藏药哇夏嘎对大鼠脑缺血再灌注损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:初步探讨藏药哇夏嘎(Adhatoda vasica Nees)(?)寸大鼠脑缺血再灌注损伤后的神经保护作用,并通过分析其对丙二醛(malondialdehyde, MDA)含量和基质会属蛋白酶-9(matrix metalloproteinase-9, MMP-9)表达的影响进一步探索其可能的脑保护机制。
     方法:将198只健康雄性Wistar大鼠,用随机分组的方法,分为假手术组、模型组和治疗组(哇夏嘎治疗组),其中模型组和治疗组再分为脑缺血2h后再灌注6h、24h、48h、72h和120h,共11个亚组,每亚组18只大鼠。采用改良线栓法制作大鼠大脑中动脉闭塞模型,造模成功后1h即脑缺血1h后给予治疗组哇夏嘎1.5ml/100g (含生药3g)灌胃,24h后为1.5ml/100g/d,其余各组给予等量蒸馏水灌胃。在相应时相对各亚组分别进行神经功能缺损评分、红四氮唑染色测量脑梗死体积、苏木精-伊红染色(HE染色)观察组织形态学改变、原位未端标记法检测凋亡细胞数目,及大鼠血清MDA含量和脑组织MMP-9表达的变化。
     结果:TTC染色显示,模型组与治疗组在右侧大脑均有梗死灶形成,且HE染色发现缺血范围内神经元胞质着色变浅,明显水肿,胞核浓缩、深染,与治疗组比较,模型组病变范围较大、程度较重。治疗组与模型组血清MDA含量和MMP-9浓度在脑缺血再灌注损伤后均有不同程度升高,并共同在48h到达峰值,且治疗组血清MDA含量、mmp-9浓度、神经功能缺损评分、脑梗死体积、凋亡细胞数目均低于同一时相模型组,与模型组相比,差异有统计学意义(P<0.05)。
     结论:藏药哇夏嘎对大鼠脑缺血再灌注损伤后的神经功能缺损症状有一定的改善作用,并可减轻脑细胞水肿、脑组织变性及坏死等病理损伤,缩小脑梗死体积,抑制神经元凋亡,其作用机制可能与减轻脑缺血再灌注损伤后自由基损伤,并抑制缺血灶MMP-9的表达有关。
Objective:To observe neuroprotective effects of Adhatoda vasica Nees of Tibet medicine on cerebral ischemia reperfusion injury in rats and the influence of expression of the malondialdehyde and matrix metalloproteinase-9(mmp-9).
     Method:one hundred and ninety-eight healthy male Wistar rats to establish cerebral ischemia reperfusion model with middle cerebral artery thread embolism method, which were randomly divided into the sham-operation group, model group and the treatment group(Adhatoda vasica Nees treatment group). According to reperfusion time interval of6h,24h,48h,72h and120h after cerebral ischemia reperfusion injury, The model group and the treatment group were divided into five subgroups. There were eighteen rats in each subgroups and the sham operation-group. The treatment groups were given Adhatoda vasica Nees after the cerebral ischemia in1h, at dose of1.5mL/100g/time and after24h were given1.5mL/100g/d. The other groups were given the same dose of water. And then observed neurological deficit scores, the infarct sizes, the apoptotic cells and the malondialdehyde and matrix metalloproteinase-9of every group at the different time points.
     Results:The Wistar rats of sham group were healthy without any neurological deficit symptoms, and the nerve cells of the model group and treatment group have the infarct formation, and obvious edema in the zone of right cerebral. Cytoplasmic staining become shallow and nucleus stained darkly and become concentrated. The malondialdehyde and matrix metalloproteinase-9in treatment group and model group had been increased to varying degrees in the ischemia reperfusion. Compared with model group, the expression of malondialdehyde and matrix metalloproteinase-9, neurological deficit scores, infarct sizes, apoptotic cells of the treatment group decreased significantly, the difference was statistically significant (P<0.05).
