胸膜肺炎放线杆菌生物被膜突变体的筛选与生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae,APP)是猪传染性胸膜肺炎(porcine contagious pleuropneumonia,PCP)的病原菌,引起猪的一种高度接触传染性呼吸道疾病,给世界养猪业造成严重的经济损失。APP是猪呼吸道的专性寄生菌,通过空气和直接接触来传播。由于APP血清型众多,各血清型之间交叉保护力较低,传统的灭活疫苗和亚单位疫苗的效果均不理想。因此,迫切需要更安全、高效的新型疫苗来预防和控制该传染病的发生与流行。
     毒力因子的全面鉴定是病原菌致病机理研究和防治产品开发的基础。信号标签诱变(signature-tagged mutagenesis,STM)是一种经过优化的经典的转座子突变技术,可以用含多个序列标签的转座子构建病原菌的突变体库,通过宿主或实验动物来负向筛选致弱突变体,进而鉴定相关基因。自1995年首次建立以来,STM技术被广泛用于多种病原菌毒力相关基因的发掘与鉴定。
     很多病原菌为了适应体内外的环境会形成生物被膜(biofilm)。大量的研究表明,生物被膜的形成与病原菌的免疫逃避和抗药性有关,是影响感染的重要因素。本研究构建了APP血清1型的STM突变体库,从中筛选到2个生物被膜形成突变菌株,对突变基因进行了定位和克隆,对突变菌株的生物学特性进行了研究,为阐明APP生物被膜的形成机制提供了一定的试验数据。
     1.APP血清1型STM突变体库的构建
     以APP血清1型萘啶酸抗性菌株4074-N为受体菌,以携带mini-Tn10的标签质粒(pLOF/TAG1-48)的E.coli CC118λpir或Sm17-1λpir为供体菌,在或不在E.coli DH5α(pRK2073)的辅助下,进行三亲本或两亲本接合,通过转座子内携带的卡那霉素抗性筛选、氨苄青霉素负筛选、PCR和Southern杂交鉴定转座突变株。在APP与E.coli接合实验中,通过对两亲本接合与三亲本接合进行了比较,证明了两亲本接合的效率明显高于三亲本接合。用两亲本接合方法,构建了32个STM标签的APP突变体库,共得到1652个转座突变菌株(每个标签不少于50个突变体)。
     2.APP生物被膜形成突变体的筛选及插入失活基因的鉴定
     用96孔板法和试管法从上述APP血清1型4074-N株(不产生生物被膜)STM突变体库中筛选到两株能产生很强生物被膜的突变体,即STM1-21和STM6-42。提取突变体的基因组用转座子内的SspI酶切后进行自连接。以连接产物为模板,用转座子上的特异性引物STM10/11和STM10/12,通过反向PCR扩增,获得转座子插入位点两侧的基因片段。经DNA测序和BLAST分析,发现这两株突变体均为Mini-Tn10转座子插入失活编码一种类组氨酸核结构蛋白(Histone-like nucleoidstructuring protein)的hns基因造成的。PCR和Southern杂交进一步确定了插入突变体的正确性。
     3.APP H-NS的结构与功能的初步研究
     APP的hns基因编码一种135个氨基酸的类核结构蛋白H-NS,主要由三个结构域组成,即N端的聚合结构域、C端的DNA结合结构域和中间的柔性连接片段。通过N端的聚合结构域形成多聚体结构,C端的DNA结合结构域与靶基因结合而发挥调控作用。
     为了研究APP的hns基因的功能,将4074-N株的hns基因表达盒(包括其编码区、启动子和终止子序列)克隆到能穿梭质粒pJN105中,构建了一个重组表达质粒pJN-hns,分别电转化到hns转座突变菌株STM1-21(M)和亲本菌株4074-N(P)中,期望获得互补菌株(C-3)和过表达菌株(0-2);然后比较分析了上述四个菌株P、M、C-3和O-2的生长特性、生物被膜形成和毒力的变化,结果表明:4个菌株的体外生长速度未见明显差异;除突变菌株M外,其它3个菌株均不能形成可测的生物被膜;菌株M、C-3和O-2对小鼠的毒力和溶血活性均有不同程度的减弱。互补菌株和过表达菌株的上述表型均与预期的结果不一致。为了进一步解释这种现象,我们通过实时荧光定量RT-PCR分析了上述4个菌株中hns基因及两种重要毒力基因axpⅠA和axpⅡA的表达情况。结果显示,hns基因在C-3和O-2菌株中均有表达,但表达量均比亲本菌株P还要低,提示H-NS的缺失在C-3株中并没有得到有效互补,H-NS也没有在O-2株中过表达,C-3和O-2均表现为hns的下调表达菌株,这可能是因为hns基因的表达存在自调控机制,这种表达自调控机制在大肠杆菌中已有报道。此外,axpⅠA和axpⅡA的表达下调也初步解释了菌株M、C-3和O-2的毒力与溶血活性减弱现象。为了进一步研究H-NS蛋白对APP生物被膜形成的影响,本实验以APP血清1型4074株基因组DNA为模板,PCR扩增了408 bp的hns基因编码区,克隆到原核表达载体pET-28c中获得重组质粒pET28c-hns,转化大肠杆菌(Escherichia coli)BL21(DE3),经IPTG诱导表达和组氨酸亲和层析柱纯化获得大小约19 kD的重组蛋白rH-NS。将不同浓度的rH-NS添加到hns突变株1-21及其亲本菌株4074的培养基中,用微孔板法测定生物被膜的形成。结果显示,在不添加rH-NS时,4074株不能形成可见的生物被膜,而1-21株形成明显的生物被膜;在添加0.1~0.3μmol/L的rH-NS的情况下,1-21株生物被膜的形成量随着rH-NS浓度的升高而降低,而4074株随着rH-NS浓度的升高而升高;rH-NS添加量超过0.4μmol/L对两个菌株生物被膜形成未见明显影响。结果表明H-NS蛋白负调控APP生物被膜的形成,并呈现一定的剂量效应。可见,H-NS作为一种DNA结合蛋白,不仅可以调控其它重要基因的表达,其自身的表达也受到严格的调控。它所调控的靶基因及自身调控机制有待进一步研究。
Actinobacillus pleuropneumoniae(APP) is the causative agent of porcine contagious pleuropneumonia(PCP),a severe infectious respiratory disease of swine causing great economic losses to the pig industry worldwide.APP is obligatory parasitic bacteria of porcine respiratory,spreading through air and direct contact.Due to many distinct serotypes and lack of cross-protection among them,it is difficult to prevent and control the disease using traditional attenuated bacterins and/or subunit vaccines.So novel safe and effective vaccines are urgently needed to prevent and control this disease.
     The overall identification of virulence factors is the basis to understand the pathogenesis and develop new control products.Signature-tagged mutagenesis(STM) is an improved transposon mutagenesis technique.Using mini-transposon carrying different sequence tags,a series of transposal mutant pools could be constructed.Then attenuated mutant strains could be negatively selected from the mutant pools in host and/or experimental animals.Since the first application in 1995,STM is widely used to pick up the infecteion-associated genes in many kinds of bacteria.
     In order to adapt to the changed environments,many bacteria could form biofilms in vitro and in vivo.A plenty of evidence demonstrated that biofilm formation is involved in the immune escape and antibiotics resistance in many species of pathogenic bacteria.It plays an important role in the full infection and pathogenesis.
     In the present study,an STM mutant bank of APP serotype 1(a non-biofilm forming strain) was constructed.Two biofilm-forming mutant strains were identified from the mutant bank.The mutated gene was mapped,cloned and sequenced.Further characterization of the two biofilm-forming mutants provided useful experimental data to understand the mechanism of biofilm formation in this important pathogen.
     1.Constrcution of an STM mutant bank of APP serotype 1
     A nalidixic acid-resistant strain 4074-N of APP serotypes 1 was used as recipient strain to mate with E.coli CC 118λpir or Sm17-1λpir containing mini-Tn 10 tag plasmids pLOF/TAG1-48,with or without the help of E.coli DH5α(pRK2073).Mutant strains were screened by kanamycin resistance selection,ampicillin negative selection,PCR and Southern blot identification.In the mating experiments,the bi-parental mating was more effective and easy than tri-parental mating.Using the bi-parental mating method eatablished for APP,thirty two STM mutant pools have been constructed.Each pool contained at least 50 mutant strains.
     2.Screening of biofilm-producing mutants and identification of inactivated genes
     Using 96-well microtiter plate and glass tube assays,two strong biofilm-producing strains STM1-21 and STM6-42 were screened from the STM mutant pools described above.The genomic DNA of the mutants was extracted,digested with SspⅠlocated in the transposon,and self ligated.Using the ligated mixture as template,the both flank fragments of the transposon were amplified by reverse PCR with the transposon-specific primers STM10/11 and STM10/12 respectively.Sequence determination and analysis revealed that the hns gene encoding the histone-like nucleoid structuring protein(H-NS) was inactivated by the insertion of the mini-Tn10 transposon.Further PCR and Southern blots analysis confirmed the insertion.
     3.Structural and functional characterization of the hns gene in APP
