心血管造影图像的二维信息处理及其三维重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管造影图像已经成为心血管疾病诊断的金标准。利用多角度二维心血管造影图像重建的三维心血管图像具有客观、形象的特点,能够实现病变的量化描述,对心血管狭窄的预防、诊断和治疗具有重要意义。利用造影图像重建三维心血管包括两个阶段:1、二维心血管信息提取;2、血管三维结构重建。本文工作是围绕心血管造影图像中的心血管骨架信息提取、直径信息提取、主干血管辅助诊断而展开的,并对单面造影法心血管三维重建进行了初步研究,主要内容如下:
    1、心血管造影图像的灰度特征分析
    根据造影成像理论和心血管形状特征深入分析了造影图像,归纳出6个基本灰度特征,如血管骨架垂线上的灰度成高斯函数分布等,为二维信息提取提供了依据。
    2、血管骨架提取
    本文首先对造影图像进行了预处理,采用了形态学Top-Hat变换、旋转一维高斯模板等方法对图像进行了噪声去除和图像增强。然后提取血管区域,在对自适应阈值、最大类间方差自动阈值等方法进行大量实验研究后,提出了自适应跟踪圆模板法,该方法经过人工初始化后可以对心血管区域进行自动提取。最后进行骨架提取,通过对比研究直接法和间接法,本文采用了间接法,即通过细化血管区域实现心血管骨架提取。在血管区域细化过程中,提出了连通数细化方法,该方法具有计算量小、运算速度快、各向同性等特征。
    3、血管连续边缘提取
    心血管连续边缘提取是三维重建和血管辅助诊断的基础。本文在对比研究了多种常规边缘提取方法以及小波多尺度边缘提取法等基础上,提出了最大成本法。该方法首先利用常规微分边缘提取法建立成本空间,然后对血管边缘进行区域划分,利用动态规划理论提取最大成本曲线作为指定血管的边缘。最大成本法不仅具有常规边缘提取方法的优点,而且其提取的边缘具有连续性、单像素宽等优点。
    4、血管直径测量与主干血管狭窄辅助诊断
    心血管直径测量和主干血管狭窄辅助诊断均是建立在心血管骨架和边缘提取的基础上。首先通过骨架对血管二次采样,在采样点处以血管两边缘间的最小距离作为该处直径,采用边缘直线拟合方法消除图像离散性给直径测量带来的误差影响。然后利用本文方法测得的血管直径对血管的狭窄进行了定量诊断,其结果与多位医生目视结果具有良好的一致性。
    5、心血管三维重建的初步研究
    本文对心血管三维结构模型,心血管三维重建过程模型,三维重建直径信息提取,血管树状结构描述做了初步研究。提出了采用二叉树结构对心血管图像进行结构描述、数据存贮、信息遍历,为三维重建骨架点匹配奠定了基础。
The heart vessel angiogram is the gold tool for diagnosing the presence of coronary artery disease. The traditional methods suffer from inter- and intra-observer variability, so it is very important to develop an objective and precise system to auto-diagnose coronary disease. The image of the 3-D heart vessel reconstructed from 2-D angiograms with different angles naturally and quantitatively depicts the vessel stenosis, and the 3D reconstruction is helpful to prevent and cure the stenosis. The procedure of the 3-D reconstruction is divided into two steps: one is to get the 2-D heart vessel informations from the angiogram; the other is to reconstruct 3D vessel. The main work of this thesis is carried out about the detection of the vessel skeleton and boundary, auxiliary diagnosis and of the stenosis of the main vessel and 3-D reconstruction. The works can be included in five parts as follows:
    1、Analysis of the intensity characters of the heart vessel angiogram
    The heart vessel angiogram is deeply analyzed on the base of the imaging theory and the vascular shape. Six intensity characteristics are acquired, which are the rules for the detection of the 2-D information in the angiogram.