     Conclusion:It is hypothesized that Adhatoda vasica Nees could improve the symptoms of neurological deficit after cerebral ischemia reperfusion injury, lower degeneration and necrosis of brain tissue and other pathological damage, reduce the edema of the nerve cells, shrink the volume of cerebral infarction, inhibit the neuronal apoptosis by down-regulation the expression of malondialdehyde and matrix metalloproteinase-9. The results suggest that Adhatoda vasica Nees plays a neuroprotective role in cerebral ischemia injury in rats.
引文
[1]Meyers PM, Schumacher HC, Connolly ES, Jr. el al. Current status of endovascular stroke treatment[J]. Circulation.2011,123(22):2591-2601.
    [2]Connell BJ, Saleh MC, Khan BV et al. Apocynin may limit total cell death following cerebral ischemia and reperfusion by enhancing apoptosis[J]. Food Chem Toxicol.2011,49(12): 3063-3069.
    [3]Hong KS, Saver JL. Quantifying the value of stroke disability outcomes:WHO global burden of disease project disability weights for each level of the modified Rankin Scale[J], Stroke.2009, 40(12):3828-3833.
    [4]卫生部新闻办公室.第三次全国死因调查主要情况[J].中国肿瘤.2008,(05):344-345.
    [5]胡善联,龚向光.中国缺血性脑卒中的疾病经济负担[J].中国卫生经济.2003,22(12):3.
    [6]Liu M, Wu B, Wang WZ el al. Stroke in China:epidemiology, prevention, and management strategies[J]. Lancet Neurol.2007,6(5):456-464.
    [7]Jia Q, Liu LP, Wang YJ. Stroke in China[J]. Clin Exp Pharmacol Physiol.2010,37(2):259-264.
    [8]孙迎春,陈杰,荆宏伟,等.农村贫困地区脑卒中危险因素及经济负担的病例对照研究[J].职业与健康.2003,19(11):4.
    [9]Tyson GW, Teasdale GM, Graham DI et al Focal cerebral ischemia in the rat:topography of hemodynamic and histopathological changes[J]. Ann Neurol.1984,15(6):559-567.
    [10]周鸿雁,毛海峰,王一蓉,等.脑缺血损伤的研究进展[J].湖南文理学院学报(自然科学版).2005,(02):72-75.
    [11]Liu XF. Current status of neuroprotection in cerebro-vascular disease[J]. Journal of Medical Postgraduates.2003,16(6):52-455.
    [12]王维治.神经病学(第五版)[M]:人民卫生出版社;2004.
    [13]CochoD BR, Marti-Fabregas J, el al. Reasons for exclusion from thrombolytic theraphy following acute ischemic stroke[J]. Neurology.2005,64:719-720.
    [14]张茁,张微微,毕齐,等.2270例卒中患者延误诊治时间的因素分析[J].中国脑血管病杂志.2005,2(2):62—64.
    [15]Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J Cereb Blood Flow Metab.2001,21(1):2-14.
    [16]Ikeda Y, Long DM. Themo lecularbasis ofbrain injury and brain edema:The role of oxygen free radicals[J]. N Euro Sury.1990,27:1.
    [17]李慈,朱祥祺,倪大智,等.EPR和MDA两种方法在自由基检测中的应用比较[J].上海生物医学工程.2001,(02):3-6.
    [18]方瑗,张洪,梅元武,等.不同时间开始亚低温对脑缺血.损伤保护作用的影响[J].中华物理医学与康复杂志.2004,(04):16-18.
    [19]田伟千,崔苏扬,姚风珍,等.不同麻醉下电针对全脑缺血再灌注大鼠脑MDA、SOD及PPAR-ymRNA表达的影响[J].实用临床医药杂志.2011,(03):6-10.
    [20]Yang G. Reperfusion induced injury to the blood brain barrier after middle cerebral artery occlusion in rats[J]. Stroke.1994,25(1):658-665.
