-28.
    92. Le Feuvre RA, Brough D, Touzani O,Rothwell NJ, Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J Cereb Blood Flow Metab,2003. 23(3):p.381-4.
    93. Hibell AD, Kidd EJ, Chessell IP, Humphrey PP,Michel AD, Apparent species differences in the kinetic properties of P2X(7) receptors. Br J Pharmacol,2000. 130(1):p.167-73.
    94. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE,Chan PH, Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal.14(8):p.1505-17.
    95. Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH,Swanson RA, NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci,2009.12(7):p.857-63.
    96. Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM,Iadecola C, NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci,2009.29(8):p.2545-52.
    97. Moskowitz MA, Lo EH,Iadecola C, The science of stroke:mechanisms in search of treatments. Neuron.67(2):p.181-98.
    98. Babior BM, NADPH oxidase. Curr Opin Immunol,2004.16(1):p.42-7.
    99. Infanger DW, Sharma RV,Davisson RL, NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal,2006.8(9-10):p. 1583-96.
    100. Li J, Baud O, Vartanian T, Volpe JJ,Rosenberg PA, Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A,2005.102(28):p.9936-41.
    101. Serrano F, Kolluri NS, Wientjes FB, Card JP,Klann E, NADPH oxidase immunoreactivity in the mouse brain. Brain Res,2003.988(1-2):p.193-8.
    102. Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J,Mason RP, P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med.52(9):p.1666-79.
    103. Simons JM, Hart BA, Ip Vai Ching TR, Van Dijk H,Labadie RP, Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radic Biol Med,1990.8(3):p.251-8.
    104. Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P,Chan PH, NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab.31(3):p.868-80.
    1. Skaper SD, Debetto P,Giusti P, The P2X7 purinergic receptor:from physiology to neurological disorders. FASEB J.24(2):p.337-45.
    2. Allan SM,Rothwell NJ, Cytokines and acute neurodegeneration. Nat Rev Neurosci, 2001.2(10):p.734-44.
    3. Bernardino L, Balosso S, Ravizza T, Marchi N, Ku G, Randle JC, Malva JO,Vezzani A, Inflammatory events in hippocampal slice cultures prime neuronal susceptibility to excitotoxic injury:a crucial role of P2X7 receptor-mediated IL-lbeta release. J Neurochem,2008.106(1):p.271-80.
    4. Le Feuvre R, Brough D,Rothwell N, Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol,2002.447(2-3):p.261-9.
    5. Guan Z, Buckman SY, Miller BW, Springer LD,Morrison AR, Interleukin-1 beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem,1998.273(44):p.28670-6.
    6. Rampe D, Wang L,Ringheim GE, P2X7 receptor modulation of beta-amyloid-and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol,2004.147(1-2):p.56-61.
    7. McLarnon JG, Ryu JK, Walker DG,Choi HB, Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus. J Neuropathol Exp Neurol,2006.65(11): p.1090-7.
    8. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G,Wyss-Coray T, Inflammation and Alzheimer's disease. Neurobiol Aging,2000.21(3):p.383-421.
    9. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B,Posmantur R, P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J Biol Chem,2003.278(15):p. 13309-17.
    10. Dubyak GR, Both sides now:multiple interactions of ATP with pannexin-1 hemichannels. Focus on "A permeant regulating its permeation pore:inhibition of pannexin 1 channels by ATP". Am J Physiol Cell Physiol,2009.296(2):p. C235-41.
    11. Marcellino D, Suarez-Boomgaard D, Sanchez-Reina MD, Aguirre JA, Yoshitake T, Yoshitake S, Hagman B, Kehr J, Agnati LF, Fuxe K,Rivera A, On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease:studies with the P2X(7) receptor antagonist A-438079. J Neural Transm. 117(6):p.681-7.
    12. Hracsko Z, Baranyi M, Csolle C, Goloncser F, Madarasz E, Kittel A,Sperlagh B, Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease. Mol Neurodegener.6:p.28.
    13. Durrenberger PF, Grunblatt E, Fernando FS, Monoranu CM, Evans J, Riederer P, Reynolds R,Dexter DT, Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study. Parkinsons Dis.2012:p.214714.
    14. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR,Anand P, COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol,2006.6:p.12.
    15. Narcisse L, Scemes E, Zhao Y, Lee SC,Brosnan CF, The cytokine IL-lbeta transiently enhances P2X7 receptor expression and function in human astrocytes. Glia,2005.49(2):p.245-58.
    16. Oyanguren-Desez O, Rodriguez-Antiguedad A, Villoslada P, Domercq M, Alberdi E,Matute C, Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium.50(5):p.468-72.
    17. Grygorowicz T, Struzynska L, Sulkowski G, Chalimoniuk M,Sulejczak D, Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis. Neurochem Int.57(7):p.823-9.
    18. Grygorowicz T, Sulejczak D,Struzynska L, Expression of purinergic P2X7 receptor in rat brain during the symptomatic phase of experimental autoimmune encephalomyelitis and after recovery of neurological deficits. Acta Neurobiol Exp (Wars).71(1):p.65-73.