     The hns gene of APP encodes a histone-like nucleoid structuring protein(H-NS) consisting of 135 amino acids.The H-NS protein consists of an N-terminal dimerization domain and a C-terminal nucleic acid-binding domain that are separated by a linker region.It can form homodimer,tetramer or oligomer via its N-terminal dimerization domain,and the C-terminal nucleic acid-binding domain is important to bind DNA in regulation of gene expression.
     In order to understand the function of the hns gene in APP,the hns expression cassette,containing the complete coding sequence of hns and its native promoter and terminator,was amplified from the genomic DNA of APP strain 4074-N,and then cloned into the shuttle vector pJN105.To obtain a complementary strain and an over-expressing strain,the resultant expression plasmid pJN-hns was transformed into the transposal mutant strain STM1-21(M) and parental strain 4074-N(P) respectively,resulting in strain C-3 and 0-2.The in vitro growth property,biofilm formation and virulence were compared among the 4 strains P,M,C-3 and O-2.The results showed that no obvious difference in the in vitro growth was observed among the four strains.Except strain M forming obvious biofilms in vitro,no biofilm formation was visible in the other three strains.The virulence was attenuated in the strains M,C-3 and O-2 when their haemolytic activity and 50%lethal doses in mice were compared with the parental strain P.In order to explain the tmexpected phenotypes of strains C-3 and O-2,Real-time RT-PCR analysis was performed to compare the expression levels of hns gene and the two major virulence genes apxⅠA and apxⅡA.The results showed that the hns gene was in deed expressed in strains C-3 and O-2,but their levels were lower than that in the parental strain P.This indicated that the hns deletion was not completely complemented in strain C-3,and hns was not overexpressed in strain O-2 as well.Both strains C-3 and O-2 were actually hns knockdown strains.This may be due to the auto-regulation mechanism of hns expression which was reported in E.coli previously.H-NS may regulate the expression of target genes in a dose dependent manner,and the down-regulation of the exotoxin genes(apxⅠA and apxⅡA) in the hns deletion and knockdown strains may partly contribute to the virulence attenuation.To further investigate the effect of H-NS on APP biofilm formation,the 408 bp complete coding sequence of hns gene was amplified by PCR from the genomic DNA of APP serotype 1 strain 4074 and cloned into the prokaryotic expression vector pET-28c.The resultant recombinant plasmid pET28c-hns was transformed into Escherichia coli BL21(DE3).A 19 kD of recombinant protein(rH-NS) was obtained by IPTG induction,and purified using the Ni-NTA agarose columns.Different concentrations of rH-NS were added into the culture medium of the hns transposal mutant strain 1-21 and its parental strain 4074, and biofilms were quantified using the microtiter plate biofilm assay.Without rH-NS in the medium,strain 1-21 formed obvious biofims,but strain 4074 did not.Supplemented with 0.1~0.3μmol/L rH-NS in the culture medium,the biomass of biofilms formed by strain 1-21 continuously decreased,whereas that formed by strain 4074 was increased. No obvious changes could be observed when more than 0.4μmol/L of rH-NS was supplemented in both strains.Results indicated that H-NS negatively regulates biofilm formation of A.pleuropneumoniae in a dose-dependent manner.Our data indicate that H-NS plays important roles in regulating biofilm formation and virulence in A. pleuropneumoniae.The H-NS regulated genes and regulatory mechanism need futher investigation.
引文
1.蔡宝祥.猪传染性胸膜肺炎的诊断与防治.辽宁畜牧兽医,1996,3:41-42
    2.陈凡,何启盖,陈焕春,刘正飞.猪胸膜肺炎放线杆菌血清型研究进展.动物医学进展,2004,25(1):43-45
    3.陈焕春主编.规模化猪场疫病控制与净化.北京:中国农业出版社,2000,273-276
    4.陈师勇,莫照兰,张振冬,邹玉霞,徐永立,张培军.细菌毒力基因体内表达检测技术研究进展.遗传,2005,27(3):505-511
    5.陈维贤,张莉萍.细菌生物被膜(bacterial biofilm)的研究进展.微生物学杂志,2004,24(1):46-48
    6.陈小玲,杨旭夫,朱士盛.猪传染性胸膜肺炎的流行现状和防制措施.中国兽医杂志,2001,37:33-35
    7.黄红亮.猪传染性胸膜肺炎鉴别诊断方法研究及胸膜肺炎放线杆菌外毒素单克隆抗体研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    8.何启盖,吴斌,吴信明,李英明,沈悦.猪接触传染性胸膜肺炎的防制现状.华中农业大学学报,2000,33(增刊):58-62
    9.晋爱兰,车京波,杨玫.猪附红细胞体和胸膜肺炎放线杆茵混合感染的诊断研究.中国动物检疫杂志,2004,21(6):36-37
    10.廖延雄.胸膜肺炎(嗜血杆菌)放线杆菌.江西畜牧兽医杂志,1994,1:1-9
    11.刘德松,王涛,陈建平,鲁芳,张雷,杨志伟.信号标签诱变突变体文库穿梭质粒构建.西部医学,2006,18(1):4-6
    12.逯忠新,赵萍,邵英德,柳纪省,鲁炳义,邱昌庆,李宝玉,叶培根,陈焕春,吴斌.猪传染性胸膜肺炎三价灭活疫苗的研究—效力、最小免疫量、免疫持续期和保存期试验.中国兽医科技,2002,32(5):8-10
    13.逯忠新,赵萍,邵英德,柳纪省,鲁炳义,邱昌庆,李宝玉,叶培根,陈焕春,吴斌.猪传染性胸膜肺炎三价灭活疫苗的研究—菌种选择、疫苗制备及安全性试验.中国兽医科技,2002,32(3):7-9
    14.斯特劳[美],阿莱尔[加],蒙加林[美],泰勒[英]主编;赵德明,张中秋,沈建中主译.猪病学(第八版).北京:中国农业大学出版社,2000,357-367
    15.唐俊妮.金黄色葡萄球菌耐热核酸酶相关基因的功能与特征分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    16.王春来,杨旭夫,刘杰.胸膜肺炎放线杆菌主要毒力因子的致病性及其免疫原性研究进展.预防兽医学进展,2001,3(2):10-12
    17.王贵平,何启盖,刘军发,刘正飞,吴斌,陈焕春,石勇,冷光敏.猪伪狂犬病和传染性胸膜肺炎混合感染.河北畜牧兽医,2004,20(7):33-34
    18.吴硕显.胸膜肺炎放线杆菌血清型的地理分布.中国兽医杂志,1995,21(1):13
    19.宣长和,孙福先,朱战波等主编.猪病学(第二版).北京:中国农业科学技术出版社,2003:119-122
    20.姚潇,王恒梁,杨伯伦,史兆兴,冯尔玲,苏国富,黄留玉.志贺菌福氏2a信号标签诱 变突变体文库的构建.生物技术通讯,2003,14(1):25-28
    21.张剑,刘顺猛,班亚臣,王彦波,张国江,邵海宁,王彦军.猪传染性胸膜肺炎与猪丹毒混合感染.河北畜牧兽医,2004,20(7):36
    22.张彦明,张耀相,刘春花,李健强.胸膜肺炎放线杆菌的分离鉴定及免疫预防.中国兽医科技,2002,32(5):21-22
    23.Ali A T,Ishihame A.Twelve species of the nucleid-asscociated protein from Eschetichia coli:sequence recognition specificity and binding affinity.J Biol Chem,1999,274:33105-33113
    24.Angen φ,Ahrens P,Jessing S G.Development of a multiplex PCR test for identification of Actinobacillus pleuropneumoniae serovars 1,7,and 12.Vet Microbiol,2008,doi:10.1016/j.vetmic.2008.05.010
    25.Atlung T,Ingmer H.H-NS:a modulator of environmentally regulated gene expression,Mol Microbiol,1997,24:7-17.
    26.Badaut C,Williams R,Arluison V,Bouffartigues E,Robert B,Buc H,Rimsky S.The degree of oligomerrization of the H-NS nucleoid structuring protein is related to specific binding to DNA.J Bio Chem,2002,227:41657-41666
