改良滚压泵搏动灌注在小儿体外循环心脏手术中的临床对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Clinical Study of Modified Roll Pump Pulsatile Perfusion in Pediatric Patients Undergoing Cardiopulmonary Bypass Heart Surgery
  • 作者:赵举
  • 论文级别:博士
  • 学科专业名称:临床麻醉学
  • 学位年度:2008
  • 导师:龙村
  • 学科代码:100217
  • 学位授予单位:中国协和医科大学
摘要
目的判定搏动灌注(Pulsetile Perfusion,PP)在小儿先天性心脏病心内直视手术体外循环期间应用的可行性及有效性,对比观察PP与非搏动灌注(Non-pulsatile Perfuion,NP)对小儿炎性细胞因子、溶血及肺肾功能的影响,为PP应用提供临床依据。
     材料与方法用Jostra HL-20型体外循环机建立搏动灌注离体体外循环模型;模型系统稳定后通过循环管路不同部位的压力监测判定不同体外循环设备对搏动灌注压力能量的衰减情况并应用于临床患儿,确定搏动灌注的可行性及有效性,选用两种膜式氧合器(Dideco Lilliput902和Terumo Capiox RX05)对比观察氧合器对压力能量衰减的差别;24例法鲁氏四联症确诊患儿随机分组对比PP与NP的临床应用效果,选择阜外医院婴儿B型体外循环管道及相关耗材,采用中低温或深低温低流量体外循环,α稳态管理血气,观察血流动力学指标,测定不同时点患儿血样中炎性介质(IL-8、TNF-α)及游离血红蛋白(PFH)的浓度,并比较两组患儿肺脏及肾脏功能状态。
     结果4例离体体外循环PP模型全部成功,不同部位压力监测稳定,晶体与纯胶体预充液对搏动灌注系统无影响。临床PP有创动脉血压压差(Pulse Pressure,ΔP)最高可达35mmHg,本研究观察到体外循环设备对搏动灌注压力衰减程度的大小依次为:氧合器<动脉微栓滤器<动脉插管,Capiox RX05产生的氧合器压降(OPP)显著低于Lilliput 902,故前者更适合PP临床应用。搏动灌注组IL-8、TNF-α浓度较非搏动灌注组低,但血浆游离血红蛋白在搏动组中浓度更高,提示搏动灌注产生较多的血液破坏,CPB期间尿量在搏动组中略高于非搏动组,术后ICU带管时间两组间无差异。
     结论Jostra HL-20型体外循环机建立的离体搏动CPB模型系统稳定、性能可靠,可作为体外循环相关离体研究的试验平台。对搏动灌注压力衰减最大的体外循环设备是主动脉插管,Capiox RX05膜式氧合器更适合于搏动灌注有效性的维持。搏动灌注可以在儿童体外循环主动脉阻断期间顺利实施,PP具有减轻机体炎性反映的能力而且具有改善机体微循环的潜力,推荐在高危复杂先心病患儿手术中应用。
Objectives To evaluate the role and efficiency of pulsatile perfusion in pediatric complicated congenital heart disease patients undergoing open heart surgery with cardiopulmonary bypass(CPB) and compare the effects on inflammatory factors with nonpulsatile perfusion during CPB. In order to provide the clinic evidence of pulsatile CPB in pediatric heart surgery.
     Material and Methods Firstly, we established the pulsatile perfusion CPB model in vitro using Jostra HL-20 heart lung machine and made sure the stability of this in vitro model. Then detected the pressure of several sites in the CPB circuit of the model to evaluate the pressure drop of different device in CPB circuit and prepared for clinical feasibility of pulsatile CPB. Dideco Lilliput 902 and Terumo Capiox RX05 oxygenators were selected to compare the oxygenator pressure drop(OPP) in PP study. 24 pediatric patients diagnosed as tetralogy of Fallot were randomized into two groups, pulsatile perfusion (PP) group and nonpulsatile perfusion (NP) group. PP patients (n=12) used modified roll pump pulsatile perfusion during cross clamping period in CPB, while NP cases (n=12) used roll pump flat-flow perfusion during CPB. We choose Fuwai infant's type B circuits and corresponding devices. All patients underwent medium hypothermia or deep hypothermia low flow perfusion during surgery and alpha-stat was performed to manage blood gas during CPB. We monitored hemodynamic status and inflammatory factors (IL-8 and TNF-α) in blood samples over time period in all patients, and detected the effects of different perfusion on hemolysis and pulmonary and renal functions.