    2、Detection of the heart vessel skeleton
    Image pre-processing technologies are firstly used to eliminate noise and enhance the image, such as Top-Hat transform, the rotated 1-D Gauss template and so on. Then the self-adaptive tracking circle template is addressed to extract the vessel area on the research of the self-adaptive threshold, maximum classes square error, et al. After initialized by manual supervision, it can get the vessel area from the angiogram enhanced by the rotated 1-D Gauss template. At last, the un-direct method that thins the vessel area as the skeleton is adopted on the research of the direct and un-direct methods. The connectivity-number thinning method is presented to skeletonize the vessel area. It possesses virtues of small computation, low time-cost, isotropy, and so on.
    3、Detection of the continuous vessel boundary
    The continuous vessel boundary is the base for measuring the diameter of the 3-D reconstruction and diagnosing the vessel stenosis. The Max-Cost(MC) is presented on the base of the studies of the traditional edge detecting methods and Wavelet. It is consisted of two steps: the fist step is that the cost field is built up by the traditional edge detecting method—differential method; The second step is that the boundary, the curve with maximal cost in the segmented area, is detected serially by the dynamic programming (DP). The MC inherits the merits of the traditional method, and its boundary is continuous and one-pixel wide. The minimal diameter of the vessels whose boundary can be detected reaches 1mm.
    4、The diameter measurement and auxiliary diagnose of the main vessel
    The diameter measurement and auxiliary diagnosis are based on the skeleton and
    
    
    continuous boundary of the heart vessel. The vessel is re-sampled by the skeleton, and the minimal distance of the vessel edge of the re-sampled point is defined as the corresponding vessel diameter. The linear fitting is used to weaken the discrete error of the diameter. Then the vessel diameter information detected by the above method is used to diagnose the vessel stenosis, and its result is well consistent with the diagnoses of experienced doctors.
    5、Research on the heart vessel 3-D reconstruction
    The model of the 3-D heart vessel and 3-D reconstruction, the measurement of the diameter for 3-D reconstruction and description of the vessel tree are briefly studied. This thesis presents that the binary tree is used to descript the vessel tree, store the data and traverse the information. It makes preparation for the matching of vessel skeleton point in the process of 3-D reconstruction and supplies a good data surface.
引文
[1] K. Haris, S. N. Efstratiadis, N. Maglaveras, et al, Automated coronary artery extraction using watersheds, IEEE Computers in Cardiology, 1997, 24:741~744
    [2] 赵学,现代介入心脏学实用技术,重庆:重庆出版社,1997
    [3] 马长生,介入心脏病学,北京:人民卫生出版社,1998
    [4] 夏志鸿,内科讲座第三卷,北京:人民卫生出版社,1981,235-236
    [5] 杨菊贤,张阳,心理行为因素与血管疾病的发生发展,中国行为医学科学,2002,11(2):121-122
    [6] 陈可翼,冠心病,北京:中国医药科技出版社,1999
    [7] 杜日映 李志立,冠状动脉造影的诊断意义及其局限性, 临床内科杂志,1997,14(1):7-9