    27.Baltes N,Tonpitak W,Gerlach GF,Hennig-Pauka I,Hoffmann-Moujahid A,Ganter M,Rothkotter H J.Actinobacillus pleuropneumoniae iron transport and urease activity:effects on bacterial virulence and host immune response.Infect Immun,2001,69(1):472-478
    28.Baltes N,Hennig-Pauka I,Gerlach G F.Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infections.FEMS Microbiol Lett,2002,209:283-287.
    29.Baltes N,Tonpitak W,Hennig-Pauka I,Gruber A D,Gerlach G F.Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence.FEMS Microbiol Lett,2003,220:41-48
    30.Baltes N,Hennig-Pauka I,Jacobsen I,Gruber A D,Gerlach G F.Identification of dimethyl sulfoxide reductase in Actinobacillus pleuropneumoniae and its role in infection,Infect Immun,2003,71:6784-6792
    31.Bandara AB,Lawrence ML,Veit HP,Inzana TJ.Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs.Infect Immun,2003,71(6):3320-3328
    32.Bertin P,Hommais F,Krin E,Soutourina O,Tendeng C,Derzelle S,Danchin A.H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism.Biochimie,2001,83:235-241
    33.Blackall P J,Klaasen H L,van den Bosch H,Kuhnert P,Frey J.Proposal of a new serovar of Actinobacillus pleuropneumoniae:serovar 15.Vet Microbiol,2002,84:47-52
    34.Bloch V,Yang Y,Margeat E,Chavanieu A,Auge M T,Robert B,Arold S,Rimsky S,Kochoyan M.The H-NS dimerization domain defines a new fold contributing to DNA reorganization.Nature Struct Biol,2003,10:212-218
    35.Bosse J T,Macinnes J I.Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection.Can J Vet Res,2000,64(3):145-150
    36.Bosse J T,Janson H,Sheehan B J,Beddek A J,Rycroft A N,Kroll J S,Langford P R.Actinobacillus pleuropneumoniae:pathobiology and pathogenesis of infection.Microbes and Infection,2002,4:225-235
    37.Boucrot E,Henry T,Borg J P,Gorvel J P,Meresse S.The intracellular fate of Salmonella depends on the recruitment of kinesin.Science,2005,308:1174-1178
    38.Buettner F F,Maas A,Gerlach G F.An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation.Vet.Microbiol,2008,127:106-115
    39.Caetano-Anolles,G.Amplifying DNA with arbitrary oligonucleotide primers.PCR Methods Applic.1993,3:85-94
    40.Camacho L R,Ensergueix D,Perez E,Gicquel B,Guilhot C.Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis.Mol.Microbiol,1999,34:257-267
    41.Cases I,de Lorenzo V.The genomes of Pseudomonas encode a third HU protein.Microbiology,2002,148:1243-1245
    42.Chang C F,Yeh T M,Chou C C,Chang Y F,Chiang T S.Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan.Vet Microbiol,2002,84(1-2):169-177
    43.Chin N,Frey J,Chang C F,Chang Y F.Identification of a locus involved in the utilization of iron by Actinobacillus pleuropneumoniae.FEMS Microbiol Lett,1996,143(1):1-6
    44.Clutterbuck A L,Woods E J,Knottenbelt D C,Clegg P D,Cochrane C A,Percival S L.Biofilms and their relevance to veterinary medicine.Vet.Microbiol,2007,121:1-17
    45.Costerton J W,Cheung W,Geesey G G.Bacterial biofilm in nature and disease.Ann Rev Microbiol,1987,41:435-438
    46.Costerton J W,Leandowski Z,Caldwell D E,Korber D R,Lappin-Scott H M.Microbial biofilm.Ann Rev Microbiol,1995,49:711-713
    47.Costerton J W,Stewart P S,Greenberg E P.Bacterial biofilms:a common cause of persistent infections.Science,1999,284:1318-1322
    48.Costerton J W,Stewart P S.Battling biofilms.Sci Am,2001,285:74-81
    49.Cox J S,Chen B,McNeil M,Jacobs W R Jr.Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.Nature,1999,402:79-83
    50.Crisona N J,Strick T R,Bensimon D,Croquette V,Cozzarelli N R.Preferential relaxation of positively supercoiled DNA by E.coli topoisomerase Ⅳ in single-molecule and ensemble measurements.Genes Dev,2000,14(22):2881-92
    51.Cruijsen T,van Leengoed L A,Kamp E M,Bartelse A,Korevaar A,Verheijden JH.Susceptibility to Actinobacillus pleuropneumoniae infection in pigs from an endemically infected herd is related to the presence of toxin-neutralizing antibodies.Vet Microbiol,1995,47(3-4):219-228
    52.Cury J A,Koo H.Extraction and purification of total RNA from Sreptococcus mutans biofilms.Analytical Biochemistry,2007,365(2):208-214
    53.Dame R T,Wyman C,Wurm R,Wagner R,Goosen N.Structual basis for H-NS-mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1.J Biol Chem,2002,227:2146-2150
    54.Davey M E,O'Toole G.A.Microbial biofilms:from ecology to molecular genetics.Microbiol Mol Biol Review,2000,64:847-867
    55.Davies D G,Parsek M R,Person J P,Iglewski B H,Costerton J W,Greenberg E P.The involvement of cell-to-cell signals in the development of a bacterial biofilm.Science,1998,280:295-298
    56.De Beer D,Stoodley P,Lewandowski Z.Effects of biofilm structures on oxygen distribution and mass transport.Biotechnol.Bioeng,1994,43:1131-1138
    57.Dehio C,Meyer M.Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli.J Bacteriol,1995,179:538-540
    58.Deighan P,Beloin C,Dorman C J.Three-way interactions among the Sfh,StpA and H-NS nucleoid-associated proteins of Shigella flexneri 2a strain 2457T.Mol Microbiol,2003,48(5):1401-1416
    59.Deneer H G,Potter A A.Effect of iron restriction on the outer membrane proteins of Actinobacillus(Haemophilus) pleuropneumoniae.Infect Immun,1989,57(3):798-804
    60.Devenish J,Rosendal S,Bosse J T.Humoral antibody response and protective immunity in swine following immunization with the 104-kilodalton hemolysin of Actinobacillus pleuropneumoniae.Infect Immun,1990,58(12):3829-3832
    61.Dom P,Haesebrouck F,Kamp E M,Smits M A.NAD-independent Actinobacillus pleuropneumoniae strains:production of RTX toxins and interactions with porcine phagocytes.Vet Microbiol,1994,39(3-4):205-218
    62.Donato G M,Kawula T H.Enhanced binding of alterd H-NS protein to flagellar rotor protein FilG caused increased flagellar rotational speed and hyper motility in Escherichia coli.J Bio Chem,1998,108:420-425
    63.Dorman C J,Hinton J C D,Free A.Domain organization and oligomerizaion among H-NS-like nucleoid associated proteins in bacteria.Trends Microbiol,1999,7:124-128
