离子液体及其极性溶剂混合液的溶剂化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体(IL)的溶剂化动力学过程具有典型的双相性。其快响应过程通常在1ps内结束,而剩余部分则在纳秒时域内弛豫。为观测IL的超快动力学过程,宽光谱荧光上转换系统(FLUPS)经调节,在多方面得到改进。通过采用波前倾斜后的红外门脉冲(1340nm)以及光度和时间零点校准,系统可以测量到80fs时间分辨率且高信噪比的宽带(425-750nm)荧光光谱。
     结合FLUPS和时间相关单光子计数(TCSPC)两种测量手段,可以完整地观测到荧光团在IL中的斯托克斯位移动力学过程。利用该手段,本文测量了香豆素153(C153)在21种咪唑、吡咯烷等类型离子液体中的完整溶剂化响应函数,其中快响应过程通常占整体动力学过程的10%-40%。快响应过程时间与离子对约化质量的相关性表明,这部分动力学过程是由离子的惯性运动引起的。溶剂化弛豫中的慢响应部分则在较宽时域上分布且与IL粘滞度相关联,证明了慢响应过程源于溶剂的扩散性结构重组。为进一步研究溶剂化动力学与溶剂本身介电弛豫过程的关系,简单介电连续场模型被引入到溶剂化响应函数的预测中。溶剂化响应函数的预测值通常快于实验值2-4倍。
     为了深入理解溶剂化效应与介电弛豫过程之间的相关性,本文还测量“基准”溶质C153在离子液体(1-丁基-3-甲基咪唑四氟硼酸盐)与两种极性溶剂(乙氰和水)混合液中的溶剂化响应函数,并且均未找到证明C153在这两种混合体系中优先溶剂化效应的有力证据。C153在上述混合体系中的溶剂化及转动时间与粘滞度呈现良好的相关性。此外,文中还利用混合体系的介电弛豫谱(频域范围为200MHz-89GHz)对溶剂化响应函数作了预测,并且通过与实验值比较,进一步讨论了介电连续场模型的正确性。在IL+乙氰混合液中,介电连续场模型的预测精度与纯离子液体中的情况相似:快响应部分的预测值与实验值相符,但慢响应过程的预测值过快。预测结果的准确度与混合体系中乙氰含量无关。与此相反,介电连续场模型无法正确预测IL+水混合体系的溶剂化响应函数。
     介电连续场模型对溶剂化响应函数的预测值仅依赖于溶剂的介电谱,与溶质探针无关。因而为进一步分析该理论,本文测量了另外一种溶致变色探针—4-氨基邻苯二甲酰亚胺(4AP)在离子液体中的溶剂化响应函数。总体来说,4AP的溶剂化动力学过程要系统性地慢于C153在同种IL中的观测值。这种差异性被认为是由溶质探针的自身运动造成的。文中所提出的“转动修正”利用转动相关函数,有效地缩小了两者所观测到的溶剂化响应函数间的差异。利用文献数据4-二甲基胺基-4'-氰芪(DCS)和C153,“转动修正”的正确性得到进一步验证。此外,仅通过调节介电谱数据中的电导率,介电连续场模型就能很好地预测转动修正后的溶剂化响应函数。
     除实验研究外,本文还利用了数值和解析计算扩展了介电连续场模型的应用。若将溶剂化响应函数用多指数函数的形式拟合,通过解析形式的模型算法,拟合参量可以直接转换为多德拜函数+电导率项形式的广义介电量。该方法预测出的介电响应函数与实验值非常一致,但电导率则普遍小于测量值。解析算法揭示了溶剂化时间(τsolv)与静态电导率σ0之间的简单关联性。文中通过公式推导验证了该关系的正确性,并利用C153在34种离子液体中相关数据得到了经验关系式:ln(<τsolv>/ps)=4.37-0.92ln(σ0/Sm-1)。
Solvation dynamics in ionic liquids (ILs) is typically biphasic, consisting of a fast component completed in1ps and the rest extending up to the nanosecond domain. To observe the fast dynamics, an instrument for broadband fluorescence upconversion spectroscopy (FLUPS) is developed. With tilted1340nm gate pulses, photometric and time-zero calibration, highly time-resolved (80fs), broad spectral range (425-750nm) and completely background free spectra can be obtained.
     The full dynamic Stokes shift is measured by combining the techniques of FLUPS and time-correlated single photon counting (TCSPC). In this way, the complete solvation response function of coumarin153(C153) is determined in21imidazolium, pyrollidinium, and assorted other ILs. The fast component is found to account for10%-40%of the response. The time constant associated with this component is correlated to ion reduced mass, indicating that it is caused by the ions'inertial motions. A much slower component, which relaxes over a broad time range, completes the solvent relaxation. Its origins are connected to diffusive, structural reorganization, based on the fact that its time is well correlated to the IL viscosity. A simple dielectric continuum model is introduced to investigate the relationship between dielectric relaxation and solvation dynamics. The dielectric continuum model is found to over-estimate the speed of solvation by factors of2-4.
     To obtain additional perspective on the connection between solvation and dielectric relaxation, mixtures of an ionic liquid,1-butyl-3-methyl-imidazolium tetrafluoroborate ([Im41][BF4]), and two polar solvents, acetonitrile and water, are also studied. The physical properties of both mixtures vary systemically with the volume fraction of [Im41][BF4]. By using C153as a "standard" probe, the solvation response function is examined and no clear evidence is found to confirm the suspicion of preferential solvation. Both solvation and rotational times are nicely correlated to solution viscosity. Experimental dielectric data over the frequency range200MHz-89GHz are used to predict the solvation response and further test the dielectric continuum model. In the case of acetonitrile+IL mixtures, the accuracy of continuum model predictions was comparable to that in neat ILs:the fast component is well predicted while the speed of the slow part is overestimated. The quality of these predictions was equally good at high and low acetonitrile content. In contrast, the continuum model totally failed in the IL+water mixtures at high water content.
     The dielectric continuum model as applied above predicts the same dynamics for all dipolar solutes. To further test this prediction the solvation response of another solvatochromic probe,4-aminophthalamide (4AP), is measured in four ionic liquids. The4-AP response functions are systematically slower than those of C153in the same ionic liquids. The origin of this difference was thought to arise from the effect of solute motion on solvation. A correction for solute motion using measured rotational correlation functions significantly reduces the differences observed between C153and4AP. Comparisons between literature data on4-dimethylamino4'-cyanostilbene (DCS) and C153support the use of this rotational correction. The rotationally corrected solvation response functions of both C153and4AP can be reproduced using dielectric continuum predictions by allowing the conductivity used in the dielectric modeling to differ from experimental values.
     In addition to experimental studies the dielectric continuum model is investigated both numerically and analytically. An analytical method for inverting a multi-exponential representation of the solvation response to obtain a description of the permittivity expressed as a sum of a conductivity term+multiple Debye terms. The computed conductivity of C153in neat ILs is found to be systematically smaller than the bulk value, while the predicted permittivity agrees well with the data from bulk dielectric measurements. This analytical approach also reveals a simple relationship between the integral solvation time <τsolv> predicted by the continuum model and the static conductivity σ0. Furthermore, a more general derivation of the same correlation is provided and data on C153solvation in34neat ILs are presented to support this prediction and provide the empirical counterpart:ln(<τsolv>/ps)=4.37-0.92ln(σ0/Sm-1).
引文
[1]Lakowicz, J.R. Principles of Fluorescence Spectroscopy 2nd Ed. New York:Kluwer Academic/Plenum Publishers,1999:185-190.