    [8] 王祥,冯义柏,曹林生等,冠状动脉内支架置入术在冠心病治疗中的应用,临床心血管病杂志,2002,18(5):202-203
    [9] S. Eiho, Y. Qian, Detection of coronary atery tree using morphological operator, Computers in Cardiology, 1997, 24:525~528
    [10] J. W. Kennedy, L. D. Fisher, and T.Killip, Coronary angiography quality control in the case study in clinical diagnosis of atherosclerosis: Quantitative methods of evaluation, M. G. Bond, W. Insull, S. G.lagov, A. B. Chandler, and J. F. Comhill, Eds, New York: Springer-Verlag, 1983, 475~491
    [11] 陈明哲,胡旭东,介入性心脏病学,北京医科大学 中国协和医科大学出版社,1992
    [12] 王玉昆,虞乐华,计算机医用图像处理与识别(冠状动脉造影图象质量的改善以及血管直径的测试),计算机应用, 1995, 15(4):34~37
    [13] L. M. Zir, S. W. Miller, RE Dinsmore, et al. Interobserver Variability in Coronary Anigography, Circulation 1976, 53:627-32
    [14] T. DeRouen, et al, Variability in the Analysis of Coronary Arteriograms, Circulations, 1979, 55:324~328
    [15] K. M. Detre, E.Wright, M. L. Murphu and I. Iakaro, Observer agreement in evaluating coronary angiograms, Circulation, 1975, 25:979~986
    [16] B. Meier, A. R. Gruentzig, R. Pyle, Asessment of Stenoses in Coronary Angioplasty, Inter- and Introbserver Variability, International Journal of Cardiology, 1983, 3:159~169
    [17] R. T. Ritchings, A.C.F. Colchester, Detection of abnormalities on carotid angiograms, Patter Recognization Letter, 1986, 4:367~374
    
    
    
    [18] B. D. Thackray, A. C, Nelson, Semi-automatic segmentation of vascular network images using a rotating structuring element(ROSE) with mathematical morphology and dual feature thresholding, IEEE Transactions on Medical Imaging, 1993, l12:385~392
    [19] I. Liu, Y. Sun, Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme, IEEE Transaction on medical imaging, 1993, 12:334~341
    [20] I. Liu, Y. Sun, Recursive tracking of vascular trees in angiograms using a detection-deletion scheme, Engineering in medicine and biology society, 1990, Proceedings of the twelfth annyal international conference of the IEEE, 1990. 169~170
    [21] S. Aylward, S. Pizer, E. Bullitt, and D. Eberl, Intensity ridge and widths for tabular object segmentation and description, in Wksp om Math. Methods in biomedical image analysis, 1996.131~138,
    [22] D. J. Stevenson, L. D. R. Smith, G. Robison, Working towards the automatic detection of blood vessels in x-ray angiograms, Patter recognization letter, 1994 , l6:295~301
    [23] A. K. Klein, F. Lee, A. Amini, Quantitive coronary angiography with deformable spline models, IEEE Transactions on medical imaging, 1997, l16: 468~482
    [24] Hyun Wook Park, Todd Schoepfline, and Yongmin Kim, Active contour model with gradient directional information: directional snake. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(2):252~256
    [25] Amit Chakraboty, Lawrence H. Staib, Deformable Boundary Finding in Medical Images by Integrating Gradient and Region Infromation, IEEE Transactions on Medical Imaging, 1996, 15(6):859~868
    [26] S. A. Stansfiled, ANGY: A rule-Based expert System for automatic segmentation of coronary vessels from digital subtracted angiograms, PAMI, 1986, 8:188~199