    19. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M,Domercq M, P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci,2007.27(35): p.9525-33.
    20. Chen L,Brosnan CF, Exacerbation of experimental autoimmune encephalomyelitis in P2X7R-/-mice:evidence for loss of apoptotic activity in lymphocytes. J Immunol,2006.176(5):p.3115-26.
    21. Witting A, Chen L, Cudaback E, Straiker A, Walter L, Rickman B, Moller T, Brosnan C,Stella N, Experimental autoimmune encephalomyelitis disrupts endocannabinoid-mediated neuroprotection. Proc Natl Acad Sci U S A,2006. 103(16):p.6362-7.
    22. Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER,Feinstein DL, P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation,2008.5:p.33.
    23. Diaz-Hernandez M, Diez-Zaera M, Sanchez-Nogueiro J, Gomez-Villafuertes R, Canals JM, Alberch J, Miras-Portugal MT,Lucas JJ, Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration. FASEB J,2009.23(6):p.1893-906.
    24. Melani A, Pantoni L, Corsi C, Bianchi L, Monopoli A, Bertorelli R, Pepeu G,Pedata F, Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion:correlations with neurological deficit and histopathological damage. Stroke,1999.30(11):p.2448-54; discussion 2455.
    25. Amadio S, D'Ambrosi N, Trincavelli ML, Tuscano D, Sancesario G, Bernadi G, Martini C,Volonte C, Differences in the neurotoxicity profile induced by ATP and ATPgammaS in cultured cerebellar granule neurons. Neurochem Int,2005.47(5):p. 334-42.
    26. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D,Illes P, P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol,2004.63(7):p.686-99.
    27. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA,Buell G, Tissue distribution of the P2X7 receptor. Neuropharmacology,1997.36(9):p.1277-83.
    28. Wirkner K, Kofalvi A, Fischer W, Gunther A, Franke H, Groger-Arndt H, Norenberg W, Madarasz E, Vizi ES, Schneider D, Sperlagh B,Illes P, Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem,2005.95(5):p.1421-37.
    29. Milius D, Sperlagh B,Illes P, Up-regulation of P2X7 receptor-immunoreactivity by in vitro ischemia on the plasma membrane of cultured rat cortical neurons. Neurosci Lett,2008.446(1):p.45-50.
    30. Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y,Taniguchi T, Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull,2008.31(6):p.1121-30.
    31. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, Pedata F,Sancesario G, P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab,2006.26(7):p.974-82.
    32. Arbeloa J, Perez-Samartin A, Gottlieb M,Matute C, P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis.45(3):p.954-61.
    33. Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, Du Y, Fang M, Xia Q,Luo B, Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation.9:p.69.
    34. Wang LY, Cai WQ, Chen PH, Deng QY,Zhao CM, Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia. Glia,2009.57(3):p.307-19.
    35. Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O,Matute C, P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia.58(6):p. 730-40.
    36. Iwabuchi S,Kawahara K, Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes. Neurochem Int.58(3):p.376-84.
    37. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA,Nedergaard M, P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med,2004.10(8):p.821-7.
    38. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA,Nedergaard M, Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A,2009.106(30):p.12489-93.
    39. Kimbler DE, Shields J, Yanasak N, Vender JR,Dhandapani KM, Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One.7(7):p. e41229.
    40. Diaz-Hernandez M, del Puerto A, Diaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ,Miras-Portugal MT, Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci, 2008.121(Pt 22):p.3717-28.
    41. Dona F, Ulrich H, Persike DS, Conceicao IM, Blini JP, Cavalheiro EA,Fernandes MJ, Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res,2009.83(2-3):p. 157-67.
    42. Kim JE, Kwak SE, Jo SM,Kang TC, Blockade of P2X receptor prevents astroglial death in the dentate gyrus following pilocarpine-induced status epilepticus. Neurol Res,2009.31(9):p.982-8.
    43. Vianna EP, Ferreira AT, Naffah-Mazzacoratti MG, Sanabria ER, Funke M, Cavalheiro EA,Fernandes MJ, Evidence that ATP participates in the pathophysiology of pilocarpine-induced temporal lobe epilepsy:fluorimetric, immunohistochemical, and Western blot studies. Epilepsia,2002.43 Suppl 5:p. 227-9.
    44. Choi HK, Ryu HJ, Kim JE, Jo SM, Choi HC, Song HK,Kang TC, The roles of P2X7 receptor in regional-specific microglial responses in the rat brain following status epilepticus. Neurol Sci.33(3):p.515-25.
    45. Kim JE, Ryu HJ, Yeo SI,Kang TC, P2X7 receptor regulates leukocyte infiltrations in rat frontoparietal cortex following status epilepticus. J Neuroinflammation.7:p. 65.
    46. Kim JE, Ryu HJ,Kang TC, P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-alpha-mediated pathway in the rat hippocampus following status epilepticus. J Neuroinflammation.8:p.62.
    47. Kim JE,Kang TC, The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest.121(5): p.2037-47.
    48. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC,Diaz-Hernandez M, Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J.26(4):p.1616-28.