     Results 4 in vitro pulsatile CPB model were completely successful and stable, and pressure monitoring of different sites in CPB circuit was feasible and stable. There is no difference of pulsatile perfusion system between crystalloid solution and pure colloid solution priming. The maximum pressure drop happened in the site of aorta cannula during pulsatile CPB. Capiox RX05 oxygenator created less OPP than Lilliput 902 and Capiox RX05 should be preferred to select in pulsatile perfusion. Effective pulsatile perfusion can be monitored in PP patients and pulse pressure (ΔP) in PP patients can be maintained in 15mmHg to 35mmHg.ΔP was significantly higher in PP group than NP group. In PP patients, IL-8 and TNF-αwere lower after cross clamp off and ICU period than that in NP cases in this study. Free plasma hemoglobin concentration in PP group at pre-clamp off and CPB weaned off were higher than that of NP group . Also urine output was significantly higher in PP group than NP group. there was no difference of ICU intubation time between two groups.
     Conclusion In vitro pulsatile CPB model established by Jostra HL-20 heart lung machine was a safe and stable system, it can be used to initiate in vitro CPB study in the future. Aortic cannula created the maximum pressure drop during pulsatile CPB and Capiox RX05 will contribute to effectiveness of pulstile perfusion. Pulsatile Perfusion can be successfully and easily performed in pediatric CPB. Pulsatile can reduce the inflammatory response and have potential benefit to microcirculation perfusion and protection of main organs. So we recommend that Pulsatile CPB will be applied in high-risk cyanotic pediatric patients.
引文
1. Agati S, Ciccarello G, Ocello S, et al. Pulsatile ECMO and VAD: a dual use of a new device in pediatric cardiac patients. ASAIO J. 2006 Sep-Oct;52(5):501-4.
    2. Hetzer R, Potapov EV, Stiller B, et al. Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients. Ann Thorac Surg. 2006 Sep;82(3):917-24
    3. Shepard RB, Simpson DC, Sharp JF. Energy equivalent pressure. Arch Surg 1966;93:730-40
    4. Wright G. Mechanical simulation of cardiac function by means of pulsatile blood pumps. J Cardiothorac Vasc Anesth 1997;11:299-309
    5. Akif Undar, Takafumi Masai, Shuang-Qiang Yang, et al. Effects of perfiision mode on regional and global organ blood flow in a neonatal piglet mode. Ann Thorac Surg 1999;68:1336-43
    6. Akif Undar, Takafumi Masai, Shuang-Qiang Yang, et al. Pulatile perfiision improves regional myocardial blood flow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model. ASAIO Journal 2002; 48:90-95
    7. Gu YJ, De Kroon TL, Elstrodt JM, et al. Augmentation of abdominal organ perfiision during cardiopulmonary bypass with a novel intra-aortic pulsatile catheter pump. Int J Artif Organs. 2005 Jan;28(1):35-43
    8.Ruperez M,Lopez-Herce J,Sanchez C,et al.Comparison of a tubular pulsatile pump and a volumetric pump for continuous venovenous renal replacement therapy in a pediatric animal model.ASAIO J.2005 Jul-Aug;51(4):372-5
    9.张德奎,孙玉安,潘玉美,等。新那直视手术体外循环搏动灌注的临床应用。中国胸心血管外科临床杂志,1999:6(3);155-157
    10.黄国长,李拔传,朱洪生。体外循环生理性搏动灌注与内脏白细胞隔离及TNF-α形成影响的探讨。上海医学,1998:21(1);1-3
    11.龙村,胡小琴。体外循环中搏动和非搏动灌注对皮肤微循环自律运动的影响。中华胸心血管外科杂志。1994;第3期
    12.Akif Undar.Impact of membrane oxygenators on pulsatile versus nonpulsatile perfusion in a neonatal model.Perfusion 2000;15:111-120
    1. Shepard RB, Simpson DC, Sharp JE: Energy equivalent pressure. Arch Srug 1996; 93:730-740
    2. Agati S, Ciccarello G, Ocello S, et al. Pulsatile ECMO and VAD: a dual use of a new device in pediatric cardiac patients. ASAIO J. 2006 Sep-Oct;52(5):501-4.
    3. Hetzer R, Potapov EV, Stiller B, et al. Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients. Ann Thorac Surg. 2006 Sep;82(3):917-24
    4. Undar A, Masai T, Frazie OH, et al. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J 1999; 45:610-614
    5. Akira Sezai, Motomi Shiono, Kin-ichi Nakata, et al. Effects of pulsatile CPB on Interleukin-8 and Endothelin-1 levels. Artif Organs, 2005;29(9):708-713
    6. Song Z, Wang C, Stammers AH. Clinical comparison of pulsatile and non pulsatile perfusion during cardiopulmonary bypass. J Extra Corpor Technol 1997;29:170-175
    7. Undar A, Masai T, Yang S, et al. Pulatile perfusion improves regional myocardial blood flow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model. ASAIO Journal 2002; 48:90-95
    8. Abdul-Khaliq H, Uhlig R, Bottcher W, et al. Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass. Perfusion. 2002 May;17(3):179-85.