    [27] C. Smets, G. Verbeeck, P. Suetens, and A. Oosterlinck, A knowledge-based system for the delineation of blood vessels on subtraction angiograms, Pattern Rec. Let., 1998, 8:113~121
    [28] R. Nekovei, Y. Sun, Back-propagation network and its configuration for blood vessel detection in angiograms, IEEE Transactions on neural networks. 1995, 6:64~72
    [29] V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active contours in image processing, NM, 1993, 66:1-32
    [30] R. Malladi, J. A. Sethian, and B.C. Vemuri, Shape modeling with front propagation: A level set approach, PAMI, 1995, 17:158~175
    [31] 韩超,岑人经,陈君楷,袁支润,吴校明,造影血管边缘检测方法研究,医用生物力学, 1995,10(4):209~214
    
    [32] 杨绍洲,李树祥, 数字减影图像中血管边缘的动态规划跟踪算法,中国医学物理学杂志, 1998,15(2):70-71
    [33] 张雅尼,于海霞,郑南宁,非平滑血管形态检测方法,中国图象图形学报,2002,7(7):643~648
    [34] 陆建荣,心血管图像的处理及边缘特征提取,[硕士学位论文],天津大学,2001
    [35] S. J. Chen, D. John, Carroll, 3-D reconstruction of coronary arterial tree to optimize angiographic visualization, IEEE Transaction on Medical Imaging, 2000,19(4):318~336
    [36] S. Y. James Chen, D. John. Carroll, J. C. Messenger, Quantitative analysis of reconstruction 3-D coronary arterial tree and intracoronary devices, IEEE Transaction on Medical Imaging, 2002,21(7):724~740
    [37] Farida Cheriet, Jean Meunier, Jacques Lesperance, et al, 3-D motion/structure estimation using temporal and stereoscopic point matching in biplane cineangiogaphy, Computers in Cardiology 1996, 409~412
    [38] P. Radeva, R. Toledo, C Von Land, et al. 3D vessel reconstruction from biplane angiograms using snakes, Computers in Cardiology, 1998, 25:773~776
    [39] 袁华,腾奇志等,边远检测及其在医学图像中的应用,生物医学工程学杂志,2001,18(1):149~153
    [40] 郭继鸿,王伟民,介入性心脏病学,中国科学技术出版社,1991
    [41] 王平,牟轩沁,数字X射线图像的成像分析及校正,中国图像图形学报, 2001,6A(2):148~151
    [42] Thrasyvoulos N. Pappas, Jae S. Lim, A new method for estimation of coronary artery dimensions in gangiogram, IEEE transactions on acoustic , speech , and signal processing, 1998, 36(9):1501-1513
    [43] P-A Doriot, P-A Dorsaz, L Dorsaz, et al. Overestimation of stenosis by single plane geometric measurement, Computers in Cardiology, 1996, 8(11):109~112
    [44] L. Zhou, M. S. Rzeszotarski, L. J. Singerman, et al, The detection and quantification of retinopathy using digital angiograms, IEEE Transaction on Medical Imaging, 1994, 13(4):619~626
    [45] Jos J.M. Westenberg, Rob J. van der Greet, Martin N.J.M. Wasser, et al, Vessel diameter measurement in gadolinium contrasted-enhanced three-dimensional MRA of peripheral arteries, Magnetic Resonance Imaging, 2000, 18:13~22
    [46] M. Sonka, M. D. Winniford, X. M. Zhang, et al, Lumen centerline detection in complex coronary angiogram, IEEE Transaction on Biomedical Engineering, 1994, 41(6):520~527
    [47] Rafael C. Geonzalez, Richard E. Woods著,数字图像处理,北京:电子工业出版社,2002,78~213
    [48] 荆仁杰,叶秀清,徐胜等,计算机图象处理,浙江:浙江大学出版社,1990
    
    [49] C. Gonzalez Rafael, Wintz Paul, Digital image processing, Massachusetts: Addsion-Wesley publishing company, 1977
    [50] Wang D C C, VAGNUCCI AH, LI CC, Gradient inverse weighted smoothing scheme and evaluation of its performances, CGIP 16:167~181