    [21]Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease[J]. J Cereb Blood Flow Metab.1998,18(11):1163-1172.
    [22]徐虹,孙华.基质金属蛋白酶-9在脑缺血中的研究进展[J].中国康复理论与实践.2012,18(12):1127-1130.
    [23]Wagner S, Nagel S, Kluge B et al. Topographically graded postischemic presence of metalloproteinases is inhibited by hypothermia[J]. Brain Res.2003,984(1-2):63-75.
    [24]海平.藏药七十味珍珠丸对惊厥小鼠脑内氨基酸含量的影响[J].中国现代应用药学.2003,20(1):3.
    [25]栾英辉,谢道珍,刘玉娟.复方脑血康口服液治疗脑出血的临床与实验研究.In:第四次全国中西医结合神经系统疾病学术讨论会论文集;2002.
    [26]杨梅,格日力,周晓梅,等.藏药抗缺氧作用的初步研究[J].中国中药杂志,2004,29(11):2.
    [27]巴桑卓嘎,王曙.巴夏嘎的显微鉴别[J].中国民族民间医药.2009,(21):22-23.
    [28]毛继祖,罗达尚,王振华,等.晶珠本草.上海:上海科学技术出版社;1986.
    [29]陈燕,刘玉红,黄志芳,等.二十五味大汤胶囊质量标准研究[J].基层中药杂志.2002,(06):6-8.
    [30]郭登海,才让措.藏药“二十五味鬼臼丸”方解浅述[J].中医杂志.2010,(S2):145-146.
    [31]何烨,海向军,安利峰.藏药哇夏嘎对实验性高血脂大鼠血脂及血液流变学指标的影响[J].中国临床康复.2006,(47):162-163.
    [32]赵永青,景玉宏,舒希贵,等.藏药哇夏嘎对高脂血症大鼠血脂的影响[J].中国中医药信息杂志.2005,(04):36-37.
    [33]程彦斌,程殿威,谈宏,等.藏药哇夏嘎等对急性心肌梗塞和缺血.再灌注损伤心肌保护机制的系列研究[J].中国医学理论与实践.2003,2003(10);1311.
    [34]措如才朗.四部医典大详解[M].成都:四川民族出版社:2003.
    [35]曹晓岚,韩宁.心脑同治学说的涵义及临床应用[J].世界中西医结合杂志.2008,3(3):3.
    [36]Ma J, Zhao L, Nowak TS, Jr. Selective, reversible occlusion of the middle cerebral artery in rats by an intraluminal approach. Optimized filament design and methodology[J]. J Neurosci Methods.2006,156(1-2):76-83.
    [37]Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion[J]. Stroke; a journal of cerebral circulation. 1989,20(8):1037-1043.
    [38]陈卫伟,杨留才,潘施文,等.线栓法制备SD大鼠局灶性脑缺血再灌注损伤模型[J].中国组织工程研究与临床康复.2011,(50):9377-9380.
    [39]Tanaka Y, Marumo T, Omura T et al. Relationship between cerebrospinal and peripheral S100B levels after focal cerebral ischemia in rats[J]. Neuroscience letters.2008,436(1):40-43.
    [40]Yonemori F, Yamaguchi T, Yamada H et al. Evaluation of a motor deficit after chronic focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab.1998,18(10):1099-1106.
    [41]Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury[J]. J Neurotrauma.2000, 17(10):871-890.
    [42]Love S. Oxidative stress in brain ischemia[J]. Brain Pathol.1999,9(1):119-131.
    [43]吴伟,史继新.脑缺血再灌注损伤后神经元损伤机制及治疗研究进展[J].中国微循环.2003,(06):391-394.
    [44]Selman WR, Crumrine RC, Ricci AJ et al. Impairment of metabolic recovery with increasing periods of middle cerebral artery occlusion in rats[J]. Stroke.1990,21(3):467-471.