    9. Undar A: Myths and truths of pulsatile and non pulsatile perfusion during acurte and chronic cardiac support. Artif Organs. ASAIO J 2005;51:600-603
    10. Bingyang Ji, Akif Undar. An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO 2006:52:357-361
    11. Akif Undar, Takafumi Masai, Shuang-Qiang Yang, et al. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet mode. Ann Thorac Surg 1999;68:1336-43
    12. Undar A, Masai T, Yang SQ et al: Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac Surg, 1999;68:1336-43
    13. Undar A, Masai T, Beyer EA et al: Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass. Artif Organs, 2002;26:919-923
    14. Kocakulak M, Kucukaksu S, Piskin E. Pulsatile roller pump perfusion is safe in high risk patients. Int J Artif Organs. 2004 May;27(5):433-9.
    15.Undar A. The ABCs of research on pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass. Med Sci Monit 2002; 8(12):ED21-24
    16. Nishinaka T, Nishida H, Endo M, Miyagishima M, Ohtsuka G, Koyanagi H. Less blood damage in the impeller centrifugal pump: a comparative study with the roller pump in open heart surgery. Artif Organs 1996;20:707-10.
    17. Minami K, Korner MM, Vyska K, et al. Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990; 99:82-91.
    18. Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumor necrosis factor. Immunology 1989;68:31-6.
    19. Xue PR. The changes of zinc and copper in plasma, erythrocytes and lymphocytes in children before and after extracorporeal circulation. Zhonghua Xin Xue Guan Bing Za Zhi. 1993 Aug;21(4):229-30
    20. Lund LW, Hattler BG, Federspiel WJ. A comparative in vitro hemolysis study of a pulsating intravenous artificial lung. ASAIO J. 2002 Nov-Dec;48(6):631-5.
    21. Yasuda T, Funakubo A, Miyawaki F, et al. Influence of static pressure and shear rate on hemolysis of red blood cells. ASAIO J. 2001 Jul-Aug;47(4):351-3.
    22. Qian KX, Zeng P, Ru WM, et al. How to produce a pulsatile flow with low haemolysis? J Med Eng Technol. 2000 Sep-Oct;24(5):227-9.
    23. Undar A, Henderson N, Thurston GB,et al. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Artif Organs. 1999 Aug;23(8):717-21.
    24. Goodman TA, Genard DF, Bernstein EF, Dilley RB. The effects of pulseless perfusion on the distribution of renal cortical blood flow and on renin release. Surgery 1976;80:31- 9.
    25. Sezai A, Shiono M, Orime Y, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation —comparison study of pulsatile and nonpulsatile assists. Artif Organs 1997;21:830-5.
    26. Undar A: Pulsatile versus nonpulsatile cardiopulmonary bypass procedures in neonates and infants: from bench to clinical parcitce. ASAIOJ 2005;51:ED1-5.
    1. Rothenburger M, Tjan TD, Schneider M, et al. The impact of the pro-and anti-inflammatory immune response on ventilation time after cardiac surgery. Cytometry B Clin Cytom. 2003 May;53(1):70-4.
    2. Lequier L. Extracorporeal life support in pediatric and neonatal critical care: a review. J Intensive Care Med. 2004 Sep-Oct;19(5):243-58.
    3. Markewitz A, Lante W, Franke A, et al. Alterations of cell-mediated immunity following cardiac operations: clinical implications and open questions. Shock. 2001; 16 Suppl 1:10-5.
    4. Jensen E, Andreasson S, Bengtsson A, et al. Influence of two different perfusion systems on inflammatory response in pediatric heart surgery. Ann Thorac Surg. 2003 Mar;75(3):919-25.
    5. Harig F, Feyrer R, Mahmoud FO, et al. Reducing the post-pump syndrome by using heparin-coated circuits, steroids, or aprotinin. Thorac Cardiovasc Surg. 1999 Apr;47(2):l 11-8.
    6. Harig F, Hohenstein B, Emde J, et al. Modulating IL-6 and IL-10 levels by pharmacologic strategies and the impact of different extracorporeal circulation parameters during cardiac surgery. Shock. 2001;16 Suppl 1:33-8.
    7. Inui K, Shimazaki Y, Watanade T, et al. Effects of Duraflo II heparin-coated cardiopulmonary bypass circuits on the coagulation system, endothelial damage, and cytokine release in patients with cardiac operation employing aprotinin and steroids. Artif Organs. 1999 Dec;23(12):1107-12.
    8. Tayama E, Hayashida N, Fukunaga S, et al. High-dose cimetidine reduces proinflammatory reaction after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg. 2001 Dec;72(6): 1945-9.