    [51] F. Tomita, S. Tsuji, Extraction of multiple regions by smoothing in selected neighborhoods, IEEE Transactions. Sys. Man. Cybern, 1977, 7:107~109
    [52] R. M. Haralich, L. Watson, A facet model for image data, CGIP, 1981, 15:113~129
    [53] J. S. Lee, Digital image smoothing and the sigma filter, CGIP, 1988, 24:255~269
    [54] 贾云得,机器视觉,北京:科学出版社,2000,65
    [55] 王风化,杨浩,图像增强技术的分析和比较,中国空间科学技术,1992,3:47-51
    [56] R. C. Gonzalez, R. E. Woods, Digital image processing(second edition), 北京:电子工业出版社,2001.519
    [57] R. M. Haralick, S. R. Steroberg, X. H. Zhang, Image analysis using mathematical morphology. IEEE Trans On PAMI, 1987, 9(4):532
    [58] S. Chaudhuri, S. Chatterjee, N. Katz, et al. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical imaging, 1989, 8(3):263-269
    [59] 徐智,郁道银,谢洪波,陈晓东,心血管造影图像中的心血管提取,中国生物医学工程学报, 2003,22(1):6~11
    [60] K. Haris, S. N. Efstratiadis, et al. Model-based morphological segmentation and labeling of coronary angiograms. IEEE Transactions on Medical Imaging, 1999, 18(10):1003-1014
    [61] 李鉴庆,左坤隆,图像阈值选取的一种快速算法,计算机与现代化,2001,6:11~15
    [62] 景晓军,蔡安妮,孙景鳌,一种基于二维最大类间方差的图像分割算法,通信学报,2001,22(4):71~77
    [63] 冯瑞,冯步云,熵,北京:科学出版社出版,1992
    [64] 李月景,图像识别技术及其应用,北京:机械工业出版社,1985
    [65] 章毓晋,图像分割,北京:科学出版社,2001
    [66] Klein a    [67] J. H. C. Reiber, et al., Coronary artery dimemsions from cineangiogram -methodology and validation of a computer-assisted analysis procedure, IEEE Transaction on medical imaging, 1984, 3:131~141
    [68] T. L. Free et al. Digital angiographic assessment of coronary arterial geometric diameter and videodensitometric cross-sectional area, Proc. SPIE, 1986, 626 :334~341
    
    [69] R. Fleagle et al, Automated analysis of coronary aterial morphology in cineangiograms: Geometric and physiological validation in humans, IEEE tansaction on medical imaging, 1989, 8:387~400,
    [70] D. B. Guo, P. Richardson, Automatic Vessel Extraction from Angiogram Images, Computers in Cardiology, 1998, 25:441~444
    [71] D. L. Pope, R. E. van Breee, and D. L. Parker, Automated edge detection in the analysis of cardiac function and coronary anatomy, Clinical applications of cardiac angiography, G. B. J. Mancini, Ed. New York: Raven Press, 1988, 55~86
    [72] L. Pederson, Mgrunkin, B. Ersboll, et al. Quantitative measurement of changes in retinal vessel diameter in ocular fundus images, Pattern Recognition Letters, 2000, 21:1215~1223
    [73] H. Green, M. Laifenfeld, S. Einav, and O. Barnea, Evaluation of center-line extraction algorithms in quantitative coronary angiography, IEEE Transaction on Medical Imaging, 2001, 20(2):928~941
    [74] 任金昌,赵荣椿,David D.Feng,一种基于标记的并行细化方法,电子学报,2001,28(11):9-11
    [75] 陈皓华,邢汉承,距离变换细化算法的改进及实现,小型微型计算机系统, 1996,17(3):6~12
    [76] 盛业华,郭达志,一种保形的数学形态学图像细化方法,中国矿业大学学报,1997,26(3):71-73
    [77] 崔屹,图像处理与分析-形态学方法及应用,科学出版社,2000
    [78] 谭兆信,丁国芳,张仁礼,一种图像细化算法及其在医学图像中的应用,中山大学学报, 2000,39(5):23~26
    [79] X. M. Zhang, M. C. Steve, S. Lilan, Tree pruning strategy in automated detection of coronary trees in cineangiograms, IEEE, 1995, 3:656~659
    [80] 伊平,王润生,自适应多尺度边缘检测,软件学报,2000,11(8):990~994