    [2]Ladanyi, B.M. and Stratt, R.M. Short-Time Dynamics of Solvation-Linear Solvation Theory for Polar-Solvents. Journal of Physical Chemistry,1995,99(9):2502-2511.
    [3]Neria, E. and Nitzan, A. Simulations of Solvation Dynamics in Simple Polar-Solvents. Journal of Chemical Physics,1992,96(7):5433-5440.
    [4]Perera, L. and Berkowitz, M.L. Ultrafast Solvation Dynamics in a Stockmayer Fluid. Journal of Chemical Physics,1992,97(7):5253-5254.
    [5]Kumar, P.V. and Maroncelli, M. Polar Solvation Dynamics of Polyatomic Solutes Simulation Studies in Acetonitrile and Methanol. Journal of Chemical Physics,1995, 103(8):3038-3060.
    [6]Mazurenko, Y.T. and Bakhshiev, N.G. Effect of Orientation Dipole Relaxation on Spectral, Time, and Polarization Characteristics of the Luminescence of Solutions. Optika I Spektroskopiya,1970,28:905-913.
    [7]Papazyan, A. and Maroncelli, M. Rotational Dielectric Friction and Dipole Solvation-Tests of Theory-Based on Simulations of Simple-Model Solutions. Journal of Chemical Physics,1995,102(7):2888-2919.
    [8]Nandi, N., Roy, S., and Bagchi, B. Ultrafast Solvation Dynamics in Water-Isotope Effects and Comparison with Experimental Results. Journal of Chemical Physics,1995, 102(3):1390-1397.
    [9]Friedman, H.L., Raineri, F.O., Hirata, F., et al. Surrogate Hamiltonian Description of Solvation Dynamics-Site Number Density and Polarization Charge-Density Formulations. Journal of Statistical Physics,1995,78(1-2):239-266.
    [10]Mahr, H. and Hirsch, M.D. Optical up-Conversion Light Gate with Picosecond Resolution. Optics Communications,1975,13(2):96-99.
    [11]Kinoshita, S., Ozawa, H., Kanematsu, Y., et al. Efficient Optical Kerr Shutter for Femtosecond Time-Resolved Luminescence Spectroscopy. Review of Scientific Instruments,2000,71(9):3317-3322.
    [12]Kahlow, M.A., Jarzeba, W., Dubruil, T.P., et al. Ultrafast Emission-Spectroscopy in the Ultraviolet by Time-Gated Upconversion. Review of Scientific Instruments,1988,59(7): 1098-1109.
    [13]Schanz, R., Kovalenko, S.A., Kharlanov, V., et al. Broad-Band Fluorescence Upconversion for Femtosecond Spectroscopy. Applied Physics Letters,2001,79(5): 566-568.
    [14]Zhao, L.J., Lustres, J.L.P., Farztdinov, V., et al. Femtosecond Fluorescence Spectroscopy by Upconversion with Tilted Gate Pulses. Physical Chemistry Chemical Physics,2005, 7(8):1716-1725.
    [15]Zhang, X.X., Wurth, C., Zhao, L., et al. Femtosecond Broadband Fluorescence Upconversion Spectroscopy:Improved Setup and Photometric Correction. Review of Scientific Instruments,2011,82(6):063108-8.
    [16]Cottrell, T.L. and Gill, J.E. The Preparation and Heats of Combustion of Some Amine Nitrates. Journal of the Chemical Society,1951(Jul):1798-1800.
    [17]Plechkova, N.V. and Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chemical Society Reviews,2008,37(1):123-150.
    [18]Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews,1999,99(8):2071-2083.
    [19]Plechkova, N.V. and Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chemical Society Reviews,2008,37:123-150.
    [20]Frackowiak, E., Lota, G, and Pemak, J. Room-Temperature Phosphonium Ionic Liquids for Supercapacitor Application. Applied Physics Letters,2005,86(16):164104-3.
    [21]Tempel, D.J., Henderson, P.B., Brzozowski, J.R., et al. High Gas Storage Capacities for Ionic Liquids through Chemical Complexation. Journal of the American Chemical Society,2008,130(2):400-401.
    [22]Stark, A. Ionic Liquid Structure-Induced Effects on Organic Reactions. Top. Curr. Chem., 2009,290:41-81.
    [23]Hallett, J.P. and Welton, T. Room-Temperature Ionic Liquids:Solvents for Synthesis and Catalysis.2. Chemical Reviews,2011,111(5):3508-3576.
    [24]Wishart, J.F. Energy Applications of Ionic Liquids. Energy Environ. Sci.,2009,2(9): 956-961.
    [25]Bakshiev, N.G Universal Intermolecular Interactions and Their Effect on the Position of the Electronic Spectra of Molecules in Two-Component Solutions. Optika I Spektroskopiya,1964,16:446-451.
    [26]Ware, W.R., Chow, P., and Lee, S.K. Time-Resolved Nanosecond Emission Spectroscopy: Spectral Shift Due to Solvent-Solute Relaxation. Chemical Physics Letters,1968,2(6): 356-358.
    [27]Maroncelli, M. The Dynamics of Solvation in Polar Liquids. Journal of Molecular Liquids,1993,57:1-37.
    [28]Stratt, R.M. and Maroncelli, M. Nonreactive Dynamics in Solution:The Emerging Molecular View of Solvation Dynamics and Vibrational Relaxation. Journal of Physical Chemistry,1996,100(31):12981-12996.
    [29]Bagchi, B. and Biswas, R. Polar and Nonpolar Solvation Dynamics, Ion Diffusion, and Vibrational Relaxation:Role of Biphasic Solvent Response in Chemical Dynamics. Advances in Chemical Physics, Vol 109,1999,109:207-433.
    [30]Raineri, F.O. and Friedman, H.L. Solvent Control of Electron Transfer Reactions. Electron Transfer-from Isolated Molecules to Biomolecules, Pt 2,1999,107:81-189.
    [31]Richert, R. Triplet State Solvation Dynamics:Basics and Applications. Journal of Chemical Physics,2000,113(19):8404-8429.
    [32]Horng, M.L., Gardecki, J.A., Papazyan, A., et al. Subpicosecond Measurements of Polar Solvation Dynamics-Coumarin-153 Revisited. Journal of Physical Chemistry,1995, 99(48):17311-17337.
    [33]Sajadi, M., Weinberger, M., Wagenknecht, H.A., et al. Polar Solvation Dynamics in Water and Methanol:Search for Molecularity. Physical Chemistry Chemical Physics, 2011,13(39):17768-17774.
    [34]Karmakar, R. and Samanta, A. Solvation Dynamics of Coumarin-153 in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry A,2002,106:4447-4452.
    [35]Sarkar, S., Pramanik, R., Ghatak, C., et al. Probing the Interaction of 1-Ethyl-3-Methylimidazolium Ethyl Sulfate ([Emim][Etso4]) with Alcohols and Water by Solvent and Rotational Relaxation. Journal of Physical Chemistry B,2010,114(8): 2779-2789.
    [36]Funston, A.M., Fadeeva, T.A., Wishart, J.F., et al. Fluorescence Probing of Temperature-Dependent Dynamics and Friction in Ionic Liquid Local Environments. J. Phys. Chem. B,2007,111(18):4963-4977.
    [37]Jin, H., Li, X., and Maroncelli, M. Heterogeneous Solute Dynamics in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B,2007,111:13473-13478
    [38]Samanta, A. Solvation Dynamics in Ionic Liquids:What We Have Learned from the Dynamic Fluorescence Stokes Shift Studies. Journal of Physical Chemistry Letters,2010, 1(10):1557-1562.