    64.Dorman C J,Mckenna S,Beloin C.Regulation of virulence gene expression in Shigella flexneri,a facultative intracellular pathogen.Int J Med Microbiol,2001,291:89-96
    65.Dorman C J,Deighan P.Regulation of gene expression by histone-like proteins in bacteria.Curr Opin Genet Dev,2003,13:179-184
    66.Dorman C J.H-NS:A universal regulator for a dynamic genome.Nature Reviews Microbiol,2004,2:391-400
    67.Dorman C J.Probing bacterial nucleoid structure with optical tweezers.BioEssays,2007,29:212-216
    68.Dubreuil J D,Jacques M,Mittal K R,Gottschalk M.Actinobacillus pleuropneumoniae surface polysaccharides:their role in diagnosis and immunogenicity.Anim Health Res Rev,2000,1(2):73-93
    69.Falconi M,Gualteri M T,La Teana A,Losso M A,Pon C L.Protein from the prokaryotic nucleiod:primary and quaternary structure of the 15-kD Escherichia coli DNA binding protein H-NS.Mol Microbiol,1988,2:323-329
    70.Falconi M,Higgins N P,Spurio P,Pon C L,Gualerzi C O.Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression.Mol Microbiol,1993,10(2):273-282
    71.Fenwick B W,Osburn B I,Olander H J.Isolation and biological characterization of two lipopolysaccharides and a capsular-enriched polysaccharide preparation from Haemophilus pleuropneumoniae.Am J Vet Res,1986b,47(7):1433-1441
    72.Fenwick B W,Henry S.Porcine pleuropneumoniae.JAVMA,1994,204:1334-1340
    73.Fey A,Eichler S,Flavier S,Christen R,H(o|¨)fle M G,Guzman G A.Establishment of a Real-Time PCR-Based Approach for Accurate Quantification of Bacterial RNA Targets in Water,Using Salmonella as a Model Organism.Appl Environ Microbiol,2004,70(6):3618-3623
    74.Fleige S,Pfaffl M W.RNA integrity and the effect on the real-time qRT-PCR performance.Mol.Aspects Med,2006,27:126-139
    75.Frey J,Beck M,van den Bosch J F,Segers R P,Nicolet J.Development of an efficient PCR method for toxin typing of Actinobacillus pleuropneumoniae strains.Mol Cell Probes,1995a,9(4):277-282
    76.Frey J.Virulence in Actinobacillus pleuropneumoniae and RTX toxins.Trends Mierobiol,1995b,3:257-261
    77.Frey J,Bosse J T,Chang Y F,Cullen J M,Fenwick B,Gerlach G F,Gygi D,Haesebrouck F,Inzana T J,Jansen R.Actinobacillus pleuropneumoniae RTX-toxins:uniform designation of haemolysins,cytolysins,pleurotoxin and their genes.J Gen Microbiol,1993,139(8):1723-1728
    78.Frey J,Kuhnert P,Villiger L,Nicolet J.Cloning and characterization of an Actinobacillus pleuropneumoniae outer membrane protein belonging to the family of PAL lipoproteins.Res Microbiol,1996,147(5):351-361
    79.Fuller T E,Kennedy M J,Lowery D E.Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis.Microb Pathog,2000,29(1):25-38
    80.Fuller T E,Martin S,Teel J F,Alaniz G R,Kennedy M J,Lowery D E.Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model.Microb Pathog,2000,29(1):39-51
    81.Gerlach G F,Anderson C,Klashinsky S,Rossi-Campos A,Potter A A,Willson P J.Molecular characterization of a protective outer membrane lipoprotein(Om1A) from Actinobacillus pleuropneumoniae serotype 1.Infect lmmun,1993,61(2):565-572
    82.Gerlach G F,Anderson C,Potter A A,Klashinsky S,Willson P J.Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae.Infect Immun,1992,60(3):892-898
    83.Grompone G,Bidnenko V,Ehrlich S D,Michel B.PriA is essential for viability of the Escherichia coli topoisomerase Ⅳ parE10(Ts) mutant.J Bacteriol,2004,186(4);1197-1199
    84.Gunnarsson A,Hurvell B,Biberstein E L.Serologic studies of Haemophilus parahaemolyticus (pleuropneumoniae):antigenic specificity and relationship between serotypes.American Journal of Veterinary Research,1978,39(8):1286-1292
    85.Gutierrez C B,Rodriguez Barbosa J I,Tascon R I,Costa L,Riera P,Rodriguez Ferri E F.Serological characterization and antimicrobial susceptibility of Actinobacillus pleuropneumoniae strains isolated from pigs in Spain.Vet Rec,1995,137(3):62-64
    86.Habash M,Reid G.Microbial Biofilms:Their development and significance for medical device-related Infections.J Clin Pharmacol,1999,39(9):887-898
    87.Habrun B,Bilic V,Humski A.Comparison of ELISA and 2-META assays used in serological diagnosis of infection with Actinobacillus pleuropneumoniae serotypes 2 and 4-7 in breeding pigs in Croatia.Prey Vet Med,1998,36(3):179-186
    88.Haesebrouck F,Chiers K,Van Overbeke I,Ducatelle R.Actinobacillus pleuropneumoniae infections in pigs:the role of virulence factors in pathogenesis and protection.Vet Microbiol,1997,58(2-4):239-249
    89.Handfield M,Brady L J,Progulske Fox A,Hillman J D.IVIAT a novel method to identify microbial genes expressed specifically during human infections.Trends Microbiol,2000,8(7):336-339
    90.Heithoff D M,Conner C P,Hanna P C,Julio S M,Hentschel U,Mahan M J.Bacterial infection as assessed by in vivo gene expression.Proc Natl Acad Sci USA,1997,94:934-939
    91.Hennessy K J,Iandolo J J,Fenwick B W.Serotype identification of Actinobacillus pleuropneumoniae by arbitrarily primed polymerase chain reaction.J Clin Microbiol,1993,31(5):1155-1159
    92.Hensel M,Shea J E,Gleeson C,Jones M D,Dalton E,Holden D W.Simultaneous identification of bacterial virulence genes by negative selection.Science,1995,269(5222):400-403.
    93.Hill C E,Metcalf D S,MacInnes.A search for virulence genes of Haemophilus parasuis using differential display RT-PCR.Vet Microbiol,2003,96:189-202.
    94.Inzana T J,Todd J,Ma J N,Veit H.Characterization of a non-hemolytic mutant of a Actinobacillus pleuropneumoniae serotype 5:role of 110 kDa hemolysin in virulence and immunoprotection.Microb.Pathog,1991,10:281-296
    95.Inzana T J,Todd J,Veit H P.Safety,stability,and efficacy of noncapsulated mutants of Actinobacillus pleuropneumoniae for use in live vaccines.Infect Immun,1993,61(5):1682-1686
    96. Ito H, Uchida I, Sekizaki T, Ooishi E, Kawai T, Okabe T, Taneno A, Terakado N. Molecular cloning of an Actinobacillus pleuropneumoniae outer membrane lipoprotein (OmlA) from serotype 5a. Microb Pathog, 1995, 18(1): 29-36
    
