实时三维超声心动图对房间隔缺损动态特征机制的探讨及其右心功能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
房间隔缺损是临床上常见的先天性心血管畸形,占先天性心脏病的25~30%。近年来,Duke大学研制的实时三维超声心动图技术广泛应用于临床,该技术能动态实时显示房间隔的形态学特征,能准确评判缺损类型、直径、面积,能全面显示缺损毗邻位置与空间关系,这对房间隔缺损的量化评价、心脏结构与血流动力学关系的理解、治疗方案的合理化决策具有重要意义。
     我们应用实时三维超声心动图技术对房间隔缺损面积的动态变化特征进行过研究,这项研究表明房间隔缺损面积在心动周期中呈明显的动态变化,随着心房收缩,房间隔缺损面积逐渐减小,至心室舒张末期达最小,然后在心室收缩期逐渐增加,至收缩末期达最大。房间隔缺损的这种动态变化特征的发生机制可能与瓣膜启闭引起的心房压力容积的变化有关,也有研究认为与室壁的位移有关。利用实时三维超声心动图在心脏三维动态成像方面的技术特点,我们认为该技术有可能在分析心房容积和房室瓣环空间位移上发挥优势,从而明确房间隔缺损动态变化的发生机制。对心脏舒缩运动引起的容积变化和室壁空间位置改变的三维阐释,势必有助于理解心肌舒缩引起的血流动力学变化与心脏结构变化的关系,在了解房间隔缺损面积动态特征机制的基础上,加强对心脏收缩力状态、负荷情况和疾病状态的关系的理解,更有助于临床诊断治疗的合理化决策。
     房间隔缺损时,左心房压力通常高于右心房,且右心室壁薄,顺应性良好,易于舒张,故常存在大量左向右分流,使右心系统容量负荷明显增加,必然不同程度地影响右心功能。房间隔缺损患者右心容积和功能的准确评价对患者病情估价、治疗决策、疗效监测和预后判断具有重要临床价值。心室造影、放射性核素显像、磁共振成像和CT轴位成像在评价心室容积和功能方面由于有创性、价格昂贵或某些禁忌症限制了其应用。超声技术具有无创、简捷、准确的优点,故成为临床应用中最常用的评价方法。
     然而右室形态极不规则,具有相对独立的流出道,肌小梁粗大,二维超声显像作为一种平面显像方法,在测定右心室容积和功能方面的价值有限。动态三维超声心动图可以用于右心容积的测定和右心功能的评价,但迄今为止该技术未能广泛应用于临床的主要原因在于从图像获取、数据处理、三维重建直到图像显示操作复杂、耗时。
     由于右心室结构的复杂性,对于房间隔缺损等右心容量负荷增加造成的右心室局部腔室的改变和重构了解的较少,而右室局部功能可早期反映右室功能变化及局部心肌运动异常,因此对右室容积和功能的评价应包括整体和局部功能的评价。对右室局部收缩功能的评价的超声技术有组织多普勒显像、声学定量技术、应变和应变率显像以及新近应用的速度向量显像等。这些技术主要通过对局部心肌位移和收缩速度的观测来评价心肌的局部收缩性能,较少对局部心肌的泵功能状态进行评价。实时三维超声心动图克服了上述超声技术在评价右室容积与功能方面的局限性,能够快速获取右室容积的动态影像,结合三维工作站的内膜检测功能,构建出不依赖几何模型假设的真实的右室腔立体图像,根据右心室形态学和功能学的特点将右室腔分为三部分,从而可获得各部分的容积变化信息,为评价右室局部泵功能提供了基础。本研究分为四部分:
     第一部分实时三维超声心动图评价正常人房间隔动态特性及其相关因素
     本研究对20例正常人行实时三维成像,结合三维数据工作站,分别于心动周期的P波顶点、R波顶点、T波起点、T波终点、T-P段测量房间隔的面积,于上述相同心动周期时相测量右心房容积及相对应时期的三尖瓣环运动位移距离,并与房间隔面积测值行相关分析。探讨应用实时三维超声心动图技术评价正常人房间隔动态变化规律及其相关因素。结果显示:①正常人房间隔面积在心动周期中面积变化率32.3%~55.8%,平均(50.7±6.2)%。随着心房收缩房间隔面积逐渐减小,至心室舒张末期达最小,然后在心室收缩期逐渐增加,至收缩末期达最大。②右心房容积及三尖瓣环运动位移曲线在心动周期中呈动态变化,房间隔面积的变化特性与其变化特性相同。③房间隔面积在P波顶点、R波顶点、T波起点、T波终点、T-P段测值与相对应右心房容积相关系数分别为0.78、0.79、0.83、0.91、0.84(P均<0.001),房间隔面积变化与三尖瓣环运动位移距离相关性良好,r值分别为0.61、0.68、0.73、0.66、0.60(P均<0.05)。
     第二部分实时三维超声心动图评价房间隔缺损面积动态特征机制的探讨
     本研究对28例房间隔缺损患者和28例正常对照者行实时三维成像,结合三维数据工作站,分别于心动周期的P波顶点、R波顶点、T波起点、T波终点、T-P段测量房间隔缺损的面积,于上述相同心动周期时相测量右心房容积及相对应时期的三尖瓣环运动位移距离,并与房间隔缺损面积测值行相关分析。比较正常对照组和房间隔缺损组右心房容积和三尖瓣环运动位移距离的变化。应用实时三维超声心动图长轴八平面法测量并比较正常对照组和房间隔缺损组右室射血分数。旨在通过分析右心房容积和三尖瓣环运动位移距离在心动周期中的变化规律以及房间隔缺损面积与其的关系,从而对房间隔缺损面积动态特征的机制加以探讨。结果显示:①房间隔缺损面积在心动周期中呈动态改变,缺损面积变化率40.4%~77.2%,平均(60.3±10.2) %。随着心房收缩,房间隔缺损面积逐渐减小,至心室舒张末期达最小,动态变化曲线达最低点;然后在心室收缩期逐渐增加,至收缩末期达最大,变化曲线达高峰。②右心房容积及三尖瓣环运动位移曲线在心动周期中呈动态变化,房间隔缺损面积的变化特性曲线与其变化特性相同。③房间隔缺损面积在P波顶点、R波顶点、T波起点、T波终点、T-P段时相测值与相对应右心房容积相关性良好,r值分别为0.78、0.75、0.80、0.78、0.77(P均<0.001)。房间隔缺损面积与三尖瓣环运动位移距离呈负相关,r值分别为0.58、0.49、0.52、0.55、0.47(P均<0.05)。④房间隔缺损组心动周期中各时相右心房容积较正常对照组明显增加(P<0.001),三尖瓣环运动位移距离较正常对照组明显减低(P<0.05)。房间隔缺损组右室射血分数低于正常对照组(P<0.05)。
     第三部分实时三维超声心动图评价正常人右心室整体和局部功能的方法及其准确性研究
     本研究对36例正常人行三维容积成像,应用四维右心室定量分析法测量右室局部和整体舒张末期容积,收缩末期容积及射血分数,并分别将各局部容积及射血分数行多组间比较。并通过实时三维长轴八平面法和多层螺旋CT法测量右室整体容积及射血分数与上述相关指标行对照分析。以期评价正常人右心室整体和局部容积与功能,并验证这种方法的准确性。结果显示:①四维右心室定量分析法与实时三维长轴八平面法测量的右室整体舒张、收缩末期容积及整体射血分数差异无统计学意义,且相关良好,r值分别为0.96、0.93及0.81。②四维右心室定量分析法与多层螺旋CT法法测量的右室整体舒张、收缩末期容积及整体射血分数差异亦无统计学意义,且相关良好,r值分别为0.96、0.93及0.85。③局部舒张、收缩末期容积测值从右室流入道部、心尖小梁部到流出道部呈递减趋势。心尖小梁部射血分数低于右室流出道部及流入道部测值,差异均有统计学意义(p<0.05);右室整体射血分数与心尖小梁部射血分数差异无统计学意义(p>0.05)。
     第四部分实时三维超声心动图评价房间隔缺损患者右室整体及局部容积:与正常人对照研究
     本研究对32例房间隔缺损患者及32例正常对照者行实时三维容积成像,应用四维右室定量分析法测量并比较两组受试者右室局部容积指标和整体舒张、收缩末期容积及相应的局部、整体射血分数。并将实时三维长轴八平面法与四维右室定量分析法测量的整体右室容积及射血分数行相关分析。旨在评价房间隔缺损患者右室整体及局部容积与功能,并比较上述各指标与正常对照组之差异。结果显示:①房间隔缺损患者心尖小梁部射血分数明显低于右室流出道部、流入道部及整体射血分数测值,差异有统计学意义(p<0.05)。②四维右室定量分析法与实时三维长轴八平面法测量的两组受试者整体右室舒张、收缩末期容积及射血分数差异无统计学意义(P>0.05),且相关良好,房间隔缺损组r值分别为0.96、0.92及0.78,对照组r值分别为0.98、0.96及0.87。③房间隔缺损患者右室局部及整体舒张、收缩末期容积较正常对照组明显增加(P<0.05),心尖小梁部及整体射血分数较正常对照组减低(P<0.001),右室流出道部、流入道部射血分数与正常对照组比较差异无统计学意义(P>0.05)。
     结论