    [39]Carlson, P.J., Bose, S., Armstrong, D.W., et al. Structure and Dynamics of the 1-Hydroxyethyl-4-Amino-1,2,4-Triazolium Nitrate High-Energy Ionic Liquid System. Journal of Physical Chemistry B,2012,116(1):503-512.
    [40]Song, X. Solvation Dynamics in Ionic Fluids:An Extended Debye-Huckel Dielectric Continuum Model. Journal of Chemical Physics,2009,131(4):044503.
    [41]Daschakraborty, S. and Biswas, R. Ultrafast Solvation Response in Room Temperature Ionic Liquids:Possible Origin and Importance of the Collective and the Nearest Neighbour Solvent Modes. Journal of Chemical Physics,2012,137(11):114501-11.
    [42]Shim, Y. and Kim, H.J. Dielectric Relaxation, Ion Conductivity, Solvent Rotation, and Solvation Dynamics in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry B,2008,112:11028-11038.
    [43]Kobrak, M.N. A Comparative Study of Solvation Dynamics in Room-Temperature Ionic Liquids. Journal of Chemical Physics,2007,127(18):184507-8.
    [44]Roy, D. and Maroncelli, M. Simulations of Solvation and Solvation Dynamics in an Idealized Ionic Liquid Model. Journal of Physical Chemistry B,2012,116(20): 5951-5970.
    [45]Maroncelli, M., Zhang, X.X., Liang, M., et al. Measurements of the Complete Solvation Response of Coumarin 153 in Ionic Liquids and the Accuracy of Simple Dielectric Continuum Predictions. Faraday Discussions,2012,154:409-424.
    [46]Fredlake, C.P., Muldoon, M.J., Aki, S.N.V.K., et al. Solvent Strength of Ionic Liquid/Co2 Mixtures. Physical Chemistry Chemical Physics,2004,6(13):3280-3285.
    [47]Baker, S.N., McCleskey, T.M., Pandey, S., et al. Fluorescence Studies of Protein Thermostability in Ionic Liquids. Chemistry Communications,2004(8):940-941.
    [48]Jin, H., O'Hare, B., Dong, J., et al. Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(Trifluoromethylsulfonyl)Imide Anion with Various Cations. Journal of Physical Chemistry B,2008,112:81-92.
    [49]Gardecki, J.A. and Maroncelli, M. A Set of Secondary Emission Standards for Calibration of Spectral Responsivity in Emission Spectroscopy. Applied Spectroscopy, 1998,52:1179-1189.
    [50]Todd, D.C., Jean, J.M., Rosenthal, S.J., et al. Fluorescence Upconversion Study of Cis-Stilbene Isomerization. Journal of Chemical Physics,1990,93(12):8658-8668.
    [51]Furstenberg, A., Julliard, M.D., Deligeorgiev, T.G., et al. Ultrafast Excited-State Dynamics of DNA Fluorescent Intercalators:New Insight into the Fluorescence Enhancement Mechanism. Journal of the American Chemical Society,2006,128(23): 7661-7669.
    [52]Zgrablic, G, Haacke, S., and Chergui, M. Heterogeneity and Relaxation Dynamics of the Photoexcited Retinal Schiff Base Cation in Solution. Journal of Physical Chemistry B, 2009,113(13):4384-4393.
    [53]Marks, D., Prosposito, P., Zhang, H., et al. Femtosecond Laser Selective Intramolecular Double-Proton Transfer in [2,2'-BipyridylJ-3,3'-Diol. Chemical Physics Letters,1998, 289(5-6):535-540.
    [54]Chou, P.T., Chen, Y.C., Yu, W.S., et al. Excited-State Intramolecular Proton Transfer in 10-Hydroxybenzo[H]Quinoline. Journal of Physical Chemistry A,2001,105(10): 1731-1740.
    [55]Rubtsov, I.V. and Yoshihara, K. Vibrational Coherence in Electron Donor-Acceptor Complexes. Journal of Physical Chemistry A,1999,103(49):10202-10212.
    [56]Kao, Y.T., Saxena, C., He, T.F., et al. Ultrafast Dynamics of Flavins in Five Redox States. Journal of the American Chemical Society,2008,130(39):13132-13139.
    [57]Chen, C.Y., Cheng, C.T., Yu, J.K., et al. Spectroscopy and Femtosecond Dynamics of Type-Ii Cdse/Znte Core-Shell Semiconductor Synthesized Via the Cdo Precursor. Journal of Physical Chemistry B,2004,108(30):10687-10691.
    [58]Jarzeba, W., Walker, G.C., Johnson, A.E., et al. Femtosecond Microscopic Solvation Dynamics of Aqueous-Solutions. Journal of Physical Chemistry,1988,92(25): 7039-7041.
    [59]Pal, S.K., Zhao, L.A., and Zewail, A.H. Water at DNA Surfaces:Ultrafast Dynamics in Minor Groove Recognition. Proceedings of the National Academy of Sciences of the United States of America,2003,100(14):8113-8118.
    [60]Gustavsson, T., Cassara, L., Gulbinas, V., et al. Femtosecond Spectroscopic Study of Relaxation Processes of Three Amino-Substituted Coumarin Dyes in Methanol and Dimethyl Sulfoxide. Journal of Physical Chemistry A,1998,102(23):4229-4245.
    [61]Zhang, L.Y., Yang, Y., Kao, Y.T., et al. Protein Hydration Dynamics and Molecular Mechanism of Coupled Water-Protein Fluctuations. Journal of the American Chemical Society,2009,131(30):10677-10691.
    [62]Changenet-Barret, P., Choma, C.T., Gooding, E.F., et al. Ultrafast Dielectric Response of Proteins from Dynamics Stokes Shifting of Coumarin in Calmodulin. Journal of Physical Chemistry B,2000,104(39):9322-9329.
    [63]O'Connor, D.V. and Phillips, D. Time-Correlated Single Photon Counting.1st Ed. London:Academic,1984.
    [64]Gardecki, J.A. and Maroncelli, M. Comparison of the Single-Wavelength and Spectral-Reconstruction Methods for Determining the Solvation-Response Function. Journal of Physical Chemistry A,1999,103:1187-1197.
    [65]Cho, H.S., Rhee, H., Song, J.K., et al. Excitation Energy Transport Processes of Porphyrin Monomer, Dimer, Cyclic Trimer, and Hexamer Probed by Ultrafast Fluorescence Anisotropy Decay. Journal of the American Chemical Society,2003, 125(19):5849-5860.
    [66]Gustavsson, T., Baldacchino, G, Mialocq, J.C., et al. A Femtosecond Fluorescence up-Conversion Study of the Dynamic Stokes Shift of the Dem Dye Molecule in Polar and Nonpolar-Solvents. Chemical Physics Letters,1995,236(6):587-594.
    [67]Cannizzo, A., Bram, O., Zgrablic, G., et al. Femtosecond Fluorescence Upconversion Setup with Broadband Detection in the Ultraviolet. Optics Letters,2007,32(24): 3555-3557.
    [68]Kovalenko, S.A., Schanz, R., Senyushkina, T.A., et al. Femtosecond Spectroscopy of P-Dimethylaminocyanostilbene in Solution-No Evidence for Dual Fluorescence. Physical Chemistry Chemical Physics,2002,4(5):703-707.
    [69]Fita, P., Stepanenko, Y., and Radzewicz, C. Femtosecond Transient Fluorescence Spectrometer Based on Parametric Amplification. Applied Physics Letters,2005,86(2): 021909-3.