    97. Izano E A, Sadovskaya I, Vinogradov E, Mulks M H, Velliyagounder K, Ragunath C, Kher W B, Ramasubbu N, Jabbouri S, Perry M B, Kaplan J B. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistence in Actinobacillus pleuropneumoniae. Microb Pathog, 2007, 43:1-9
    
    98. Jacobsen I, Hennig-Pauka I, Baltes N, Trost M, Gerlach G F. Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence. Infect Immun, 2005, 73(1): 226-234
    
    99. Jansen R, Briaire J, Smits H E, Dom P, Haesebrouck F, Kamp E M, Gielkens A L, Smits M A. Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or killed porcine neutrophils. Infect Immun, 1995, 16(1):27-37
    
    100. Jensen A E, Bertram T A. Morphological and biochemical comparison of virulent and avirulent isolates of Haemophilus pleuropneumoniae serotype 5. Infect Immun, 1986, 51(2): 419-424
    
    101. Jin H, Zhou R, Kang M, Luo R, Cai X, Chen H. Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Vet Microbiol, 2006, 118:117-123
    
    102. Johansson J, Uhlin B E. Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary phase survival of Escherichia coli. Proc Natl Acad Sci USA, 1999, 96: 10776-10781
    
    103. Johansson J, Balsalobre C, Wang S Y, Urbonaviciene J, Jin D J, Sonden B, Uhlin B E. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p) ppGpp regulons in Escherichia coli. Cell, 2000, 102: 475-485
    
    104. Johansson J, Eriksson S, Sonden B, Wai S N, Uhlin B E. Heteromeric interactions among nucleiod-associated bacterial protein: localization of StpA-stabilizing regions in H-NS of Escherichia coli. J Bacteriol, 2001, 183:2343-2347
    
    105.Jolie R A, Mulks MH, Thacker B J. Antigenic differences within Actinobacillus pleuropneumoniae serotype 1. Vet. Microbiol, 1994, 38, 329-349
    
    106. Juarez A, Nieto JM, Prenafeta A, Miquelay E, Balsalobre C, Carrascal M, Madrid C. Interaction of the nucleoid-associated proteins Hha and H-NS to modulate expression of the hemolysin operon in Escherichia coli. Adv Exp Med Biol, 2000, 485:127-131
    
    107. Kamp E M, Popma J K, Van Leengoed L A. Serotyping of Haemophilus pleuropneumoniae in the Netherlands, with emphasis on heterogeneity within serotype 1 and (proposed) serotype 9. Vet. Microbiol, 1987,13 (3): 249-257
    
    108. Kamp E M, Stockhofe-Zurwieden N, van Leengoed L A, Smits M A. Endobronchial inoculation with Apx toxins of Actinobacillus pleuropneumoniae leads to pleuropneumonia in pigs. Infect Immun, 1997, 65 (10): 4350-4354
    109. Kaplan J B, Velliyagounder K, Ragunath C, Rohdeh H, Mack D, Knobloch J K, Ramasubbu N. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol, 2004, 186:8213-8220
    
    110. Kaplan J B, Mulks M H. Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Vet. Microbiol, 2005, 108: 89-94
    
    111. Driffield K, Miller K, Bostock J M, O'Neill A J, Chopra I. Increased mutability of Pseudomonas aeruginosa in biofilms. Microb. Pathog, 2007, 43:1-9
    
    112. Kirkpatrick B D, McKenzie R, O'Neill J P, Larsson C J, Bourgeois A L, Shimko J, Bentley M, Makin J, Chatfield S, Hindle Z, Fidler C, Robinson B E, Ventrone C H, Bansal N, Carpenter C M, Kutzko D, Hamlet S, LaPointe C, Taylor D N. Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine, 2006, 24:116-123
    
    113. Kjelleberg S, Molin S. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin .Microbiol, 2002, 5(3):254-258
    
    114. Kleerebezem M, Quadri Luis E N, Kuipers O P, de Vos W M. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol, 1997,24:895-904
    