     1实时三维超声心动图可无创评价心脏空间结构参数的动态变化。正常人房间隔面积的变化特性与右心房容积变化特性和三尖瓣环运动曲线变化趋势相同。
     2房间隔面积的变化与右心房容积变化及三尖瓣环运动位移距离的变化有关。
     3房间隔缺损面积在心动周期中呈明显动态变化,具有一定的规律特征。其动态变化曲线与右心房容积动态特性和三尖瓣环运动曲线的变化趋势相同。
     4房间隔缺损面积动态变化特征的发生机制与右心房压力容积的变化和三尖瓣环的位移变化有关。
     5房间隔缺损时右心房容量负荷较正常人增加,三尖瓣环运动位移距离减低,右心收缩功能受损。
     6实时三维超声心动图可准确评价右室整体及局部容积与功能,正常人右室局部收缩功能之间存在差异,这种差异与右心室形态结构和功能有关。
     7房间隔缺损患者右室各局部收缩功能之间存在差异,整体收缩功能的变化不能代表局部功能的改变。
     8房间隔缺损患者右室局部及整体容量负荷较正常人显著增加,右室心尖部和整体收缩功能均有降低。右室局部泵功能可早期反映右心功能损害。
BACKGROUND AND PURPOSE The clinic importance of atrial septal defect (ASD) consist that it is the common cardiac defects of congenital cardiovascular malformation, accounting for 25%-30% of all congenital heart diseases. Real time three dimensional echocardiography (RT 3DE) developments by Duke University has recently been applied in clinical settings. This technique can analyze the 3D geometry and dynamics of the interatrial septum, display the surrounding relationship of ASD on multi-view image, with meticulous measurements of the size and area of defect, which has an important significance about quantization the ASD size, understanding the relationship between cardiac structure and hemodynamics and selection the suitable management.
     A study of us assessment the dynamic changes of ASD area by RT 3DE which found the ASD area changed significantly during cardiac cycle. ASD area decreased gradually during atrial contraction and the minimum area was reached at end-diastole, then increased gradually during ventricular contraction and the maximum area was reached at end-systole. The dynamic changes of ASD area were related with the changes of atrial pressure and volume and the translation of the atrioventricular valve ring. The advance in RT 3DE may potentially to study the volume of atrial and the translation of the atrioventricular valve ring which may contribute to the mechanism of ASD area. To explain the changes of atrial volume and the translation of the atrioventricular annulus using 3D view may be improved understanding of the relationship between the changes of cardiac structure and hemodynamics. On the basis of elucidate the mechanism of ASD area change which can enhance to know the status of cardiac contraction and relaxation, the relationship between the load of heart and the degree of disease, which may be helpful to selection suitable management in clinic protocols.
     The left atrium pressure is higher than right atrium with thinner right ventricular wall and better compliance which result in massive left to right shunt in ASD patient. Long term shunt leads to the development of right heart volume overload and affect right ventricular (RV) function to some extent. The accurate evaluation of RV function has a very important clinic application in assessing the disease condition, choosing therapeutic protocol and monitoring therapeutic efficacy and prognosis of ASD patients. Assessment of RV function in ventriculography, radionuclide imaging, cardiac magnetic resonance imaging, or computed axial tomography may not be feasible and practical because of some limitations. Ultrasonography is the most common method to assess cardiac function with its noninvasive, simple and convenient.
     However, right ventricle has an irregular shape, with a separate infundibulum and prominent trabecular muscles. It’s difficult to describe the right ventricle by a simple geometric figure and therefore, difficult to assess its function in a conventional two-dimensional echocardiography. Dynamic three-dimensional echocardiography can evaluate RV volume and function but not extensive application because of its time consume and energy to deal with image.