    [70]Han, X.F., Chen, X.H., Weng, Y.X., et al. Ultrasensitive Femtosecond Time-Resolved Fluorescence Spectroscopy for Relaxation Processes by Using Parametric Amplification. Journal of the Optical Society of America B-Optical Physics,2007,24(7):1633-1638.
    [71]Fee, R.S. and Maroncelli, M. Estimating the Time-Zero Spectrum in Time-Resolved Emission Measurements of Solvation Dynamics. Chemical Physics,1994,183(2-3): 235-247.
    [72]Rosenthal, S.J., Jimenez, R., Fleming, GR., et al. Solvation Dynamics in Methanol-Experimental and Molecular-Dynamics Simulation Studies. Journal of Molecular Liquids, 1994,60(1-3):25-56.
    [73]Eom, I. and Joo, T. Polar Solvation Dynamics of Coumarin 153 by Ultrafast Time-Resolved Fluorescence. Journal of Chemical Physics,2009,131(24).
    [74]Matyushov, D.V. and Newton, M.D. Understanding the Optical Band Shape: Coumarin-153 Steady-State Spectroscopy. Journal of Physical Chemistry A,2001, 105(37):8516-8532.
    [75]Improta, R., Barone, V., and Santoro, F. Accurate Steady-State and Zero-Time Fluorescence Spectra of Large Molecules in Solution by a First-Principle Computational Method. Journal of Physical Chemistry B,2007,111(51):14080-14082.
    [76]Perez-Lustres, J.L., Rodriguez-Prieto, F., Mosquera, M., et al. Ultrafast Proton Transfer to Solvent:Molecularity and Intermediates from Solvation- and Diffusion-Controlled Regimes. Journal of the American Chemical Society,2007,129(17):5408-5418.
    [77]Ernsting, N.P., Breffke, J., Vorobyev, D.Y., et al. Sub-Picosecond. Fluorescence Evolution of Amino-Cyano-Stilbenes in Methanol:Polar Solvation Obeys Continuum Theory without Evidence of Twisting. Physical Chemistry Chemical Physics,2008,10(15): 2043-2049.
    [78]Sajadi, M., Dobryakov, A.L., Garbin, E., et al. Time-Resolved Fluorescence Spectra of Cis-Stilbene in Hexane and Acetonitrile. Chemical Physics Letters,2010,489(1-3): 44-47.
    [79]Zernike, F. and Midwinter, J.E. Applied Nonlinear Optics. New York:Wiley,1973.
    [80]Crow, E.L. and Schimizu, K. Lognormal Distributions:Theory and Applications. New York:Dekker,1988.
    [81]Sajadi, M., Ajaj, Y, Ioffe, I., et al. Terahertz Absorption Spectroscopy of a Liquid Using a Polarity Probe:A Case Study of Trehalose/Water Mixtures. Angewandte Chemie-International Edition,2009,49(2):454-457.
    [82]Sajadi, M., Obernhuber, T., Kovalenko, S.A., et al. Dynamic Polar Solvation Is Reported by Fluorescing 4-Aminophthalimide Faithfully Despite H-Bonding. Journal of Physical Chemistry A,2008,113(1):44-55.
    [83]Liang, M. Solvation and Electron Transfer in Ionic Liquids. University Park: Pennsylvania State University,2012.
    -[84] Heitz, M.P. and Maroncelli, M. Rotation of Aromatic Solutes in Supercritical Co2:Are Rotation Times Anomalously Slow in the near Critical Regime? Journal of Physical Chemistry A,1997,101(33):5852-5868.
    [85]Fee, R.S., Milsom, J.A., and Maroncelli, M. Inhomogeneous Decay Kinetics and Apparent Solvent Relaxation at Low-Temperatures. Journal of Physical Chemistry,1991, 95(13):5170-5181.
    [86]Zhang, X.-X., Liang, M., Ernsting, N.P., et al. Complete Solvation Response of Coumarin C153 in Ionic Liquids. Journal of Physical Chemistry B,2012, accepted.
    [87]Horng, M.L., Gardecki, J.A., and Maroncelli, M. Rotational Dynamics of Coumarin 153: Time-Dependent Friction, Dielectric Friction, and Other Nonhydrodynamic Effects. Journal of Physical Chemistry A,1997,101(6):1030-1047.
    [88]Jin, H., Baker, G.A., Arzhantsev, S., et al. Solvation and Rotational Dynamics of Coumarin 153 in Ionic Liquids:Comparisons to Conventional Solvents. Journal of Physical Chemistry B,2007,117:7291-7302.
    [89]Wu, D., Chen, A., and Johnson, C.S., Jr. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. Journal of Magnetic Resonance, Series A,1995,115(2):260-4.
    [90]Wishart, J. Importance of Ionic Liquid Solvation Dynamics to Their Applications in Advanced Devices and Systems. Journal of Physical Chemistry Letters,2010,1(10): 1629-1630.
    [91]Samanta, A. Dynamic Stokes Shift and Excitation Wavelength Dependent Fluorescence of Dipolar Molecules in Room Temperature Ionic Liquids. Journal of Physical Chemistry B, 2006,110(28):13704-13716.
    [92]Ito, N. and Richert, R. Solvation Dynamics and Electric Field Relaxation in an Imidazolium-Pf6 Ionic Liquid:From Room Temperature to the Glass Transition. J. Phys. Chem. B,2007,111(18):5016-5022.
    [93]Nagasawa, Y., Oishi, A., Itoh, T., et al. Dynamic Stokes Shift of 9,9'-Bianthryl in Ionic Liquids:A Temperature Dependence Study. Journal of Physical Chemistry C,2009, 113(27):11868-11876.
    [94]Das, A.K., Mondal, T., Sen, M.S., et al. Marcus-Like Inversion in Electron Transfer in Neat Ionic Liquid and Ionic Liquid-Mixed Micelles. Journal of Physical Chemistry B, 2011,115:4680-4688.
    [95]Shim, Y., Choi, M.Y., and Kim, H.J. A Molecular Dynamics Computer Simulation Study of Room-Temperature Ionic Liquids. Ii. Equilibrium and Nonequilibrium Solvation Dynamics. Journal of Chemical Physics,2005,122(4):044511-12.
    [96]Kobrak, M.N. Characterization of the Solvation Dynamics of an Ionic Liquid Via Molecular Dynamics Simulation. Journal of Chemical Physics,2006,125(6):64502-11.
    [97]Kobrak, M.N. A Comparative Study of Solvation Dynamics in Room-Temperature Ionic Liquids. Journal of Chemical Physics,2007,127(18):184507/1-184507/8.
    [98]Hu, Z. and Margulis, C.J. A Study of the Time-Resolved Fluorescence Spectrum and Red Edge Effect of Anf in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry B, 2006,110(23):11025-11028.
    [99]Kashyap, H.K. and Biswas, R. Dipolar Solvation Dynamics in Room Temperature Ionic Liquids:An Effective Medium Calculation Using Dielectric Relaxation Data. Journal of Physical Chemistry B,2008,112(39):12431-12438.
    [100]Kashyap, H.K. and Biswas, R. Stokes Shift Dynamics in Ionic Liquids:Temperature Dependence. Journal of Physical Chemistry B,2010,114:16811-16823.
    [101]Halder, M., Headley, L.S., Mukherjee, P., et al. Experimental and Theoretical Investigations of Solvation Dynamics of Ionic Fluids:Appropriateness of Dielectric Theory and the Role ofDc Conductivity. Journal of Physical Chemistry A,2006,110(28): 8623-8626.
    [102]Lang, B., Angulo, G., and Vauthey, E. Ultrafast Solvation Dynamics of Coumarin 153 in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry A,2006,110(22): 7028-7034.