    115. Komal J P, Mittal K R. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet Microbiol, 1990, 25(2-3): 229-240
    
    116. Kumar C G , Anand S K. Significance of microbial biofilm in food industry: a review. Inter J Food Microbiol, 1998, 42:9-27
    
    117. Lammi M, Paci M, Pon C L, Losso M A, Miano A, Pawlik R T, Gianfranceschi G L, Gualerzi C O. Proteins from the prokaryotic nucleoid: biochemical and 1H NMR studies on three bacterial histone-like proteins. Adv Exp Med Biol, 1984, 179:467-477
    
    118. Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi C O, Mavathur R, Muskhelishvili G, Pon C L, Rimsky S, Stella S, Babu M M, Travers A. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Research, 2007, 35(18):6330-6337
    
    119. Langford P R, Loynds B M, Kroll J S. Cloning and molecular characterization of Cu, Zn superoxide dismutase from Actinobacillus pleuropneumoniae. Infect Immun, 1996, 64: 5035-5041
    
    120. Lawrence J R, Korber D R, Hoyle B D, Costerton J W, Caldwell D E. Optical sectioning of microbial biofilms. J Bacteriol, 1991, 173 (20): 6558-6567
    
    121.Levonen K, Seppanen J, Veijalainen P. Antibodies against 12 serotypes of Actinobacillus pleuropneumoniae in finish slaughter sows. Zentralbl Veterinarmed B, 1996, 43(8): 489-495
    
    122. Li L, Zhou R, Li T, Kang M, Wan Y, Xu Z, Chen H. Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant (J). Microbial Pathogenesis, 2008, 45:192-200
    123. Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol, 2007, 66(3):685-698
    
    124. Luijsterburg M S, Noom M C, Wuite G J L, Dame R T.The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective. J Struct Biol, 2006, 156:262-272
    
    125.Macinnes J I, Rosendal S. Analysis of major antigens of Haemophilus (Actinobacillus) pleuropneumoniae and related organisms. Infect Immun, 1987, 55(7): 1626-1634
    
    126. Madrid C, Garcia J, Pons M, Jua'rez A. Molecular Evolution of the H-NS Protein: Interaction with Hha-Like Proteins Is Restricted to Enterobacteriaceae.J Bacteriol, 2007, 189(1): 265-268
    
    127. Mahan M J, Slauch J M, Mekalanos J J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 1993,259: 686-688
    
    128. Mah T F, O'ootie G A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol, 2001, 9:34-39
    
    129. McClintock B: Carnegie Institute of Washington Yearbook. 1948, 47:155-169
    
    130. Mikael L G, Pawelek P D, Labrie J E, Sirois M, Coulton J W, Jacques M. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. Microbiology, 2002, 148: 2869-2882
    
    131. Min K, Chae C. Serotype and apx genotype profiles of Actinobacillus pleuropneumoniae field isolates in Korea. Vet Rec, 1999, 145 (9): 251-254
    
    132. Mittal K R, Higgins R, Lariviere S, Nadeau M. Serological characterization of Actinobacillus pleuropneumoniae strains isolated from pigs in Quebec. Vet Microbiol, 1992, 32(2): 135-148
    
    133. Moller S, Sternberg C, Andersen J B, Cristensen B B, Ramos J L, Givskov M, Molin S. In situ gene expression in mixed-culture biofilm: Evidence of Metabolic Interactions between Community Members. Appl Environ Microbiol, 1998, 64(2):721-732
    
    134. Mulks M H, Moxon E R, Bricker J, Wright A, Plaut A G Examination of Haemophilus pleuropneumoniae for immunoglobulin A protease activity. Infect Immun, 1984, 45(1): 276-277
    
    135. Mulks M H, Buysse J M. A targeted mutagenesis system for Actinobacillus pleuropneumoniae. Gene, 1995, 165:61-66
    
    136. Navarre W W, McClelland M, Libby S J, Fang F C. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfers in bacteria by a defense system that recognizes foreign DNA. Genes Dev, 2007, 21:1456-1471
    
    137. Negrete-Abascal E, Tenorio V, Garcia C, Godinez D, Serrano J J, de la Cuadra J A, De la Garza M A. Actinobacillus pleuropneumoniae: virulence and gene cloning. Arch Med Res, 1994, 25 (2): 229-233
    
    138. Negrete-Abascal E, Reyes M E, Garcia R M, Vaca S, Giron J A, Garcia O, Zenteno E, De La Garza M. Flagella and Motility in Actinobacillus pleuropneumoniae. J Bacteriol, 2003, 185(2): 664-668
    
    139. Nicolas A, Alain C. Lesson from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiology Reviews, 2005, 29: 703-717
    140.Nielsen K K,Boye M.Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions.Appl.Environ.Microbiol,2005,71:2949-2954
    141.Nielsen R.Pleuropneumonia of swine caused by Haemophilus parahaemolyticus:Studies on the protection obtained by vaccination.Nord Vet Med,1976,28(7-8):337-348
    142.Nielsen R.Haemophilus pleuropneumoniae serotypes-cross protection experiments.Nord Vet Med,1984,36(7-8):221-234
    143.Nielsen R.Haemophilus pleuropleumoniae(Actinobacillus pleuropleumoniae) serotype 8、3and 6 serological responses and cross immunity in pigs.Nord vet Med,1985,37(4):217-227
    144.Nielsen R,Plambeck T,Foged N T.Blocking enzyme-linked immunosorbent assay for detection of antibodies against Actinobacillus pleuropneumoniae serotype 8.Vet Microbiol,1993,34(2):131-138
    145.Nielsen R,Andresen L O,Plambeck T,Nielsen J P,Krarup L T,Jorsal S E.Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains isolated from pigs in two Danish herds.Vet Microbiol,1997,54(1):35-46
    146.Nielsen R,van den Bosch J F,Plambeck T,Sorensen V,Nielsen J P.Evaluation of an indirect enzyme-linked immunosorbent assay(ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae.Vet Microbiol,2000,71(1-2):81-87
    147.Nieto J M,Madrid C,Miquelay E,Parra J L,Rodriguez S,Juarez A.Evidence for direct protein-protein interaction between members of the Enterobacterial Hha/YomA and H-NS families of proteins.J Bacterial,2002,184:629-635
    148.Niven D F,Donga J,Archibald F S.Responses of Haemophilus pleuropneumoniae to iron restriction:changes in the outer membrane protein profile and the removal of iron from porcine transferrin.Mol Microbiol,1989,3(8):1083-1089
    149.Nivens D E,Ohman D E,Williams J,Franklin M J.Role of alginate and its O acetylation in formation of Pseudomonas aeruginos microcolonies and biofilms.J Bacteriol,2001,183:1047-1057
    150.Ohba T,Shibahara T,Kobayashi H,Takashima A,Nagoshi M,Osanai R and Kubo M.Multifocal Granulomatous Hepatitis Caused by Actinobacillus pleuropneumoniae Serotype 2 in Slaughter Pigs(J).J Compara Pathol,2008,139:61-66
    151.Oswald W,Tonpitak W,Ohrt G,Gerlach G.A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker.FEMS Microbiol Lett,1999,179:153-160
    152.O'Toole G A,Kolter R.Initiation of biofilm formation in Pseudomonas fluorescens WCS365proceeds via multiple,convergent signaling pathways:a genetic analysis.Mol Microbiol,1998,28:449-461
    153.O'Toole G,Kaplan H B,Kolter R.Biofilm formation as microbial development.Annu Rev Microbiol,2000,54:49-79
    154. Paradis S E, Dubreuil D, Rioux S, Gottschalk M, Jacques M. High molecular mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells. Infect Immun, 1994,62 (8): 3311-3319
    