     Little is known about the tripartite right ventricular modeling in response to volume overload, such as in ASD, because of the complex RV geometry. Moreover, regional RV volume or function can contribute to global regional RV volume or function and reflect regional disorder of myocardium. Tissue Doppler imaging, strain rate imaging, acoustic quantification and velocity vector imaging is the ultrasound technique for analysis of regional RV systolic function from measure regional myocardium translation and systolic velocity and evaluate regional RV pumping function rarely. RT 3DE overcome limited of ultrasound techniques which mentioned above. It obtained RV volume image quickly and combined with three-dimensional workstation to track endocardium that make a live RV three-dimensional image independent of geometric assumption. There are tripartite with right ventricle from the characteristic of morphology and function. The changes of regional RV volume provide information about regional RV pumping function. This study included four parts as follow:
     Part 1 Evaluation of interatrial septum dynamics and correlation factor in normal human by real time three-dimensional echocardiography
     The purpose of this part was to investigate dynamic changes of interatrial septum (IAS) and its correlation factor. RT 3DE was performed in normal human using a three-dimensional workstation to obtain the en face view of IAS and measure its area at the peak of P-wave, the peak of R-wave, the initial and the destination point of T-wave, and the period of P-T. Measure right atrial volumes in different time which mentioned above and tricuspid annulus motion (TAM) distance in different correspond time period mentioned above, and have correlation analysis with IAS area. RESULTS①The IAS area changed significantly during cardiac cycle,which reached a maximum at end-systole and a minimum at end-diastole. The percentage change ranged from 32.3% to 55.8%, with a mean of 50.7%.②Right atrial volume and the curve of TAM were dynamic changed in cardiac cycle, and the IAS dynamic feature was similar to them.③IAS area has a good correlation with right atrial volume in different time which mentioned above (r=0.78-0.91). IAS area change has a good correlation with TAM distance (r=0.60-0.73).
     Part 2 Investigation of atrial septal defect area dynamic mechanism by real time three-dimensional echocardiography
     The purpose of this part was to investigate dynamic changes of right atrial volumes and tricuspid annulus motion (TAM) to determinate the mechanism of ASD area dynamic change. RT 3DE was performed in ASD patients and control group using a three-dimensional workstation to measure defect area and IAS area at the peak of P-wave, the peak of R-wave, the initial and the destination point of T-wave, and the period of P-T. Measure right atrial volumes in different time which mentioned above and TAM distance in different correspond time period mentioned above, and have correlation analysis with ASD area. A comparison results including right atrial volumes, TAM distance and RV function between ASD and control group. RESULTS①The ASD area changed significantly during cardiac cycle,ASD area decreased gradually with atrial contraction and the minimum area was reached at end-diastole that with the change curve reached the lowest point, then increased gradually during ventricular contraction and the maximum area was reached at end-systole that with the change curve reached the highest peak. The percentage change ranged from 40.4% to 77.2%, with a mean of 60.3%.②Right atrial volume and the curve of TAM were dynamic changed in cardiac cycle, and the ASD area dynamic feature was similar to them.③ASD area has a good correlation with right atrial volume in different time which mentioned above (r=0.75-0.80 P<0.001). ASD area change has a negative correlation with TAM distance (r=0.47-0.58, P<0.05).④Right atrial volume in different time of cardiac cycle was higher than result of control group (P<0.001). TAM distance and RV ejection fraction was lower than result of control group (P<0.05).
     Part 3 Assessment of normal global and regional right ventricular function by real-time three-dimensional echocardiography and its accuracy evaluation
     The purpose of this part was to investigate global and regional RV volume or function and verify its accuracy. RT-3DE was performed in 36 healthy individuals. Regional and global right ventricular end-diastolic volume, end-systolic volume and ejection fraction were measured by 4D right ventricular quantitation (4D RVQ) method. The regional parameters in different right ventricular components were compared respectively. The global parameters derived from 4D RVQ were compared with the results of longitudinal Axial 8 plane (LA 8-plane) and Multi-Slice Computed Tomography (MSCT) measurements. RESULTS①Global RV end-diastolic volume, end-systolic volume and ejection fraction obtained from 4D RVQ method was no statistic significance and correlated significantly with LA 8-plane findings (r=0.96, 0.93 and 0.81 respectively).②Global right ventricular end-diastolic volume, end-systolic volume and ejection fraction obtained from 4D RVQ method was no statistic significance and correlated significantly with MSCT findings (r=0.96, 0.93 and 0.85 respectively).③Regional volume is decrease progressively from inlet portion, apical trabecular portion to outlet portion. Regional right ventricular ejection fraction is lower in the apical trabecular portion than the inlet (p<0.05) and outlet portion (p<0.05). Apical trabecular portion ejection fraction was no statistic significance with global measurement (p>0.05).
     Part 4 Assessment of global and regional right ventricular function in atrial septal defect patients by real time three-dimensional echocardiography: A control study
     The purpose of this part was to study global and regional RV volume or function in ASD patients and compare with normal subjects. RT 3DE were performed in 32 ASD patients (ASD group) and 32 healthy individuals (control group). Some parameters were measured by 4D RVQ method and compared with the two groups. The index include global RV end-diastole or systole volume, regional RV end-diastole or systole volume including inlet, apical trabecular and outlet portions, global RV ejection fraction and regional RV ejection fraction including tripartite which mentions above. The global parameters derived from 4D RVQ were compared with LA 8-plane measurements. RESULTS①Regional RV ejection fraction is lower in the apical trabecular portion than the inlet, outlet portion and global RV ejection fraction (p<0.05).②Global RV end-diastolic volume, end-systolic volume and ejection fraction obtained from 4D RVQ method were no statistic significance and have an excellent correlation with LA 8-plane findings, r=0.96, 0.92 and 0.78 (ASD group),r=0.98, 0.96 and 0.87 (control group).③Global and regional RV end diastolic or systolic volume of ASD patients was higher and apical trabecular portion, global RV ejection fraction was lower than control group (P<0.001). Inlet portion, outlet portion RV ejection fraction was no statistical significant as compared with controls (P>0.05).
     CONCLUSIONS
     1 Real time three-dimensional echocardiography can assess dynamic changes of parameters of cardiac spatial structure noninvasive. Interatrial septum dynamic feature was similar to the dynamic curve of right atrial volume and tricuspid annulus during cardiac cycle in normal individual.
     2 Interatrial septum area was related with the change of right atrial volume and tricuspid annulus motion.
     3 The ASD area changed significantly and regularity during cardiac cycle. The curve of ASD area was similar to dynamic change of right atrial volume and curve of tricuspid annulus motion.
     4 The ASD area was related with the change of right atrial volume and tricuspid annulus motion.
     5 ASD leads to right atrial volume overload, tricuspid annulus motion decreased and right ventricular dysfunction.
     6 RT3DE can evaluate global and regional right ventricular volume and function accurately, and the systolic function is difference to each portion of right ventricular in normal which may be related to morphology and function of right ventricular.
     7 The systolic function is difference to each portion of right ventricular in ASD patients and the global right ventricular function is not represented the change of regional right ventricular function.
     8 Global and regional right ventricular volume was increased and apical trabecular portion, global right ventricular ejection fraction was decreased in ASD patients. Regional right ventricular pumping function might reflect right ventricular dysfunction.