    [103]Oum, K., Lohse, P.W., Ehlers, F., et al.12'-Apo-2-Caroten-12'-Al:An Ultrafast "Spy" Molecule for Probing Local Interactions in Ionic Liquids. Angew. Chem., Int. Ed.,2010, 49(12):2230-2232, S2230/1-S2230/4.
    [104]Muramatsu, M., Nagasawa, Y., and Miyasaka, H. Ultrafast Solvation Dynamics in Room Temperature Ionic Liquids Observed by Three-Pulse Photon Echo Peak Shift Measurements. The Journal of Physical Chemistry A,2011,115:3886-3894.
    [105]Arzhantsev, S., Jin, H., Baker, G.A., et al. Measurements of the Complete Solvation Response in Ionic Liquids. J. Phys. Chem. B,2007,111(18):4978-4989.
    [106]Arzhantsev, S., Jin, H., Baker, G.A., et al. Solvation Dynamics in Ionic Liquids, Results from Ps and Fs Emission Spectroscopy. in Femtochemistry Vii (Ultrafast Processes in Chemistry, Physics, and Biology), Castleman, A W and Kimble, M L:University Park: Elsevier Science,2006.225-234.
    [107]Kimura, Y, Fukuda, M., Suda, K., et al. Excited State Intramolecular Proton Transfer Reaction of 4'-N,N-Diethylamino-3-Hydroxyflavone and Solvation Dynamics in Room Temperature Ionic Liquids Studied by Optical Kerr Gate Fluorescence Measurement. The Journal of Physical Chemistry B,2010,114(36):11847-11858.
    [108]Kimura, Y, Kobayashi, A., Demizu, M., et al. Solvation Dynamics of Coumarin 153 in Mixtures of Carbon Dioxide and Room Temperature Ionic Liquids. Chemical Physics Letters,2011,513(1-3):53-58.
    [109]Edwards, F.G, Enderby, J.E., Howe, R.A., et al. The Structure of Molten Sodium Chloride. Journal of Physics C:Solid State Physics,1975,8:3483-3490.
    [110]Shimizu, K., Costa, GM.F., Padua, A.A.H., et al. Three Commentaries on the Nano-Segregated Structure of Ionic Liquids. J. Mol. Struct.:THEOCHEM,2010, 946(1-3):70-76.
    [111]Maroncelli, M. and Fleming, GR. Picosecond Solvation Dynamics of Coumarin-153-the Importance of Molecular Aspects of Solvation. Journal of Chemical Physics,1987,86(11): 6221-6239.
    [112]Sajadi, M. and Ernsting, N.P. Excess Dynamic Stokes Shift of Molecular Probes in Solution. Journal of Physical Chemistry B,2013, submitted.
    [113]Soriano, A.N., Doma, B.T., Jr., and Li, M.-H. Density and Refractive Index Measurements of 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids. J. Taiwan Inst. Chem. Eng.,2010,41:115-121.
    [114]Froeba, A.P., Kremer, H., and Leipertz, A. Density, Refractive Index, Interfacial Tension, and Viscosity of Ionic Liquids [Emim][Etso4], [Emim][Ntf2]. [Emim][N(Cn)2], and [Oma][Ntf2] in Dependence on Temperature at Atmospheric Pressure. Journal of Physical Chemistry B,2008,112(Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.):12420-12430.
    [115]Noda, A., Hayamizu, K., and Watanabe, M. Pulsed-Gradient Spin-Echo 1h and 19f Nmr Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids. Journal of Physical Chemistry B,2001,105: 4603-4610.
    [116]Tariq, M., Forte, P.A.S., Gomes, M.F.C., et al. Densities and Refractive Indices of Imidazolium- and Phosphonium-Based Ionic Liquids:Effect of Temperature, Alkyl Chain Length, and Anion. Journal of Chemical Thermodynamics,2009,41(6):790-798.
    [117]Seoane, R.G., Corderi, S., Gomez, E., et al. Temperature Dependence and Structural Influence on the Thermophysical Properties of Eleven Commercial Ionic Liquids. Industrial & Engineering Chemistry Research,2012,51(5):2492-2504.
    [118]Tokuda, H., Kikuko, H., Ishii, K., et al. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. I. Variation of Anionic Species. Journal of Physical Chemistry B,2004,108:16593-16600.
    [119]Dutt, G.B. Influence of Specific Interactions on the Rotational Dynamics of Charged and Neutral Solutes in Ionic Liquids Containing Tris(Pentafluoroethyl)Trifluorophosphate (Fap)Anion. Journal of Physical Chemistry B,2010,114(27):8971-8977.
    [120]Greaves, T.L., Weerawardena, A., Fong, C, et al. Protic Ionic Liquids:Solvents with Tunable Phase Behavior and Physicochemical Properties. Journal of Physical Chemistry B,2006,110:22479-22487.
    [121]Litaeim, Y. and Dhahbi, M. Measurements and Correlation of Viscosity and Conductivity for the Mixtures of Ethylammonium Nitrate with Organic Solvents. Journal of Molecular Liquids,2010,155:42-50.
    [122]Slattery, J.M., Daguenet, C., Dyson, P.J., et al. How to Predict the Physical Properties of Ionic Liquids:A Volume-Based Approach. Angewandte Chemie, International Edition, 2007,46(28):5384-5388.
    [123]Kobrak, M.N. and Sandalow, N. An Electrostatic Interpretation of Structure-Property Relationships in Ionic Liquids. Proceedings-Electrochemical Society,2006, 2004-24(Molten Salts XIV):417-425.
    [124]Shim, Y., Duan, J., Choi, M.Y., et al. Solvation in Molecular Ionic Liquids. Journal of Chemical Physics,2003,119:6411-6414.
    [125]Sanders Headley, L., Mukherjee, P., Anderson, J.L., et al. Dynamic Solvation in Imidazolium-Based Ionic Liquids on Short Time Scales. Journal of Physical Chemistry A, 2006,110(31):9549-9554.
    [126]Ito, N. and Richert, R. Solvation Dynamics and Electric Field Relaxation in an Imidazolium-Pf6 Ionic Liquid:From Room Temperature to the Glass Transition. Journal of Physical Chemistry B,2007,111(18):5016-5022.
    [127]Ingram, J.A., Moog, R.S., Ito, N., et al. Solute Rotation and Solvation Dynamics in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry B,2003,107(24): 5926-5932.
    [128]Arzhantsev, S., Ito, N., Heitz, M., et al. Solvation Dynamics of Coumarin 153 in Several Classes of Ionic Liquids:Cation Dependence of the Ultrafast Component. Chemical Physics Letters,2003,381(3,4):278-286.
    [129]Chakrabarty, D., Hazra, P., Chakraborty, A., et al. Dynamics of Solvent Relaxation in Room Temperature Ionic Liquids. Chemical Physics Letters,2003,381:697-704.
    [130]Mandal, P.K., Paul, A., and Samanta, A. Fluorescence Studies in Environmentally Benign Solvents:Solvation Dynamics of Coumarin 102 in [Bmim][Bf4]. Research on Chemical Intermediates,2005,31(7-8):575-583.
    [131]Kimura, Y., Kobayashi, A., Demizu, M., et al. Solvation Dynamics of Coumarin 153 in Mixtures of Carbon Dioxide and Room Temperature Ionic Liquids. Chemical Physics Letters,2011,513(Copyright (C) 2012 American Chemical Society (ACS). All Rights Reserved.):53-58.