    [81] 曾少华,卢建军,基于Gabor滤波器的边缘检测方法,无线电工程,2000, 30(3):31~34
    [82] 罗强,任庆利,杨万海,基于分形理论的图像边缘提取,通信学报,2001, 22(11):104~109
    [83] 苏菲,孙景鳌,蔡安妮,基于分形模型的指纹图像中新三角区域的检测,北京邮电大学学报,2000,23(2):5~9
    [84] 李晓智,王兆理,李跃等,利用小波变换提取医用X光片图像边缘的研究,西南师范大学学报(自然科学版),2001,26(4):462~465
    [85] Kenneth. R. Castleman著,朱志刚等译,数字图像处理,北京:电子工业出版社,1998,261~302
    [86] 姬光荣,王国宇,王宁,基于小波变换的多尺度边缘检测,中国图象图形学报, 1997,2(1):717~720
    
    [87] 杨绍清,贾传荧,基于模湖判决的图像边缘连接,光学技术,2002, 28(2):108~110
    [88] 吴薇,图像处理中的模糊技术,现代电子技术, 2001,3:28~30
    [89] 孔祥维,谢存,徐蔚然,基于多特征和模糊推理的边缘检测,电子学报, 2000,28(6):36~39
    [90] M. Sonka, G.. K. Reddy, M. D. Winniford, et al. Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms. IEEE Transaction on Medical Imaging, 1997,16(1):87-95
    [91] S. Milan, K. R. Gautami, D. W. Michael, et al. Adaptive approach to accurate analysis of small-diameter vessels in cineangiograms, IEEE Trasactions on Medical Imaging, 1997,16(1):87~95
    [92] Beier, H. Oswald, E Fleck, Edge Detection for Coronary Angiograms: Error Correction and Impact of Derivatives, Computers in Cardiology1991, Proceedings, 23-26 Sep, 1991. 513~516
    [93] G. Brown, E. Bolson, M. Frimer, et al. Quantitative coronary arteriography estimation of dimensions , hemodynamic resistance, and atheroma mass of coronary artery lesions using the ateriogram and digital computation, circulations, 1977, 55:329~337
    [94] R. Spears, D. P. Sandor, A. Als, et al. Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms, Circulations, 1983, 68:453~461
    [95] H. Eichel, E. J. Delp, K. Koral, et al. Method of a fully automatic definition of coronary arterial edges from cineagiograms, IEEE Transactions on Medical Imaging, 1988, 7:313~320
    [96] A. Klein, T. K. Egglin, J. S Pollak, et al. Identifying vascular features with orientation specific filters and B-Spline snakes. Computers in Cardiology, 1994, 113-116
    [97] 夏利民,古士文,基于形变模型的图像分割和非刚性目标的跟踪,模式识别,2000,13(1):64~68
    [98] 周继鹏,耿国华,周明全,一种新的动态轮廓模型,计算机研究与发展, 1998,35(8):734~738
    [99] 田春秀行著,赫荣威等译,计算机图象处理技术,北京:北京师范大学出版社1988,105~110
    [100] 贾云得,机器视觉,北京:科学出版社,2000
    [101] 秦前清,杨宗凯,实用小波,西安:西安电子科技大学出版社,1994
    [102] 杨福生,小波变换的工程分析与应用,北京:科学出版社,1999
    [103] I. Daubechies, Where do wavelets come from? a personal point of view,Proceedings of the IEEE, 1996, 84(4):510-513,
    
    [104] Eita Alpha,彭嘉雄,小波多尺度方法用于边缘检测,华中科技大学学报,2001,29(5):74~76
    [105] A. Bezerianos, A. Munteanu, D. Alexopoulos, et al. Wavelet based edge detection method for analysis of coronary angiograms, Computers in Cardiology, 1995, 573~576
    [106] 黄晓凌,廖孟扬,覃家美等,基于小拨分析的X射线照片增强研究,武汉大学学报,1998,44(1):121~124
    [107] 韩超,陈君楷,袁支润等,造影血管边缘检测方法研究,医用生物动力学,1995,10(4):209~215
    [108] 陆宏波,施惠昌,基于小波变化的图像融合方法,电子工程师,2001, 27(5):54~57
    [109] 徐佩霞,孙功宪,小波分析与应用实例,中国科学技术大学出版社,1996
    [110] 王合,Liu W.Y. Magnin等,医学图像的快速最优化边缘检测,计算机学报, 1997,20(2):1063~1068
    [111] 邬正平,卜佳俊,陈纯,一种基于动态规划的视频分割方法,计算机辅助设计与图形学学报,2002,14(8):743~747
    
    [112] 王合,庄天戈,蒋大宗,基于动态规划的序列图像自动分割,电子学报, 1998,26(11):85~88
    [113] S. Chandran A. K. Potty, Energy minimization of contours using boundary conditions, IEEE Transactions on pattern analysis and machine intelligence, 1998, 20(5):546~549