引文
[1]朱清於,金崇厚.先天性心脏病病理解剖学.第1版.北京:人民军医出版社, 2001.25-30
    [2]谢明星,王新房,吕清,等.实时三维超声心动图应用初步探讨.中华超声影像学杂志, 2003, 12(2):80-85
    [3] Zotz RJ , Trabold T , Bock A , et al. In vitro measurement accuracy of three-dimensional ultrasound. Echocardiography, 2001, 18(2):149-156
    [4] Camarano G,Jones M,Freidlin RZ,et al. Quantitative assessment of left ventricular perfusion defects using real-time three-dimensional myocardial contrast echocardiography. J Am Sco Echocardiogr, 2002, 15(3): 206-213
    [5]张运.三维超声心动图:从静态、动态到实时.中华超声影像学杂志, 2003, 12(2):69-70
    [6] Franke A, Kuhl HP, Rulanfs D, et al. Quantitative analysis of the morphology of secundum-type atrial septal defects and their dynamic change using transesophageal three-dimensional echocardiography. Circulation,1997, 96 (supplII): 323-327
    [7] Lange A, Walayat M, Turnbull CM, et al. Assessment of atrial septal defect morphology by transthoracic three dimensional echocardiography using standard grey scale and Doppler myocardial imaging techniques: comparison with magnetic resonance imaging and intraoperative findings. Heart, 1997, 78(4): 382-389
    [8] Carlhall C, Wigstrom L, Heiberg E, et al. Contribution of mitral annular excursion and shape dynamics to total left ventricular volume change. Am J Physiol Heart Circ Physiol, 2004, 287(4): H1836–H1841
    [9] Smith JL, Bolson EL, Wong SP, et al. Three-dimensional assessment of two-dimensional technique for evaluation of right ventricular function by tricuspid annulus motion. Inter J Cardiovasc Imaging, 2003,19(3):189-197
    [10]王新房.超声心动图学.第3版.北京:人民卫生出版社,1999.1-14
    [11] Nihoyannopoulos P. Happy birthday echocardiography: where do we go from here?Hellenic J Cardiol, 2003, 44:363-365
    [12] Roelandt JRTC. The 50th anniversary of echocardiography: are we at the dawn of a new era? Eur J Echocardiography, 2003,4(4):233-236
    [13]王新房,刘夏天.超声心动图发展简史:国外研究概况.中国医学影像技术,2005,21(1):2-5
    [14] Heusch A, Lawrenz W, Olivier M, et al. Transesophageal 3-dimensional versus cross-sectional echocardiographic assessment of the volume of the right ventricle in children with atrial septal defects. Cardiol Young, 2006,16(2):135-140
    [15] Jacobs LD, Salgo IS, Goonewardena S, et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J,2006, 27(4):460-468
    [16] Pandian NG, Nanda NC, Suger L,etal. Dynamic three-dimensional echocardiography: methods and clinical potential. Echocardiography, 1994,11(3):237-259
    [17] Roelandt JR, Salustri A, Mumm B, et al. Precordial three dimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography, 1995, 12(3): 243-252
    [18] Kissli J, Firek B, Ota T, et al. Real time volumetric echocardiography: the technology and the possibilities. Echocardiography, 2000, 17(8):773-779
    [19]王新房.实时三维超声成像的原理及其临床应用前景.生物医学工程与临床,2002,6(1):59
    [20]王新房.实时三维超声心动图——超声技术领域内的新突破.中华超声影像学杂志,2003,12(2):71-75
    [21] Shung KK. The principle of multidimensional arrays. Eur J Echocardiogr, 2002,3(2):149-153
    [22]金崇厚,朱清於,叶锦裳. 100例成人正常心房间隔形态观察.心肺血管学报,1984,3:55
    [23] Sweeny LJ, Rosenquist GC. The normal anatomy of the atrial septum in the humanheart. Am Heart J, 1979, 98(2):194-199
    [24] Endo Y, Maddukuri PV, Vieira ML,et al. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: Validation in the clinical setting. Echocardiography, 2006, 23(10):853-859
    [25] Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography, 2006, 23(5):395-399
    [26] Nesser HJ, Tkalec W, Patel AR, et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography, 2006, 23(8): 666-680
    [27] Maddukuri PV, Vieira ML, DeCastro S, et al.What is the best approach for the assessment of left atrial size? Comparison of various unidimensional and two-dimensional parameters with three-dimensional echocardiographically determined left atrial volume. J Am Soc Echocardiogr, 2006,19(8): 1026-1032
    [1]杨思源.小儿心脏病学.第2版.北京:人民卫生出版社,2000.144
    [2] Chen FL, Hsiung MC, Hsieh KS, et al. Real time three-dimensional transthoracic echocardiography for guiding Amplatzer septal occluder device deployment in patients with atrial septal defect. Echocardiography, 2006,23(9):763-770
    [3] Cheng TO, Xie MX, Wang XF, et al. Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am Heart J, 2004,148(6):1091-1095
    [4] Mehmood F, Vengala S, Nanda NC, et al. Usefulness of live three-dimensional transthoracic echocardiography in the characterization of atrial septal defects in adults. Echocardiography, 2004,21(8): 707-713
    [5] Xie MX,Fang LY,Wang XF,et al. Assessment of atrial septal defect area changes during cardiac cycle by live three-dimensional echocardiography. J Cardio, 2006, 47(4):181-187
    [6]方凌云,谢明星,王新房,等.实时三维超声心动图评价房间隔缺损面积及其动态变化.中华超声影像学杂志,2005,14(4):245-248
    [7] Franke A, Kuhl HP, Rulanfs D, et al. Quantitative analysis of the morphology of secundum-type atrial septal defects and their dynamic change using transesophageal three-dimensional echocardiography. Circulation, 1997, 96 (supplII):323-327
    [8] Moise NS. Doppler echocardiographic evaluation of congenital cardiac disease. An introduction. J Vet Intern Med, 1989,3(4):195-207
    [9] Holzer R, Hijazi ZM. Interventional approach to congenital heart disease. Curr Opin Cardiol. 2004,19(2):84-90
    [10] Roman KS, Nii M, Golding F, et al.Real-time subcostal 3-dimensional echocardiography for guided percutaneous atrial septal defect closure. Circulation, 2004, 22,109(24):e320-e321
    [11] Rosenfeld HM, Vander Velde ME, Sanders SP, et al. Echocardiographic predictors tocandidacy for successful transcatheter atrial septal defect closure. Cathet Cardiovasc Diagn, 1995,34(1):29-34
    [12] Thanopoulos BD, Laskari CV, Tsaousis GS, et al. Closure of atrial septal defects with the Amplatzer occlusion device: preliminary results. J Am Coll Cardiol,1998,31(5):1110-1116
    [13] Mehta RH, Helmcke F, Nanda NC, et al. Transesophageal Doppler color flow mapping assessment of atrial septal defect. J Am Coll Cardiol, 1990,16(4):1010-1016
    [14] Morimoto K, Matsuzaki M, Tohma Y, et al. Diagnosis and quantitative evaluation of secundum-type atrial septal defect by transesophageal Doppler echocardiography. Am J Cardiol, 1990,66(1): 85-91