    [132]deBoeij, W.P., Pshenichnikov, M.S., and Wiersma, D.A. System-Bath Correlation Function Probed by Conventional and Time-Gated Stimulated Photon Echo. Journal of Physical Chemistry,1996,100(29):11806-11823.
    [133]Joo, T.H., Jia, Y.W., Yu, J.Y., et al. Third-Order Nonlinear Time Domain Probes of Solvation Dynamics. Journal of Chemical Physics,1996,104(16):6089-6108.
    [134]Stoppa, A., Hunger, J., Buchner, R., et al. Interactions and Dynamics in Ionic Liquids. Journal of Physical Chemistry B,2008,112:4854-4858.
    [135]Buchner, R., Hefter, G.T., and May, P.M. Dielectric Relaxation of Aqueous Nacl Solutions. Journal of Physical Chemistry A,1999,103(1):1-9.
    [136]Schroder, C., Sonnleitner, T., Buchner, R., et al. The Influence of Polarizability on the Dielectric Spectrum of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Triflate. Physical Chemistry Chemical Physics,2011,13(26):12240-12248.
    [137]Turton, D.A., Sonnleitner, T., Ortner, A., et al. Structure and Dynamics in Protic Ionic Liquids:A Combined Optical Kerr-Effect and Dielectric Relaxation Spectroscopy Study. Faraday Discussions,2012,154:145-153.
    [138]Hunger, J., Stoppa, A., Schroedle, S., et al. Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. ChemPhysChem,2009,10(4):723-733.
    [139]Turton, D.A., Hunger, J., Stoppa, A., et al. Dynamics oflmidazolium Ionic Liquids from a Combined Dielectric Relaxation and Optical Kerr Effect Study:Evidence for Mesoscopic Aggregation. Journal of the American Chemical Society,2009,131(31):11140-11146.
    [140]Weingaertner, H. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies. Angewandte Chemie (International English Edition),2007,46:2-19.
    [141]Daguenet, C., Dyson, P.J., Krossing, I., et al. Dielectric Response of Imidazolium-Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry B,2006,110(25): 12682-12688.
    [142]Krueger, M., Bruendermann, E., Funkner, S., et al. Communications:Polarity Fluctuations of the Protic Ionic Liquid Ethylammonium Nitrate in the Terahertz Regime. Journal of Chemical Physics,2010,132(10):101101/1-101101/4.
    [143]Schroder, C., Wakai, C., Weingartner, H., et al. Collective Rotational Dynamics in Ionic Liquids:A Computational and Experimental Study of 1-Butyl-3-Methyl-Imidazolium Tetrafluoroborate. Journal of Chemical Physics,2007,126:084511-13.
    [144]Yu, Y.-H., Soriano, A.N., and Li, M.-H. Heat Capacities and Electrical Conductivities of 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids. Journal of Chemical Thermodynamics,2009,41:103-108.
    [145]Zech, O., Stoppa, A., Buchner, R., et al. The Conductivity of Imidazolium-Based Ionic Liquids from (248 to 468) K. B. Variation of the Anion. Journal of Chemical and Engineering Data,2010,55(5):1774-1778.
    [146]Nakamura, K. and Shikata, T. Systematic Dielectric and Nmr Study of the Ionic Liquid I-Alkyl-3-Methyl Imidazolium. ChemPhysChem.,2010,11(1):285-294.
    [147]Buchner, R. private communication,2012.
    [148]Tokuda, H., Hayamizu, K., Ishii, K., et al. Physicochemical Properties and Structures of Room Temperature Ionic Liquids.2. Variation of Alkyl Chain Length in Imidazolium Cation. Journal of Physical Chemistry B,2005,109:6103-6110.
    [149]Mizoshiri, M, Nagao, T., Mizoguchi, Y., et al. Dielectric Permittivity of Room Temperature Ionic Liquids:A Relation to the Polar and Nonpolar Domain Structures. Journal of Chemical Physics,2010,132(16):164510/1-164510/7.
    [150]Anderson, J.L., Armstrong, D.W., and Wei, G.T. Ionic Liquids in Analytical Chemistry. Analytical Chemistry,2006,78:2893-2902.
    [151]Kimura, Y, Hamamoto, T., and Terazima, M. Raman Spectroscopic Study on the Solvation of N,N-Dimethyl-P-Nitroaniline in Room-Temperature Ionic Liquids. Journal of Physical Chemistry A,2007,111(30):7081-7089.
    [152]Lynden-Bell, R.M. Redox Potentials and Screening in Ionic Liquids:Effects of Sizes and Shapes of Solute Ions. Journal of Chemical Physics,2008,129(20):204503/1-204503/7.
    [153]Kobrak, M.N. and Li, H. Electrostatic Interactions in Ionic Liquids:The Dangers of Dipole and Dielectric Descriptions. Physical Chemistry Chemical Physics,2010,12(8): 1922-1932.
    [154]Schroder, C., Hunger, J., Stoppa, A., et al. On the Collective Network of Ionic Liquid/Water Mixtures. Ii. Decomposition and Interpretation of Dielectric Spectra. Journal of Chemical Physics,2008,129(18):184501-10.
    [155]Daschakraborty, S. and Biswas, R. Stokes Shift Dynamics in (Ionic Liquid Plus Polar Solvent) Binary Mixtures:Composition Dependence. Journal of Physical Chemistry B, 2011,115(14):4011-4024.
    [156]Mellein, B.R., Aki, S.N.V.K., Ladewski, R.L., et al. Solvatochromic Studies of Ionic Liquid/Organic Mixtures. Journal of Physical Chemistry B,2007,111:131-138.
    [157]Chaban, V.V. and Prezhdo, O.V. A New Force Field Model of 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid and Acetonitrile Mixtures. Physical Chemistry Chemical Physics,2011,13(43):19345-19354.
    [158]Wang, J.J., Tian, Y., Zhao, Y., et al. A Volumetric and Viscosity Study for the Mixtures of 1-N-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid with Acetonitrile, Dichloromethane,2-Butanone and N,N-Dimethylformamide. Green Chemistry,2003, 5(5):618-622.
    [159]Zafarani-Moattar, M.T. and Shekaari, H. Application of Prigogine-Flory-Patterson Theory to Excess Molar Volume and Speed of Sound of l-N-Butyl-3-Methylimidazolium Hexafluorophosphate or 1-N-Butyl-3-Methylimidazolium Tetrafluoroborate in Methanol and Acetonitrile. Journal of Chemical Thermodynamics,2006,38(11):1377-1384.
    [160]Chakrabarty, D., Chakraborty, A., Seth, D., et al. Effect of Water, Methanol, and Acetonitrile on Solvent Relaxation and Rotational Relaxation of Coumarin 153 in Neat 1-Hexyl-3-Methylimidazolium Hexafluorophosphate. Journal of Physical Chemistry A, 2005,109(9):1764-1769.
    [161]Zhu, A., Wang, J., Han, L., et al. Measurements and Correlation of Viscosities and Conductivities for the Mixtures of Imidazolium Ionic Liquids with Molecular Solutes. Chem. Eng. J. (Amsterdam, Neth.),2009,147(1):27-35.
    [162]Li, W.J., Zhang, Z.F., Han, B.X., et al. Effect of Water and Organic Solvents on the Ionic Dissociation of Ionic Liquids. Journal of Physical Chemistry B,2007,111(23): 6452-6456.
    [163]Huo, Y, Xia, S., and Ma, P. Densities of Ionic Liquids, 1-Butyl-3-Methylimidazolium Hexafluorophosphate and 1-Butyl-3-Methylimidazolium Tetrafluoroborate, with Benzene, Acetonitrile, and 1-Propanol at T=(293.15 to 343.15) K. Journal of Chemical & Engineering Data,2007,52(5):2077-2082.