    49. Jahr CE,Jessell TM, ATP excites a subpopulation of rat dorsal horn neurones. Nature,1983.304(5928):p.730-3.
    50. Lewis C, Neidhart S, Holy C, North RA, Buell G,Surprenant A, Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature,1995.377(6548):p.432-5.
    51. Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G,Wood JN, A P2X purinoceptor expressed by a subset of sensory neurons. Nature,1995.377(6548):p. 428-31.
    52. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P,Buell GN, Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain,2005.114(3):p.386-96.
    53. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR,Jarvis MF, A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther,2006.319(3):p.1376-85.
    54. Clark AK, Staniland AA, Marchand F, Kaan TK, McMahon SB,Malcangio M, P2X7-dependent release of interleukin-lbeta and nociception in the spinal cord following lipopolysaccharide. J Neurosci.30(2):p.573-82.
    55. Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y,Jarvis MF, The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-lalphabeta knockout mice. Behav Brain Res,2009.204(1):p.77-81.
    56. Perez-Medrano A, Donnelly-Roberts DL, Honore P, Hsieh GC, Namovic MT, Peddi S, Shuai Q, Wang Y, Faltynek CR, Jarvis MF,Carroll WA, Discovery and biological evaluation of novel cyanoguanidine P2X(7) antagonists with analgesic activity in a rat model of neuropathic pain. J Med Chem,2009.52(10):p.3366-76.
    57. Inoue K,Tsuda M, Purinergic systems, neuropathic pain and the role of microglia. Exp Neural.234(2):p.293-301.
    58. Trang T, Beggs S,Salter MW, ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol.234(2):p.354-61.
    59. Ulmann L, Hirbec H,Rassendren F, P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J.29(14):p. 2290-300.
    60. Boumechache M, Masin M, Edwardson JM, Gorecki DC,Murrell-Lagnado R, Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells. J Biol Chem,2009.284(20):p.13446-54.
    61. Clark AK, Wodarski R, Guida F, Sasso O,Malcangio M, Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia.58(14):p. 1710-26.
    62. Pollak Y,Yirmiya R, Cytokine-induced changes in mood and behaviour: implications for 'depression due to a general medical condition', immunotherapy and antidepressive treatment. Int J Neuropsychopharmacol,2002.5(4):p.389-99.
    63. Keefe B, Interferon-induced depression in hepatitis C:an update. Curr Psychiatry Rep,2007.9(3):p.255-61.
    64. Anisman H, Merali Z, Poulter MO,Hayley S, Cytokines as a precipitant of depressive illness:animal and human studies. Curr Pharm Des,2005.11(8):p. 963-72.
    65. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, Bernstein HG,Bogerts B, Immunological aspects in the neurobiology of suicide:elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res,2008.42(2):p.151-7.
    66. Raison CL, Capuron L,Miller AH, Cytokines sing the blues:inflammation and the pathogenesis of depression. Trends Immunol,2006.27(1):p.24-31.
    67. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW,Rueter LE, Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety:relevance for neuropsychiatric disorders. Behav Brain Res,2009. 198(1):p.83-90.
    68. Boucher AA, Arnold JC, Hunt GE, Spiro A, Spencer J, Brown C, McGregor IS, Bennett MR,Kassiou M, Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test. Neuroscience.189:p.170-7.
    69. Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, Labbe M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F,Muller-Myhsok B, Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet,2006.141B(4):p.374-82.
    70. McQuillin A, Bass NJ, Choudhury K, Puri V, Kosmin M, Lawrence J, Curtis D,Gurling HM, Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol Psychiatry, 2009.14(6):p.614-20.
    71. Hejjas K, Szekely A, Domotor E, Halmai Z, Balogh G, Schilling B, Sarosi A, Faludi G, Sasvari-Szekely M,Nemoda Z, Association between depression and the Gln460Arg polymorphism of P2RX7 gene:a dimensional approach. Am J Med Genet B Neuropsychiatr Genet,2009.150B(2):p.295-9.
    72. Soronen P, Mantere O, Melartin T, Suominen K, Vuorilehto M, Rytsala H, Arvilommi P, Holma I, Holma M, Jylha P, Valtonen HM, Haukka J, Isometsa E,Paunio T, P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am J Med Genet B Neuropsychiatr Genet.156B(4):p.435-47.
    73. Nagy G, Ronai Z, Somogyi A, Sasvari-Szekely M, Rahman OA, Mate A, Varga T,Nemoda Z, P2RX7 GIn460Arg polymorphism is associated with depression among diabetic patients. Prog Neuropsychopharmacol Biol Psychiatry,2008.32(8): p.1884-8.
    74. Maes M, The immunoregulatory effects of antidepressants. Hum Psychopharmacol, 2001.16(1):p.95-103.
    75. Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL,Soares MB, A new chapter opens in anti-inflammatory treatments:the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol,2006.6(6):p.903-7.
    76. Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E,Weidenfeld J, Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology,2001.24(5):p. 531-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700