    [15] Mehta RH, Helmcke F, Nanda NC, et al. Uses and limitations of transthoracic echocardiography in the assessment of atrial septal defect in the adult. Am J Cardiol, 1991,67(4):288-394
    [16] Maeno YV, Benson LN, McLaughlin PR,et al. Dynamic morphology of the secundum atrial septal defect evaluated by three dimensional transesophageal echocardiography. Heart, 2000, 83(6):673-677
    [17] Handke M, Sch?fer DM, Müller G, et al. Dynamic changes of atrial septal defect area: new insights by three-dimensional volume-rendered echocardiography with high temporal resolution. Eur J Echocardiogr. 2001,2(1):46-51
    [18] Reddy SC, Rao PS, Ewenko J,e tal. Echocardiographic predictors of success of cather closure of atrial septal defect with the buttoned device. Am Heat J,1995,129(1):76-82
    [19] McKendrick R, Owada CY. Real-time 3D echocardiography-guided transcatheter device closure of atrial septal defects. Catheter Cardiovasc Interv, 2005, 65(4):442-446
    [20] Downing SW, Herzog WR, McElroy MC, et al. Feasibility of off- pump ASD closure using real-time 3-D echocardiography. Heart Surg Forum, 2002,5(2):96-99
    [21]朱霆,周晓东,董秀珍,等.实时三维超声心动图在经皮导管闭合房间隔缺损介入治疗前后的初步应用.中华超声影像学杂志,2004,13(5): 345-347
    [22] Suematsu Y, Takamoto S, Kaneko Y,et al. Beating atrial septal defect closure monitored by epicardial real-time three-dimensional echocardiography without cardiopulmonary bypass. Circulation, 2003,107(5):785-790
    [23] Arore R, Jolly N, Kalra GS, et al. Atrial septal defect after balloon mitral valvuloplasty: a transesophageal echocardiographic study. Angiology, 1993, 44(3):217-221
    [24] Smith JL, Bolson EL, Wong SP, et al. Three-dimensional assessment of two-dimensional technique for evaluation of right ventricular function by tricuspid annulus motion. Int J Cardiovasc Imaging, 2003,19(3): 189-197
    [1] Di Salvo TG, Mathier M, Semigran MJ, et al. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol, 1995,25(5):1143-1153
    [2] Brieke A, DeNofrio D. Right ventricular dysfunction in chronic dilated cardiomyopathy and heart failure. Coron Artery Dis, 2005, 16(1):5-11
    [3] Pini R, Giannazzo G, Bari MD, et al. Transthoracic three-dimensional echocardiographic reconstruction of left and right ventricles: in vitro validation and comparison with magnetic resonance imaging. Am Heart J, 1997, 133(2): 221-229
    [4] Jiang L, Levine RA, Weyman AE. Echocardiographic Assessment of Right Ventricular Volume and Function. Echocardiography, 1997,14(2): 189-206
    [5] Polak JF, Holman BL, Wynne J, et al. Right ventricular ejection fraction: an indicates of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol, 1983, 2(2): 217-224
    [6] Graham TP Jr. Ventricular performance in congenital heart disease.Circulation, 1991, 84(6): 2259-2274
    [7] Kjaergaard J, Snyder EM, Hassager C, et al.Impact of preload and afterload on global and regional right ventricular function and pressure: a quantitative echocardiography study. J Am Soc Echocardiogr, 2006,19(5): 515-521
    [8] Nesser HJ, Tkalec W, Patel AR, Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography, 2006,23(8):666-680
    [9] Spencer KT,Garcia MJ, Weinart L, et al. Assessment of right ventricular and right atrial systolic and diastolic performance using automated border detection. Echocardiography, 1999, 16(7): 643-652
    [10] Eidem BW, Tei C, O'Leary PW, et al. Nongeometric quantitative assessment of rightand left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J Am Soc Echocardiogr, 1998,11(9): 849-856
    [11] Heusch A, Lawrenz W, Olivier M, et al. Transesophageal 3-dimensional versus cross-sectional echocardiographic assessment of the volume of the right ventricle in children with atrial septal defects. Cardiol Young, 2006,16(2): 135-140
    [12] Pandian NG, Nanda NC, Suger L,et al. Dynamic three-dimensional echocardiography: methods and clinical potential. Echocardiography, 1994,11(3):237-259
    [13] Roelandt JR, Salustri A, Mumm B, et al. Precordial three dimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography, 1995, 12(3): 243-252
    [14] Pombo JF, Troy BL, Russell RO Jr. Left ventricular volumes and ejection fraction by echocardiography. Circulation. 1971, 43(4):480-490
    [15] Tomita M, Masuda H, Sumi T, et al. Estimation of right ventricular volume by modified echocardiographic subtraction method. Am Heart J, 1992,123(4): 1011-1022
    [16]孙锟,陈树宝,边隆祥,等.二维超声技术检测右心室容量.中华医学杂志,1993,73(9):535-537
    [17] Linker DT, Moritz WE, Pearlman AS. A new three-dimensional echocardiographic method of right ventricular volume measurement: in vitro validation. J Am Coll Cardiol, 1986, 8(1):101-106
    [18]王新房.超声心动图学.第3版.北京:人民卫生出版社,1999.276-298
    [19]徐新华,尹邦良.三维超声心动图对右室功能的评价.中国医师杂志,2007,9(2):286-287
    [20] Jiang L, Handschumacher MD, Hibberd MG, et al.Three-dimensional echocardiographic reconstruction of right ventricular volume: in vitro comparison with two-dimensional methods. J Am Soc Echocardiogr, 1994,7(2): 150-158
    [21] Jiang L, Siu SC, Handschumacher MD, et al. Three-dimensional echocardiography. In vivo validation for right ventricular volume and function. Circulation, 1994,89(5):2342-2350
    [22] Hubka M, Bolson EL, McDonald JA, et al. Three-dimensional echocardiographic measurement of left and right ventricular mass and volume: in vitro validation. Int J Cardiovasc Imaging. 2002, 18(2):111-118
    [23] Ahmad M. Real-time 3-dimensional echocardiography. Technique and clinical applications. Minerva Cardioangiol. 2003, 51(6):635-640
    [24] Kissli J, Firek B, Ota T, et al. Real time volumetric echocardiography: the technology and the possibilities. Echocardiography, 2000, 17(8):773-779
    [25]王新房.实时三维超声心动图——超声技术领域内的新突破.中华超声影像学杂志,2003,12(2):71-75
    [26] Endo Y, Maddukuri PV, Vieira ML,et al. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: Validation in the clinical setting. Echocardiography, 2006, 23(10):853-859
    [27]王静,王新房,谢明星,等.实时三维超声成像技术测量右心室容积的方法学研究.中华超声影像学杂志, 2003,12(2):90-93
    [28] Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography, 2006, 23(5):395-399
    [29] Wilcox BR, Cook AC, Anderson RH.心脏外科解剖学.第3版.周睿主译.上海:上海科学教育出版社, 2006.33
    [30]毛焕元,曹林生.心脏病学.第2版.北京:人民卫生出版社,2001.19-45