    [164]Liang, M., Kaintz, A., Baker, G.A., et al. Bimolecular Electron Transfer in Ionic Liquids: Are Reaction Rates Anomalously High? Journal of Physical Chemistry B,2012,116(4): 1370-1384.
    [165]Maroncelli, M., Macinnis, J., and Fleming, GR. Polar-Solvent Dynamics and Electron-Transfer Reactions. Science,1989,243(4899):1674-1681.
    [166]Seddon, K.R., Stark, A., and Torres, M.J. Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids. Pure and Applied Chemistry,2000, 72(12):2275-2287.
    [167]Huddleston, J.G., Visser, A.E., Reichert, W.M., et al. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chemistry,2001,3(4):156-164.
    [168]Sarkar, A., Ali, M., Baker, G.A., et al. Multiprobe Spectroscopic Investigation of Molecular-Level Behavior within Aqueous 1-Butyl-3-Methylimidazolium Tetrafluoroborate. The Journal of Physical Chemistry B,2009,113(10):3088-3098.
    [169]Fazio, B., Triolo, A., and Marco, G.D. Local Organization of Water and Its Effect on the Structural Heterogeneities in Room-Temperature Ionic Liquid/H2o Mixtures. Journal of Raman Spectroscopy,2008,39(2):233-237.
    [170]Dominguez-Vidal, A., Kaun, N., Ayora-Canada, M.J., et al. Probing Intermolecular Interactions in Water/Ionic Liquid Mixtures by Far-Infrared Spectroscopy. Journal of Physical Chemistry B,2007,111(17):4446-4452.
    [171]Mele, A., Tran, C.D., and Lacerda, S.H.D. The Stmcture of a Room-Temperature Ionic Liquid with and without Trace Amounts of Water:The Role of C-H Center Dot Center Dot Center Dot O and C-H Center Dot Center Dot Center Dot F Interactions in I-N-Butyl-3-Methylimidazolium Tetrafluoroborate. Angewandte Chemie-International Edition,2003,42(36):4364-4366.
    [172]Moreno, M., Castiglione, F., Mele, A., et al. Interaction of Water with the Model Ionic Liquid [Bmim][Bf4]:Molecular Dynamics Simulations and Comparison with Nmr Data. Journal of Physical Chemistry B,2008,112(26):7826-7836.
    [173]Cabeza, O., Garcia-Garabal, S., Segade, L., et al. Ionic Liquids:Theory, Properties, New Approaches. InTech,2011:111-136.
    [174]Koddermann, T., Klembt, S., Klasen, D., et al. The Effect of Neutral Ion Aggregate Formation on the Electrical Conductivity of an Ionic Liquid and Its Mixtures with Chloroform. ChemPhysChem,2012,13(7):1748-1752.
    [175]Roth, C, Appelhagen, A., Jobst, N., et al. Microheterogeneities in lonic-Liquid-Methanol Solutions Studied by Ftir Spectroscopy, Dft Calculations and Molecular Dynamics Simulations. ChemPhysChem,2012,13(7):1708-1717.
    [176]Malham, I.B. and Turmine, M. Viscosities and Refractive Indices of Binary Mixtures of 1-Butyl-3-Methylimidazolium Tetrafluoroborate and I-Butyl-2,3-Dimethylimidazolium Tetrafluoroborate with Water at 298 K. Journal of Chemical Thermodynamics,2008, 40(4):718-723.
    [177]Stoppa, A., Hunger, J., and Buchner, R. Conductivities of Binary Mixtures of Ionic Liquids with Polar Solvents. Journal of Chemical and Engineering Data,2009,54(2): 472-479.
    [178]Rilo, E., Vila, J., Pico, J., et al. Electrical Conductivity and Viscosity of Aqueous Binary Mixtures of I-Alkyl-3-Methyl Imidazolium Tetrafluoroborate at Four Temperatures. Journal of Chemical and Engineering Data,2010,55(2):639-644.
    [179]Navarro, P., Larriba, M., Garcia, S., et al. Physical Properties of Binary and Ternary Mixtures of 2-Propanol, Water, and 1-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical and Engineering Data,2012,57(4):1165-1173.
    [180]Taib, M.M. and Murugesan, T. Density, Refractive Index, and Excess Properties of 1-Butyl-3-Methylimidazolium Tetrafluoroborate with Water and Monoethanolamine. Journal of Chemical and Engineering Data,2012,57(1):120-126.
    [181]Liu, Z., Wu, X., and Wang, W. A Novel United-Atom Force Field for Imidazolium-Based Ionic Liquids. Physical Chemistry Chemical Physics,2006,8(9):1096-104.
    [182]Sarkar, A. and Pandey, S. Solvatochromic Absorbance Probe Behavior and Preferential Solvation in Aqueous 1-Butyl-3-Methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data,2006,51(6):2051-2055.
    [183]Zhong, X.J., Fan, Z., Liu, Z.P., et al. Local Structure Evolution and Its Connection to Thermodynamic and Transport Properties of 1-Butyl-3-Methylimidazolium Tetrafluoroborate and Water Mixtures by Molecular Dynamics Simulations. Journal of Physical Chemistry B,2012,116(10):3249-3263.
    [184]Tian, GC. and Li, J.A. Molecular Dynamics Simulation on the Structure and Dynamics of Water in the 1-Butyl-3-Methylimidazolium Tetrafluoroborate/Water Mixture. Journal of Theoretical & Computational Chemistry,2010,9(3):573-584.
    [185]Feng, S. and Voth, GA. Molecular Dynamics Simulations of Imidazolium-Based Ionic Liquid/Water Mixtures:Alkyl Side Chain Length and Anion Effects. Fluid Phase Equilibria,2010,294(1-2):148-156.
    [186]Paul, A. and Samanta, A. Effect of Nonpolar Solvents on the Solute Rotation and Solvation Dynamics in an Imidazolium Ionic Liquid. Journal of Physical Chemistry B, 2008,112(3):947-953.
    [187]Baker, S.N., Baker, GA., Munson, C.A., et al. Effects of Solubilized Water on the Relaxation Dynamics Surrouding Prodan Dissolved in 1_Butyl-3-Imidazolium Hexafluorophosphate at 298 K. Industrial and Engineering Chemistry Research,2003,42: 6457-6463.
    [188]Barthel, J., Bachhuber, K., Buchner, R., et al. A Computer-Controlled System of Transmission-Lines for the Determination of the Complex Permittivity of Lossy Liquids between 8.5-Ghz and 90-Ghz. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,1991,95(8):853-859.
    [189]Schroedle, S., Annat, G, MacFarlane, D.R., et al. Broadband Dielectric Response of the Ionic Liquid N-Methyl-N-Ethylpyrrolidinium Dicyanamide. Chemical Communications, 2006(16):1748-1750.
    [190]Taib, M.M. and Murugesan, T. Density, Refractive Index, and Excess Properties of 1-Butyl-3-Methylimidazolium Tetrafluoroborate with Water and Monoethanolamine. Journal of Chemical & Engineering Data,2011,57(1):120-126.
    [191]Woodward Clifford, E. and Harris Kenneth, R. A Lattice-Hole Theory for Conductivity in Ionic Liquid Mixtures:Application to Ionic Liquid + Water Mixtures. Physical Chemistry Chemical Physics,2010,12(5):1172-6.
    [192]Rilo, E., Dominguez-Perez, M., Vila, J., et al. Easy Prediction of the Refractive Index for Binary Mixtures of Ionic Liquids with Water or Ethanol. Journal of Chemical Thermodynamics,2012,47:219-222.