    9. Rinder CS, Fontes M, Mathew JP, et al. Neutrophil CD11b upregulation during cardiopulmonary bypass is associated with postoperative renal injury. Ann Thorac Surg. 2003 Mar;75(3):899-905.
    10. Massoudy P, Zahler S, Becker BF, et al. Evidence for inflammatory responses of the lungs during coronary artery bypass grafting with cardiopulmonary bypass. Chest. 2001 Jan;119(1):31-6.
    11. Antonelli M, Testa G, Tritapepe L, et al. IL-8, IL-6 and ICAM-1 in serum of paediatric patients undergoing cardiopulmonary bypass with and without cardiocirculatory arrest. J Cardiovasc Surg (Torino). 1999 Dec;40(6):803-9.
    12. Aebert H, Kirchner S, Keyser A, et al. Endothelial apoptosis is induced by serum of patients after cardiopulmonary bypass. Eur J Cardiothorac Surg. 2000 Nov;18(5):589-93.
    13. Yeh CH, Chen TP, Wu YC, et al. Inhibition of NFkappaB activation with curcumin attenuates plasma inflammatory cytokines surge and cardiomyocytic apoptosis following cardiac ischemia/reperfusion.J Surg Res. 2005 May 1;125(1): 109-16.
    14. McBride WT, Allen S,Gornley SM, et al. Methylprednisolone favourably alters plasma and urinary cytokine homeostasis and subclinical renal injury at cardiac surgery. Cytokine. 2004 Jul 21-Aug 7;27(2-3):81-9.
    15. Pallua N, Low JF, Von Heimburg D. Pathogenic role of interleukin-6 in the development of sepsis. Part II: Significance of anti-interleukin-6 and anti-soluble interleukin-6 receptor-alpha antibodies in a standardized murine contact burn model. Crit Care Med. 2003 May;31(5): 1495-501.
    1. Shepard RB, Simpson DC, Sharp JE: Energy equivalent pressure. Arch Srug 1996; 93:730-740
    2. Undar A, Masai T, Frazie OH, et al. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons. ASAIO J 1999; 45:610-614
    3. Akira Sezai, Motomi Shiono, Kin-ichi Nakata, et al. Effects of pulsatile CPB on Interleukin-8 and Endothelin-1 levels. Artif Organs, 2005;29(9):708-713
    4. Song Z, Wang C, Stammers AH. Clinical comparison of pulsatile and non pulsatile perfusion during cardiopulmonary bypass. J Extra Corpor Technol 1997;29:170-175
    5. Undar A, Masai T, Yang S, et al. Pulatile perfusion improves regional myocardial blood flow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model. ASAIO Journal 2002; 48:90-95
    6. Undar A: Myths and truths of pulsatile and non pulsatile perfusion during acurte and chronic cardiac support. Artif Organs. ASAIO J 2005;51:600-603
    7. Bingyang Ji, Akif Undar. An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO 2006:52:357-361
    8. Akif Undar, Takafumi Masai, Shuang-Qiang Yang, et al. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet mode. Ann Thorac Surg 1999;68:1336-43
    9. Undar A, Masai T, Yang SQ et al: Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac Surg, 1999;68:1336-43
    10. Undar A, Masai T, Beyer EA et al: Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass. Artif Organs, 2002;26:919-923
    11. Undar A. The ABCs of research on pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass. Med Sci Monit 2002; 8(12):ED21-24
    12. Nishinaka T, Nishida H, Endo M, Miyagishima M, Ohtsuka G, Koyanagi H. Less blood damage in the impeller centrifugal pump: a comparative study with the roller pump in open heart surgery. Artif Organs 1996;20:707-10.
    13. Minami K, Korner MM, Vyska K, et al. Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990; 99:82-91.
    14. Larsen CG, Anderson AO, Oppenheim JJ, Matsushima K. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumor necrosis factor. Immunology 1989;68:31-6.
    15. Xue PR. The changes of zinc and copper in plasma, erythrocytes and lymphocytes in children before and after extracorporeal circulation. Zhonghua Xin Xue Guan Bing Za Zhi. 1993 Aug;21(4):229-30
    16. Goodman TA, Genard DF, Bernstein EF, Dilley RB. The effects of pulseless perfusion on the distribution of renal cortical blood flow and on renin release. Surgery 1976;80:31-9.
    17. Sezai A, Shiono M, Orime Y, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation —comparison study of pulsatile and nonpulsatile assists. Artif Organs 1997;21:830-5.
    18. Undar A: Pulsatile versus nonpulsatile cardiopulmonary bypass procedures in neonates and infants: from bench to clinical parcitce. ASAIO J 2005;51:ED1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700