    [31] Bomma C, Dalal D, Tandri H, et al. Regional differences in systolic and diastolic function in arrhythmogenic right ventricular dysplasia cardiomyopathy using magnetic resonance imaging. Am J Cardiol, 2005, 95(12):1507-1511
    [32] Buckberg GD. Basic science review: The helix and the heart.J Thorac Cardiovasc Surg, 2002,124(5):863-883
    [33]李益民.右心室心肌梗死.第1版.北京:人民军医出版社,2005.1-14
    [34] Mahnken AH, Koos R, Katoh M, et al: Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol, 2005, 15(4):714-720
    [35] Ingerbeck R, Schaller S, Fhlor T, et al. Subsecond multislice computed tomography, basis and applications. Eur J Radiol, 1999, 31(2):110-124
    [36] Lembcke A, Dohmen PM, Dewey M, et al. Multislice computed tomography for preoperative evaluation of right ventricular volumes and function: comparison with magnetic resonance imaging. Ann Thorac Surg, 2005,79(4):1344-1351
    [1] Veldtman GR, Razack V, Siu S, et al. Right ventricular form and function after percutaneous atrial septal defect device closure. J Am Coll Cardiol, 2001,37(8):2108- 2113
    [2] Eerola A, Pihkala JI, Boldt T, et al.Hemodynamic improvement is faster after percutaneous ASD closure than after surgery. Catheter Cardiovasc Interv, 2007,69(3):432-442
    [3] Brieke A, DeNofrio D. Right ventricular dysfunction in chronic dilated cardiomyopathy and heart failure. Coron Artery Dis, 2005, 16(1):5-11
    [4] Grison A, Maschietto N, Reffo E, et al.. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr, 2007,20(8):921-929
    [5] Schoen SP, Kittner T, Bohl S, et al. Transcatheter closure of atrial septal defects improves right ventricular volume, mass, function, pulmonary pressure, and functional class: a magnetic resonance imaging study. Heart, 2006,92(6):821-826
    [6] Heusch A, Lawrenz W, Olivier M, et al. Transesophageal 3-dimensional versus cross-sectional echocardiographic assessment of the volume of the right ventricle in children with atrial septal defects. Cardiol Young, 2006,16(2): 135-140
    [7] Pandian NG, Nanda NC, Suger L,et al. Dynamic three-dimensional echocardiography: methods and clinical potential. Echocardiography, 1994,11(3):237-259
    [8] Roelandt JR, Salustri A, Mumm B, et al. Precordial three dimensional echocardiography with a rotational imaging probe: methods and initial clinical experience. Echocardiography, 1995, 12(3): 243-252
    [9] Kjaergaard J, Snyder EM, Hassager C, et al.Impact of preload and afterload on global and regional right ventricular function and pressure: a quantitative echocardiography study. J Am Soc Echocardiogr, 2006,19(5): 515-521
    [10] Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized Myocardialsegmentation and nomenclature for tomographic imaging of the heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association.Circulation,2002,105(4): 539-542
    [11] Verani MS, Gaidry GW, Mahmarian JJ, et al. Effects of acute, transient coronary occlusion on global and regional right ventricular function in humans. J Am Coll Cardiol,1992,20(7):1490-1497
    [12] Yamagishi T, Matsuda Y, Nakatsuka M, et al. Assessment of right ventricular diastolic filling in patients with coronary artery disease. Clin Cardiol,1993, 16(11):816-822
    [13]吴迪,黄希正,马淑平.左心室壁瘤对右心室整体和局部功能的影响.临床心血管病杂志,2002,18(2):84-85
    [14]夏宏器,刘国全.实用心功能学.第1版.北京:中国医药科技出版社,1993.267-277
    [15] Van Praagh S, Mayer JE, Berman NB, et al. Apical ventricular septal defects: follow-up concerning anatomic and surgical considerations.Ann Thorac Surg, 2002,73(1): 48-56
    [16] Kumar K, Lock JE, Tal Geva. Apical muscular ventricular septal defects between the left ventricle and the right ventricular infundibulum: diagnostic and interventional considerations. Circulation, 1997,95(5): 1207-1213
    [17] Bomma C, Dalal D, Tandri H, et al. Regional differences in systolic and diastolic function in arrhythmogenic right ventricular dysplasia/cardiomyopathy using magnetic resonance imaging Am J Cardiol, 2005, 95: 1507-1511
    [18] Heusch A, Lawrenz W, Olivier M, et al.Transesophageal 3-dimensional versus cross-sectional echocardiographic assessment of the volume of the right ventricle in children with atrial septal defects. Cardiol Young, 2006,16(2): 135-140
    [19]李益民.右心室心肌梗死.第1版.北京:人民军医出版社,2005. 189-193
    [20] Lopez-Sendon J, Garcia-Fernandez MA, Coma-Canella I, et al.Segmental right ventricular function after acute myocardial infarction: two-dimensional echocardiographic study in 63 patients. Am J Cardiol, 1983, 51(3): 390-396
    [21] Bellamy GR, Rasmussen HH, Nasser FN, et al. Value of two-dimensional echocardiography, electrocardiography, and clinical signs in detecting right ventricular infarction. Am Heart J, 1986, 112(2): 304-309
    [22] Lindqvist P, Waldenstrom A, Henein M, et al. Regional and global right ventricular function in healthy individuals aged 20-90 years: a pulsed Doppler tissue imaging study. Echocardiography, 2005,22(4): 305-314
    [23] Kukulski T, Hubbert L, Arnold M, et al. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study.J Am Soc Echocardiogr, 2000,13(3): 194-204
    [24] Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol, 2006,98(5):699-704
    [25] Kjaergaard, Petersen CL, Kjaer A, et al. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr, 2006, 7(6): 430-438
    [26] Hoch M, Vasilyev NV, Soriano B, et al.Variables influencing the accuracy of right ventricular volume assessment by real-time 3-dimensional echocardiography: an in vitro validation study. J Am Soc Echocardiogr, 2007,20(5):456-461
    [27] Nesser HJ, Tkalec W, Patel AR, Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography, 2006,23(8):666-680
    [28] Endo Y, Maddukuri PV, Vieira ML,et al. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axialplane method: Validation in the clinical setting. Echocardiography, 2006, 23(10):853-859
    [29] Chen G, Sun K, Huang G. In vitro validation of right ventricular volume and mass measurement by real-time three-dimensional echocardiography. Echocardiography, 2006, 23(5):395-399
    [30] Lindqvist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional shortening: an applicable measure of right ventricular systolic function. Eur J Echocardiogr, 2003, 4(1):29-35
    [31] Wilcox BR, Cook AC, Anderson RH.心脏外科解剖学.第3版.周睿主译.上海:上海科学教育出版社, 2006.33