    [45]Liu S, Liu M, Peterson S et al. Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke[J]. J Neurosci Res.2003,71(6):882-888.
    [46]Kondo T, Reaume AG, Huang TT et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia[J]. J Neurosci.1997,17(11):4180-4189.
    [47]Schmid-Elsaesser R, Zausinger S, Hungerhuber E et al. Neuroprotective effects of combination therapy with tirilazad and magnesium in rats subjected to reversible focal cerebral ischemia[J]. Neurosurgery.1999,44(1):163-171; discussion 171-162.
    [48]Shutenko Z, Henry Y, Pinard E et al. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion[J]. Biochem Pharmacol.1999,57(2):199-208.
    [49]He YY, Hsu CY, Ezrin AM et al. Polyethylene glycol-conjugated superoxide dismutase in focal cerebral ischemia-reperfusion[J]. Am J Physiol.1993,265(1 Pt 2):H252-256.
    [50]Hamm RJ, Temple MD, Pike BR et al. The effect of postinjury administration of polyethylene glycol-conjugated superoxide dismutase (pegorgotein, Dismutec) or lidocaine on behavioral function following fluid-percussion brain injury in rats[J]. J Neurotrauma.1996,13(6): 325-332.
    [51]Kuroda S, Siesjo BK. Reperfusion damage following focal ischemia:pathophysiology and therapeutic windows[J]. Clin Neurosci.1997,4(4):199-212.
    [52]Nakashima M, Niwa M, Iwai T et al. Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat[J]. Free Radic Biol Med.1999,26(5-6):722-729.
    [53]Leib SL, Kim YS, Chow LL et al. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci[J]. J Clin Invest.1996,98(11):2632-2639.
    [54]Chan PH. Role of oxidants in ischemic brain damage[J]. Stroke.1996,27(6):1124-1129.
    [55]Blobel CP. Remarkable roles of proteolysis on and beyond the cell surface[J]. Curr Opin Cell Biol.2000,12(5):606-612.
    [56]Lopez-Otin C, Overall CM. Protease degradomics:a new challenge for proteomics[J]. Nat Rev Mol Cell Biol.2002,3(7):509-519.
    [57]Nelson AR, Fingleton B, Rothenberg ML et al. Matrix metalloproteinases:biologic activity and clinical implications[J]. J Clin Oncol.2000,18(5):1135-1149.
    [58]Batra J, Robinson J, Soares AS et al. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2:binding studies and crystal structure[J]. J Biol Chem.2012,287(19):15935-15946.
    [59]Hamacher S, Matern S, Roeb E. [Extracellular matrix--from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases][J]. Dtsch Med Wochenschr.2004,129(38):1976-1980.
    [60]Wu Y, Zhu L, Wei H et al. Regulation of matrix metalloproteinases, tissue inhibitor of matrix metalloproteinase-I, and extracellular metalloproteinase inducer by interleukin-17 in human periodontal ligament fibroblasts[J]. J Endod.2013,39(1):62-67.
    [61]Heo JH, Kim SH, Lee KY et al. Increase in plasma matrix metalloproteinase-9 in acute stroke patients with thrombolysis failure[J]. Stroke.2003,34(6):e48-50.
    [62]Montaner J, Rovira A, Molina CA et al. Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke[J]. J Cereb Blood Flow Metab.2003,23(12):1403-1407.
    [63]Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia[J].Glia.2005,50(4):329-339.
    [64]Gottschall PE, Deb S. Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons[J]. Neuroimmunomodulation.1996,3(2-3):69-75.
    [65]Gottschall PE, Yu X, Bing B. Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture[J]. J Neurosci Res.1995,42(3): 335-342.
    [66]Zhao Y, Lyons CE, Jr., Xiao A et al. Urokinase directly activates matrix metalloproteinases-9:a potential role in glioblastoma invasion[J]. Biochem Biophys Res Commun.2008,369(4): 1215-1220.