    155. Paradis S E, Dubreuil J D, Gottschalk M, Archambault M, Jacques M. Inhibition of adherence of Actinobacillus pleuropneumoniae to porcine respiratory tract cells by monoclonal antibodies directed against LPS and partial characterization of the LPS receptors. Curr Microbiol, 1999, 39 (6): 313-320
    
    156. Parsek M R, Singh P K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol, 2003, 57:677-701
    
    157. Mazurkiewicz P, Tang C M, Boone C, Holden D W. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nature Genet, 2006, 7:929-939
    
    158. Muller CM, Dobrindt U, Nagy G, Emody L, Uhlin BE, Hacker J. Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli. J Bacteriol, 2006, 188(15):5428-5438
    
    159. Pohl S, Bertschinger H U, Frederiksen W, Manheim W. Transfer of Haemophilus pleuropneumoniae and the Pasteurella haemolytica-like organism causing porcine necrotic pleuropneumonia to the genus Actinobacillus (Actinobacillus pleuropneumoniae comb. Nov.) on the basis of phenotypic and deoxyribonucleic acid relatedness. Inst J Syst Bacteriol, 1983, 33: 510-514
    
    160. Pol J M, van Leengoed L A, Stockhofe N, Kok G, Wensvoort G. Dual infections of PRRSV/influenza or PRRSV/Actinobacillus pleuropneumoniae in the respiratory tract. Vet Microbiol, 1997, 55(1-4): 259-264
    
    161. Radonic'A, Thulke S, Mackay I M, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem.Biophys.Res.Commun, 2004,313:856-862
    
    162. Rapp V J, Ross R F. Antibody response of swine to outer membrane components of Haemophilus pleuropneumoniae during infection. Infect Immun, 1986, 54(3): 751-760
    
    163. Reimer D, Frey J, Jansen R, Veit H P, Inzana T J. Molecular investigation of the role of ApxI and Apx II in the virulence of Actinobacillus pleuropneumoniae serotype 5. Microb Pathog, 1995, 18 (3): 197-209
    
    164. Renzoni D, Esposito D, Pfuhl M, Hinton J C D, Higgins C F, Driscoll P C, Ladbury J E. Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS J Mol Biol ,2001, 306:1127-1137
    
    165.Rimsky S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol, 2004, 7:109-114
    166. Rioux S, Begin C, Daniel Dubreuil J, Jacques M. Isolation and characterization of LPS mutants of Actinobacillus pleuropneumoniae serotype 1. Curr Microbiol, 1997, 35 (3): 139-144
    167.Rioux S,Galarneau C,Harel J,Kobisch M,Frey J,Gottschalk M,Jacques M.Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1.Microb Pathog,2000,28(5):279-289
    168.Rycroft A N,Garside L H.Actinobacillus species and their role in animal disease.Vet.J,2000,159,18-36
    169.Thune R L,Fernandez D H,Benoit J L,Smith M K,Rogge M L,Booth N J,Landry C A,Bologna R A.Signature-tagged mutagenesis of Edwardsiella ictaluri identifies virulence-related genes,Iincluding a Salmonella pathogenicity island 2 Class of type Ⅲ secretion systems.Appl Environ Mmicrobiol,2007,73(24):7934-7946
    170.Saenz H L,Dehio C.Signature-tagged mutagenesis:technical advances in a negative selection method for virulence gene identification.Curr Opin Microbiol,2005,8(5):612-619
    171.Satran P,Nedbalcova K,Kucerova Z.Comparison of protection efficacy of toxoid and whole-cell vaccines against porcine pleuropneumonia caused by endotracheal infection with Actinobacillus Pleuropneumoniae.Acta Vet Brno,2003,(72):213-219
    172.Schaller A,Kuhn R,Kuhnert P,Nicolet J,Anderson T J,MacInnes J I,Seger R P A M,Frey J.Characterization of apxⅣA,a new RTX determinant of Actinobacillus pleuropneumoniae.Microbiology,1999,145(8):2105-2116
    173.Schaller A,Djordjevic S P,Eamens G J,Forbes W A,Kuhn R,Kuhnert P,Gottschalk M,Nicolet J,Frey J.Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxⅣA.Vet Microbiol,2001,79(1):47-62
    174.Schroder O,Wagner R.The bacterial regulatory protein H-NS:a versatile modulator of nucleic acid structures.Biol Chem,2002,383:945-960
    175.Scotta M E,Melton-Celsab A R,O'Brienb A D.Mutations in hns reduce the adherence of Shiga toxin-producing E.coli 091:H21 strain B2F1 to human colonic epithelial cells and increase the production of hemolysin.Microb Pathog,2003,34:155-159
    176.Sebunya T N,Saunders J R.Haemophilus pleuropneumoniae infection in swine:a review.J Am Vet Med Assoc,1983,182:1331-1337
    177.Sheehan B J,Bosse J T,Beddek A J,Rycroft A N,Kroll J S,Langford P R.Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host.Infect.Immun,2003,71:3960-3970
    178.Shusuke O N O,Goldberg M D,Olsson T,Esposito D,Hinton J C D,Ladbury J E.H-NS is a part of a thermally controlled mechanism for bacterial gene regulation.Biochem.J,2005,391:203-213
    179.Sidibe M,Messier S,Lariviere S,Gottschalk M and Mittal KR.Detection of Actinobacillus pleuropneumoniae in the porcine upper respiratory tract as a complement to serological tests.Can J Vet Res,1993,57:204-208
    180.Singh R K,Liburd J,Wardle S J,Haniford D B.The nucleoid binding protein H-NS acts as an anti-channeling factor to favor intermolecular Tn10 transposition and dissemination.Mol.Biol,2008,376:950-962
    181.Spurio R,Falconi M,Brandi A,Pon C L,Gualerzi C O.The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending.EMBOJ,1997,16:1795-1805
    182.Starcic-Erjavec M,van Putten J P M,Gaastra W,Jordi B J A M,Grabnar M,Zgur-Bertok D.H-NS and Lrp serve as positive modulators of traJ expression from the Escherichia coli plasmid pKR100.Mol Gen Genomics,2003,270:94-102
    183.Steggles J R,Wang J H,Ellar D J.Discovery of Bacillus thuringiensis Virulence Genes Using Signature-Tagged Mutagenesis in an Insect Model of Septicaemia.Cur.Microbiol,2006,53:303-310
    184.Stepanouvic' S,Vukovic' D,Dakic'I,Savic' B,S'vabic'-Vlahovic' M.A modified microtiter-plate test for quantification of staphylococcal biofilm formation.J.Microbiol.Meth,2000,40:175-179
    185.Stewart P S.Theoretical aspects of antibiotic diffusion into microbial biofilms.Antimicrob Agents Chemother,1996,40:2517-2573
    186.Stewart P S,Costern J W.Antibiotic resistance of bacteria in biofilms.Lancet,2001,358:135-138
    187.Stickler D J.Biofilm.Curr Opin Microbiol,1999,2:270-275
    188.Stoodley L H,Stoodley P.Biofilm formation and dispersal and the transmission of human pathogens.Trends.Microbiol,2005,13(1):7-10
    189.Suntharalingam P,Cvitkovitch D G.Quorum sensing in streptococcal biofilm formation.Trends.Microbiol,2005,13(1):3-6
    190.Surette M G,Miller M B,Bassler B L.Quorum sensing in Escherichia coli,Salmonella typhimurium,and Vibrio harveyi:a new family of genes responsible for autoinducer production.Proc Natl Acad Sci U S A,1999,96:1639-1644
    191.Tarigan S,Slocombe R F,Browning G F,Kimpton W.Functional and structural changes of porcine alveolar macrophages induced by sublytic doses of a heat-labile,hemolytic,cytotoxic substance produced by Actinobacillus pleuropneumoniae.Am J Vet Res,1994,55(11):1548-1557
    192.Tascon R I,Vazquez Boland J A,Gutierrez Martin C B,Rodriguez Barbosa I,Rodriguez Ferri E F.The RTX haemolysins ApxI and ApxⅡ are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae:evidence from mutational analysis.Mol Microbiol,1994,14(2):207-216
    193.Tascon Cabrero R I,Vazquez-Boland J A,Gutierrez C B,Rodriguez-Barbosa J I,Rodriguez-Ferri E F.Actinobacillus pleuropneumoniae does not require urease activity to produce acute swine pleuropneumonia.FEMS Microbiol Lett,1997,148(1):53-57
    194.Taylor D J.Diseases of Swine.In:Straw B E,D'allaire S,Megeling W L,Taylor D J,Ames,IA:Iowa State University Press.8th edn,1999.343-354
    195.Tendeng C,Bertin P N.H-NS in Gram-negative bacteria:a family of multifaceted proteins.Trends Microbiol,2003,11:511-518
    196. Tonpitak W, Thiede S, Oswald W, Baltes N, Gerlach G F. Actinobacillus pleuropneumoniae iron transport: a set of exbBD genes is transcriptionally linked to the tbpB gene and required for utilization of transferrin-bound iron. Infect Immun, 2000,68 (3): 1164-1170
    