    [32] Geva T, Powell AJ, Crawford EC,et al. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation,1998,98(4):339-345
    [33] Davlouros PA, Niwa K, Webb G, et al.The right ventricle in congenital heart disease.Heart, 2006,92 S1:i27-38
    [34] Wu ET, Akagi T, Taniguchi M, et al. Differences in right and left ventricular remodeling after transcatheter closure of atrial septal defect among adults.Catheter Cardiovasc Interv,2007,69(6):866-871
    [35]杨思源.小儿心脏病学.第2版.北京:人民卫生出版社,2000.144
    [36] Hoch M, Vasilyev NV, Soriano B, et al. Variables influencing the accuracy of right ventricular volume assessment by real-time 3-dimensional echocardiography: an in vitro validation study. J Am Soc Echocardiogr, 2007,20(5):456-461
    [37] Fujimoto S, Mizuno R, Nakagawa Y, et al. Estimation of the right ventricular volume and ejection fraction by transthoracic three-dimensional echocardiography. A validation study using magnetic imaging.In J card Imaging,1998,14(6):385-390
    [38] Yalonetsky S, Lorber A. Percutaneous closure of a secundum atrial septal defect in elderly patients. J Invasive Cardiol, 2007, 19(12):510-512
    [39] Tanoue Y, Morita S, Ochiai Y, Impact of atrial septal defect closure on right ventricular performance. Circ J,2006,70(7):909-912
    [40] Lytrivi ID, Ko HH, Srivastava S, et al. Regional differences in right ventricular systolic function as determined by cine magnetic resonance imaging after infundibulotomy. Am J Cardiol, 2004, 94(7):970-973
    [1] Paul Oldershaw. Assessment of right ventricular function and its role in clinical practice. Heart, 1992,68(1):12-15
    [2] Starr I, Jeffers WA, Meade RHJ. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog. Am Heart J, 1943,26:291-300
    [3] Kagan A. Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation, 1952,5(6):816-823
    [4] Jamison WL, Gemeinhardt W, Alai J, ea tl. Artificial maintenance of the systemic circulation without participation of the right ventricle. Circ Res, 1954,2(4):315-318
    [5] Seki S, Ohba O, Tanzaki M, ea tl. Construction of a new ventricle on the epicarepicardium. A possible correction for underdevelopment of the right ventricle. J Thorac Cardiovasc Surg, 1975,70(2):330-337
    [6] Pugh FJ, McGoon D. Exclusion of the right ventricle from the circulation: haemodynamic observations. Surgery, 1973,73(4):607-613
    [7] Bleeker G B, Steendijk P, Holman E R, ea tl. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart, 2006,92(Suppl I):i19-i26
    [8] Nagel E, Stuber M, Hess OM. Importance of the right ventricle in valvular heart disease. Eur Heart J, 1996,17(6):829-836
    [9] Graham Jr TP, Bernard YD, Mellen BG, et al. Long-term outcome in congenitally corrected transposition of the great arteries: a multi-institutional study. J Am Coll Cardiol, 2000,36(1):255-261
    [10] Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr, 2002,15(6):633-639
    [11] D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonaryhypertension. Results from a national prospective registry. Ann Intern Med, 1991,115(5):343-349
    [12] Mehta SR, Eikelboom JW, Natarajan MK, et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol, 2001,37(1):37-43
    [13] Zehender M, Kasper W, Kauder E, et al. Eligibility for and benefit of thrombolytic therapy in inferior myocardial infarction: focus on the prognostic importance of right ventricular infarction. J Am Coll Cardiol, 1994,24(2):362-369
    [14] de Groote P, Millaire A, Foucher-Hossein C, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol, 1998,32(4):948-954
    [15] Gavazzi A, Berzuini C, Campana C, et al. Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant, 1997,16(7):774-785
    [16] Borer JS, Hochreiter CA, Supino PG, et al. Importance of right ventricular performance measurement in selecting asymptomatic patients with mitral regurgitation for valve surgery. Adv Cardiol, 2002,39:144-152
    [17] Di Salvo TG, Mathier M, Semigran MJ, et al. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol, 1995,25(5):1143-1153
    [18] Brieke A, DeNofrio D. Right ventricular dysfunction in chronic dilated cardiomyopathy and heart failure. Coron Artery Dis, 2005, 16(1):5-11
    [19] Vogel M, Derrick G, White PA, et al. Systemic ventricular function in patients with transposition of the great arteries after atrial repair: a tissue Doppler and conductance catheter study. J Am Coll Cardiol, 2004,43(1):100-106
    [20] Krenning BJ, Voormolen MM, Roelandt JR, et al. Assessment of left ventricular function by three-dimensional echocardiography. Cardiovasc Ultrasound,2003,1:12
    [21] Kass DA, Maughan WL, Guo ZM, et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation, 1987,76(6):1422-1436
    [22] De Vroomen M, Cardozo RH, Steendijk P, et al. Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol, 2000,278(1):H100-105
    [23] Brookes CI, White PA, Bishop AJ, et al. Validation of a new intraoperative technique to evaluate load-independent indices of right ventricular performance in patients undergoing cardiac operations. J Thorac Cardiovasc Surg,1998,116(3):468-476
    [24] Leeuwenburgh BP, Steendijk P, Helbing WA, et al. Indexes of diastolic RV function: load dependence and changes after chronic RV pressure overload in lambs. Am J Physiol Heart Circ Physiol,2002,282(4):H1350-1358
    [25] Lopes Cardozo RH, Steendijk P, Baan J, et al. Right ventricular function in respiratory distress syndrome and subsequent partial liquid ventilation. Homeometric autoregulation in the right ventricle of the newborn animal. Am J Respir Crit Care Med, 2000,162(2):374-379
    [26] Tomita M, Masuda H, Sumi T, et al. Estimation of right ventricular volume by modified echocardiographic subtraction method. Am Heart J, 1992,123(4): 1011-1022
    [27]孙锟,陈树宝,边隆祥,等.二维超声技术检测右心室容量.中华医学杂志,1993,73(9):535-537
    [28] Linker DT, Moritz WE, Pearlman AS. A new three-dimensional echocardiographic method of right ventricular volume measurement: in vitro validation. J Am Coll Cardiol, 1986, 8(1): 101-106
    [29]王新房.超声心动图学.第3版.北京:人民卫生出版社,1999.386-388
    [30] Kaul S, Tei C, Hopkins JM, et al. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J,1984,107(3):526-531