    [114] 徐智,郁道银,谢洪波,陈晓冬等,造影图像中的心血管边缘提取,天津大学学报,2003, 36(3):296~299
    [115] 曹茂永,杨树病害孢子的图像处理与模式识别技术及测报模型的初步研究,博士学位论文,天津:天津大学,2001
    [116] 白玫,冯树理,彭明辰,一种提取数字减影图像血管边界方法的研究,医疗设备信息,2000,5:1~5
    [117] N. Alperin, K. R. Hoffmann, K. Doi, et al. Automated analysis of coronary lesions from cineangiograms using vessel tracking and iterative techniques, Computers in Cardiology, 19-22 Sep 1989, 153~156
    [118] A. Sarwal, A. P. Dhawan, Three dimensional reconstruction of coronary arteries from two views, Computer Methods Programs in Biomedicine ,2001,65:25-43
    [119] C. Seiler, R. L. Kirkeeide, and K. L. Gould. Basic structure-function relations of the epicardial coronary vascular tree: basis of quantitative coroanry arteriography for diffuse coronary artery tree, Circulation, 1992, 85(6):47~56
    [120] G. Coppini, M. Demi, A. Labbate, et al. Computational geometry of heart Surfaces, in computers in cardiology. Los Alamitos. CA: IEEE Compu. Soc., 1989. 293~296
    
    [121] A. A. Young and P. J. Hunter, Epicardial surface estimation from coronary angiograms, Innovation Technol. Biol. Med, 1994, 15(3):253~267
    [122] A. Wahle, E. Wellnhofer, I. Mugrargu, et al. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms, IEEE Transactions on Medical Imaging, 1995, 14:230~241
    [123] J. Wu, Q. Zhang, E. Vogelstein, et al. Validation study of 3-D reconstruction of coronary arteries, Computers in Cardiology 1990, Proceedings.23-26 Sep 1990, 321~324
    [124] D. M. Al-Faris, I. H. Zabalawi, M. J. Mismar, Estimation of coronary artery dimensions using stack filtering approach, Electronics, Circuits and Systems, 1999. Proceedings of ICECS’99, the 6th IEEE International Conference on, 1999, 1:75~79
    [125] W. E. Hart, Michael Goldbaum, et al. Measurement and classification of retinal vascular tortuosity, International Journal of Medical Informatics, 1999, 53:239~252
    [126] Geoffrey Dougherty, Jozsef Varro, A quantitative index for the measurement of the tortuosity of blood vessels, Medical Engineering & Physics, 2000, 22:567~574
    [127] A. Sarwal, A. P. Hhawan, Three dimensional reconstruction of coronary arteries from two views, Computer Methods and Programs in Biomedicine, 2001, 65:25-43
    [128] 彭延军, 石教英,体绘制技术在医学可视化中的新发展,中国图象图形学报,2002,7(12):1237~1246
    [129] 何小海,罗代升,陶青川等,三维虚拟物体表面重建的研究,中国图象图形学报,2002,7(11):1192~1197
    [130] 张宗华,多视场深度图像的计算机辅助造型,[博士论文],天津:天津大学,2000
    [131] 郝颖明,朱枫,欧锦军,目标位置测量中的三维视觉方法,中国图象图形学报,2002,7(12):1245~1251
    [132] 霍宇翔,丁宇,陈耘等,细化后畸变节点修正算法的研究,清华大学学报(自然科学版), 1997, 37(8):76~79
    [133] Xiaohong W. Gao, Anil Vharath, Alice Stanton, et al, Quantification and characterisation of arteries in retinal images, Computer Methods and Programs in Biomedicine, 2000, 63:133~146
    [134] Adrie C. M. Dumay, Rob J. van der Greest, Jan J. Berbrands, et al. Consistent inexact graph matching applied to labeling coronary segments in arteriograms, pattern recognition, Conference C: Image, Speech and Signal Analysis, Proceedings, 11th IAPR International Conference on 30 Aug-3 Sep 1992, 13:439~442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700