    [67]Ramos-DeSimone N, Hahn-Dantona E, Sipley J et al. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion[J]. J Biol Chem.1999,274(19):13066-13076.
    [68]Gu Z, Kaul M, Yan B et al. S-nitrosylation of matrix metalloproteinases:signaling pathway to neuronal cell death[J]. Science.2002,297(5584):1186-1190.
    [69]Van Wart HE, Birkedal-Hansen H. The cysteine switch:a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family[J]. Proc Natl Acad Sci U S A.1990,87(14):5578-5582.
    [70]Loftus IM, Naylor AR, Goodall S et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption[J]. Stroke.2000,31(1):40-47.
    [71]Kalela A, Koivu TA, Sisto T et al. Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease[J]. Scand J Clin Lab Invest.2002,62(5): 337-342.
    [72]Romanic AM, White RF, Arleth AJ et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats:inhibition of matrix metalloproteinase-9 reduces infarct size[J]. Stroke.1998,29(5):1020-1030.
    [73]Rosenberg GA. Matrix metalloproteinases biomarkers in multiple sclerosis[J]. Lancet.2005, 365(9467):1291-1293.
    [74]Rosenberg GA, Navratil M, Barone F et al. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat[J]. J Cereb Blood Flow Metab.1996,16(3):360-366.
    [75]Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke.1998,29(10): 2189-2195.
    [76]Asahi M, Asahi K, Jung JC et al. Role for matrix metalloproteinase 9 after focal cerebral ischemia:effects of gene knockout and enzyme inhibition with BB-94[J]. J Cereb Blood Flow Metab.2000,20(12):1681-1689.
    [77]Chang DI, Hosomi N, Lucero J et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia[J]. J Cereb Blood Flow Metab.2003, 23(12):1408-1419.
    [78]Heo JH, Lucero J, Abumiya T et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia[J]. J Cereb Blood Flow Metab.1999,19(6):624-633.
    [79]Asahi M, Wang X, Mori T et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia[J]. J Neurosci.2001,21(19):7724-7732.
    [80]Magnoni S, Baker A, George SJ et al. Differential alterations in the expression and activity of matrix metalloproteinases 2 and 9 after transient cerebral ischemia in mice[J]. Neurobiol Dis. 2004,17(2):188-197.
    [81]Horstmann S, Kalb P, Koziol J et al. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients:influence of different therapies[J]. Stroke.2003,34(9):2165-2170.
    [82]Zalewska T, Ziemka-Nalecz M, Sarnowska A et al. Involvement of MMPs in delayed neuronal death after global ischemia[J]. Acta Neurobiol Exp (Wars).2002,62(2):53-61.
    [83]Gu Z, Cui J, Brown S et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia[J]. J Neurosci.2005,25(27):6401-6408.
    [84]Lee SR, Lo EH. Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation[J]. J Cereb Blood Flow Metab.2004, 24(7):720-727.
    [85]Yamashita T, Abe K. Therapeutic approaches to vascular protection in ischemic stroke[J]. Acta Med Okayama.2011,65(4):219-223.
    [86]Sehba FA, Mostafa G, Knopman J et al. Acute alterations in microvascular basal lamina after subarachnoid hemorrhage[J]. J Neurosurg.2004,101(4):633-640.
    [87]Huang CY, Fujimura M, Noshita N et al. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab.2001, 21(2):163-173.
    [88]Huang CY, Fujimura M, Chang YY et al. Overexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice[J]. Stroke.2001,32(3):741-747.
    [89]Gasche Y, Copin JC, Sugawara T et al. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab.2001,21(12):1393-1400.
    [90]Asahi M, Asahi K, Wang X et al. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab.2000,20(3):452-457.
    [91]Gursoy-Ozdemir Y, Bolay H, Saribas O et al. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia[J]. Stroke.2000, 31(8):1974-1980; discussion 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700