    [31] Starling MR, Crawford MH, Sorensen SG, et al. A new two-dimensionalechocardiographic technique for evaluating right ventricular size and performance in patients with obstructive lung disease. Circulation, 1982,66(3):612-620
    [32] Schenk P, Globits S, Koller J, et al. Accuracy of echocardiographic right ventricular parameters in patients with different end-stage lung diseases prior to lung transplantation. J Heart Lung Transplant, 2000,19(2):145-153
    [33] Hinderliter AL, Willis IV PW, Long WA, et al. Frequency and severity of tricuspid regurgitation determined by Doppler echocardiography in primary pulmonary hypertension. Am J Cardiol, 2003,91(8):1033-1037
    [34] Helbing WA, Bosch HG, Maliepaard C, et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol,1995,76(8):589-594
    [35] Denslow S, Wiles HB. Right ventricular volumes revisited: a simple model and simple formula for echocardiographic determination. J Am Soc Echocardiogr, 1998, 11(9): 864-873
    [36] Levine RA, Gibson TC, Aretz T, et al. Echocardiographic measurement of right ventricular volume. Circulation, 1984,69(3):497-505
    [37] Kovalova S, Necas J, Cerbak R, et al. Echocardiographic volumetry of the right ventricle. Eur J Echocardiography, 2005,6(1):15-23
    [38] Ghio S, Recusani F, Klersy C, et al. Prognostic usefulness of the tricuspid annular systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol, 2000, 85(7):837-842
    [39] Smith JL Bolson EL, Wong SP, et al. Three-dimensional assessment of two dimensional technique for evaluation of right ventricular function by tricuspid annulus motion. Int J Cardiovasc Imaging, 2003,19(3):189-197
    [40] Eidem BW, Tei C, O’Leary PW, et al. Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal and patients with Ebstein anomaly. J Am Soc Echocardiogr, 1998,11(9):849-856
    [41] Tei C, Dujardin KS, Hodge DO, et al. Doppler echocardiographic index for assessment of global ventricular function. J Am Soc Echocardiogr, 1996,9(6):838-847
    [42] Mattioli AV, Vandelli R, Mattioli G, et al. Doppler echocardiographic evaluation of right ventricular function in patients with right ventricular infarction. J. Ultrasound Med, 2000, 19(12): 831-836
    [43] Meluzin J, Spinarova L, Bakala J, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. Eur Heart J, 2001,22(4):340-348
    [44] Alam M, Wardell J, Andersson E, et al. Right ventricular function in patients with first inferior myocardial infarction: assessment by tricuspid annular motion and tricuspid annular velocity. Am Heart J, 2000,139(4):710-715
    [45] Oguzhan A, Abaci A, Eryol NK, et al. Colour tissue Doppler echocardiographic evaluation of right ventricular function in patients with right ventricular infarction. Cardiology, 2003,100(1):41-46
    [46] Aoki M, Harada K, Ogawa M, et al. Quantitative assessment of right ventricular function using doppler tissue imaging in fetuses with and without heart failure. J Am Soc Echocardiogr, 2004,17(1): 28-35
    [47] Weidemann F, Jamall F,Sutherland GR,et al.Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol,2002,283(2):H792-799
    [48] Jamal F, Bergerot C, Argaud L, et al. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol, 2003,285(6): H2842-2847
    [49] Dambrauskaite V, Herbots L, Claus P, et al. The differing regional response in right ventricular free wall function caused by increased afterload in pulmonary arterial hypertension: an ultrasonic strain and strain rate imaging study. Eur J Echocardiogr, 2002,3(suppl I):S55
    [50] Spencer KT, Garcia MJ, Weinart L, et al. Assessment of right ventricular and rightatrial systolic and diastolic performance using automated border detection. Echocardiography, 1999, 16(7): 643-652
    [51] Geva T, Powell AJ, Crawford EC, et al. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation, 1998,98(4):339-345
    [52] Vignon P, Weinert L, Mor-Avi V, et al. Quantitative assessment of regional right ventricular function with color kinesis. Am J Respir Crit Care Med,1999,159(6): 1949-1959
    [53] Vannan MA, Pedrizzetti G, Li P, et al. Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images. Echocardiography, 2005, 22(10):826-830
    [54] Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation, 2005,112(20):3149-3156
    [55] Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol, 2006,98(5):699-704
    [56] Borges AC, Knebel F, Eddicks S, et al. Right ventricular function assessed by two-dimensional strain and tissue Doppler echocardiography in patients with pulmonary arterial hypertension and effect of vasodilator therapy. Am J Cardiol, 2006,98(4):530-534
    [57] Jiang L, Handschumacher MD, Hibberd MG, et al. Three-dimensional echocardiographic reconstruction of right ventricular volume: in vitro comparison with two-dimensional methods. J Am Soc Echocardiogr, 1994,7(2):150-158
    [58] Jiang L, Siu SC, Handschumacher MD, et al. Three-dimensional echocardiography. In vivo validation for right ventricular volume and function. Circulation, 1994, 89(5):2342-2350
    [59] Hubka M, Bolson EL, McDonald JA, et al. Three-dimensional echocardiographic measurement of left and right ventricular mass and volume: in vitro validation. Int J Cardiovasc Imaging, 2002, 18(2):111-118
    [60] Ahmad M. Real-time 3-dimensional echocardiography. Technique and clinical applications. Minerva Cardioangiol, 2003, 51(6):635-640
    [61] Kissli J, Firek B, Ota T, et al. Real time volumetric echocardiography: the technology and the possibilities. Echocardiography, 2000, 17(8):773-779
    [62]王新房.实时三维超声心动图——超声技术领域内的新突破.中华超声影像学杂志,2003,12(2):71-75
    [63] Schindera ST, Mehwald PS, Sahn DJ, et al. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model. J Ultrasound Med, 2002,21(10):1069-1075
    [64] Endo Y, Maddukuri PV, Vieira ML,et al. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: Validation in the clinical setting. Echocardiography, 2006, 23(10):853-859
    [65] Lindqvist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional shortening: an applicable measure of right ventricular systolic function. Eur J Echocardiogr, 2003, 4(1):29-35
    [66] Wilcox BR, Cook AC, Anderson RH.心脏外科解剖学.第3版.周睿主译.上海:上海科学教育出版社, 2006.33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700