    197. Tumamao J Q, Bowles R E, van den Bosch H, Klaasen H L, Fenwick B W, Blackall P J. An evaluation of the role of antibodies to Actinobacillus pleuropneumoniae serovar 1 and 15 in the protection provided by sub-unit and live streptomycin-dependent pleuropneumonia vaccines. Aust Vet J, 2004, 82(12): 773-780
    
    198. Ueguchi C, Seto C, Suzuki T, Mizuno T. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J. Mol. Biol,\991, 274:145-151
    
    199. Van de Kerkhof A, Haesebrouck F, Chiers K, Ducatelle R, Kamp E M, Smits M A. Influence of Actinobacillus pleuropneumoniae and its metabolites on porcine alveolar epithelial cells. Infect Immun, 1996, 64 (9): 3905-3907
    
    200. Van den Bosch H, Frey J. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs. Vaccine, 2003, 21(25-26): 3601-3607
    
    201. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3(34)1-12
    
    202. Van Overbeke I, Chiers K, Charlier G, Vandenberghe I, Van Beeumen J, Ducatelle R, Haesebrouck F. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells. Vet Microbiol, 2002, 88(1): 59-74
    
    203. Ward C M, Wardle S J, Singh R K, Haniford D B. The global regulator H-NS binds to two distinct classes of sites within the Tn10 transpososome to promote transposition. Mol. Microbiol, 2007, 64(4):1000-1013
    
    204. Ward C K, Lawrence M L, Veit H P, Inzana T J. Cloning and mutagenesis of a serotype-specific DNA region involved in encapsulation and virulence of Actinobacillus pleuropneumoniae serotype 5a: concomitant expression of serotype 5a and 1 capsular polysaccharides in recombinant Actinobacillus pleuropneumoniae serotype 1. Infect Immun, 1998, 66(7): 3326-3336
    
    205. Wardle S J, O'Carroll M, Derbyshire K M, Haniford D B.The global regulator H-NS acts directly on the transpososome to promote TnlO transposition. Genes Dev, 2005, 19: 2224-2235
    
    206. Watnick P I, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol, 1999, 34:586-595
    
    207. Watnick P, Kolter R. Biofilm, city of microbes .J Bacteriol, 2000, 182: 2675-2679
    
    208. Will W R, Frost L S. Characterization of the Opposing Roles of H-NS and TraJ in Transcriptional Regulation of the F-Plasmid tra Operon. J Bacteriol, 2006, 188(2):507-514
    
    209. Westermark M, Oscarsson J, Mizunoe Y, Urbonaviciene J, Uhlin BE. Silencing and activation of ClyA cytotoxin expression in Escherichia coli. J Bacteriol, 2000, 182(22):6347-6357
    210. Wilson T L, Jeffers J, Rapp-Gabrielson V J, Martin S, Klein L K, Lowery D E, Fuller T E. A novel signature-tagged mutagenesis system for Streptococcus suis serotype 2. Vet Microbiol, 2007, 122:135-145
    
    211. Wood P, Caldwell D E, Evans E, Jones M, Korber D R, Wolfhaardt G M, Wilson M, Gilbert P. Surface-catalysed disinfection of thick Pseudomonas aeruginosa biofilm. J Appl Microbiol, 1998, 84:1092-1098
    
    212. Wyborn NR, Stapleton MR, Norte VA, Roberts RE, Grafton J, Green J. Regulation of Escherichia coli hemolysin E expression by H-NS and Salmonella SlyA. J Bacteriol, 2004, 186(6):1620-1628.
    
    213. Yarwood J M, Bartels D J, Volper E M, Greenberg E P. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol, 2004, 186:1838-1850
    
    214. Yi K, Rasmussen A W, Gudlavalleti S K, Stephens D S, Stojiljkovic I. Biofilm formation by Neisseria meningitides. Infect. Immun, 2004, 72:6132-6138
    
    215. Zhou L, Jones S C, Angen 0, Bosse J T, Nash JH, Frey J, Zhou R, Chen H C, Kroll J S, Rycroft A N, Langford P R. Multiplex PCR that can distinguish between immunologically cross- reactive serovar 3, 6, and 8 Actinobacillus pleuropneumoniae strains. J Clin Microbiol, 2008, 46(2):800-803
    
    216. Zhou L, Jones S C, Angen O, Bosse J T, Nash J H, Frey J, Zhou R, Chen H C, Kroll J S, Rycroft A N, Langford P R. PCR specific for Actinobacillus pleuropneumoniae serotype 3. Vet Rec, 2008, 162(20):648-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700