    [193]Huang, M.-M., Jiang, Y, Sasisanker, P., et al. Static Relative Dielectric Permittivities of Ionic Liquids at 25℃. Journal of Chemical & Engineering Data,2011,56(4): 1494-1499.
    [194]Ellison, W.J. Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0-25 Thz and the Temperature Range 0-100 Degrees C. Journal of Physical and Chemical Reference Data,2007,36(1):1-18.
    [195]Zhang, X.-X., Liang, M., Ernsting, N.P., et al. Complete Solvation Response of Coumarin 153 in Ionic Liquids. Journal of Physical Chemistry B,2013, in press.
    [196]Fee, R.S. and Maroncelli, M. Estimating the Time-Zero Spectrum in Time-Resolved Emission Measurements of Solvation Dynamics. Chemical Physics,1994,183:235-247.
    [197]Marcus, Y. Solvent Mixtures, Properties and Selective Solvation.2002, New York: Marcel-Dekker.
    [198]Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, 1994,94:2319-2358.
    [199]Li, H., Arzhantsev, S., and Maroncelli, M. Solvation and Solvatochromism in Co2-Expanded Liquids.2. Experiment-Simulation Comparisons of Preferential Solvation in Three Prototypical Mixtures. Journal of Physical Chemistry B,2007,111(12): 3208-3221.
    [200]Jimenez, R., Fleming, G.R., Kumar, P.V., et al. Femtosecond Solvation Dynamics of Water. Nature,1994,369(6480):471-473.
    [201]Jin, H., Baker, G.A., Arzhantsev, S., et al. Solvation and Rotational Dynamics of Coumarin 153 in Ionic Liquids:Comparisons to Conventional Solvents. Journal of Physical Chemistry B,2007,111(25):7291-7302.
    [202]Zhang, X.-X., Schroeder, C., and Ernsting, N.P. Solvation and Dielectric Response in Ionic Liquids-Conductivity Extension of the Continuum Model. Journal of Chemical Physics,2013,138:111102-3.
    [203]Zhang, X.-X., Liang, M., Ernsting, N.P., et al. Conductivity and Solvation Dynamics in Ionic Liquids. Journal of Physical Chemistry Letters,2013, in press.
    [204]Maroncelli, M., Zhang, X.-X., Liang, M., et al. Measurements of the Complete Solvation Response of Coumarin 153 in Ionic Liquids and the Accuracy of Simple Dielectric Continuum Predictions. Faraday Discussions of the Chemical Society,2012,154: 409-424.
    [205]Jin, H., Baker, G.A., Arzhantsev, S., et al. Solvation and Rotational Dynamics of Coumarin 153 in Ionic Liquids:Comparisons to Conventional Solvents. Journal of Physical Chemistry B,2007,111(25):7291-7302.
    [206]Chakrabarty, D., Seth, D., Chakraborty, A., et al. Dynamics of Solvation and Rotational Relaxation of Coumarin 153 in Ionic Liquid Confined Nanometer-Sized Microemulsions. Journal of Physical Chemistry B,2005,109(12):5753-5758.
    [207]Ito, N., Arzhantsev, S., and Maroncelli, M. The Probe Dependence of Solvation Dynamics and Rotation in the Ionic Liquid 1-Butyl-3-Methyl-Imidazolium Hexafluorophosphate. Chemical Physics Letters,2004,396:83-91.
    [208]Seth, D. and Sarkar, N. Dynamics of Solvent and Rotational Relaxation of Rtils in Rtils-Containing Microemulsions. Surfactant Sci. Ser.,2009,144(Microemulsions): 203-246.
    [209]Ito, N., Arzhantsev, S., Heitz, M., et al. Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids. Journal of Physical Chemistry B,2004,108: 5771-5777.
    [210]Yasaka, Y, Wakai, C., Matubayasi, N., et al. Rotational Dynamics of Water and Benzene Controlled by Anion Field in Ionic Liquids:1-Butyl-3-Methylimidazolium Chloride and Hexafluorophosphate. Journal of Chemical Physics,2007,127:104506-8.
    [211]Khara, D.C. and Samanta, A. Rotational Dynamics of Positively and Negatively Charged Solutes in Ionic Liquid and Viscous Molecular Solvent Studied by lime-Resolved Fluorescence Anisotropy Measurements. Physical Chemistry Chemical Physics,2010, 12(27):7671-7677.
    [212]Karmakar, R. and Samanta, A. Steady-State and Time-Resolved Fluorescence Behavior of C153 and Prodan in Room-Temperature Ionic Liquids. Journal of Physical Chemistry A, 2002,106:6670-6675.
    [213]Mandal, P.K. and Samanta, A. Fluorescence Studies in a Pyrrolidinium Ionic Liquid: Polarity of the Medium and Solvation Dynamics. Journal of Physical Chemistry B,2005, 109:15172-15177.
    [214]Karmakar, R. and Samanta, A. Dynamics ofSolvation of the Fluorescent State of Some Electron Donor-Acceptor Molecules in Room Temperature Ionic Liquids, [Bmim][(Cf3so2)2n] and [Emim][(Cf3so2)2n]. Journal of Physical Chemistry A,2003, 107:7340-7346.
    [215]Torimoto, T., Tsuda, T., Okazaki, K., et al. New Frontiers in Materials Science Opened by Ionic Liquids. Advanced Materials,2010,22(11):1196-1221.
    [216]Werner, S., Haumann, M., and Wasserscheid, P. Ionic Liquids in Chemical Engineering. Annu. Rev. Chem. Biomol. Eng.,2010,1:203-230.
    [217]Sun, P. and Armstrong, D.W. Ionic Liquids in Analytical Chemistry. Analytica Chimica Acta,2010,661(1):1-16.
    [218]Ueki, T. and Watanabe, M. Polymers in Ionic Liquids:Dawn of Neoteric Solvents and Innovative Materials. Bulletin of the Chemical Society of Japan,2012,85(1):33-50.
    [219]Poole, C.F. Chromatographic and Spectroscopic Methods for the Determination of Solvent Properties of Room Temperature Ionic Liquids. Journal of Chromatography, A, 2004,1037:49-82.
    [220]Armand, M., Endres, F., MacFarlane, D.R., et al. Ionic-Liquid Materials for the Electrochemical Challenges of the Future. Nat. Mater.,2009,8(8):621-629.
    [221]Lin, R.Y., Taberna, P.L., Fantini, S., et al. Capacitive Energy Storage from -50 to 100 Degrees C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters,2011, 2(19):2396-2401.
    [222]Lewandowski, A. and Swiderska, A. Solvent-Free Double-Layer Capacitors with Polymer Electrolytes Based on 1-Ethyl-3-Methyl-Imidazolium Triflate Ionic Liquid. Applied Physics A:Materials Science & Processing,2006,82(4):579-584.
    [223]Kawano, R., Katakabe, T., Shimosawa, H., et al. Solid-State Dye-Sensitized Solar Cells Using Polymerized Ionic Liquid Electrolyte with Platinum-Free Counter Electrode. Physical Chemistry Chemical Physics,2010,12(8):1916-1921.
    [224]Zakeeruddin, S.M. and Gratzel, M. Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells. Advanced Functional Materials,2009,19(14):2187-2202.
    [225]Harris, K.R. Relations between the Fractional Stokes-Einstein and Nernst-Einstein Equations and Velocity Correlation Coefficients in Ionic Liquids and Molten Salts. Journal of Physical Chemistry B,2010,114(29):9572-9577.
    [226]Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., et al. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. Journal of Physical Chemistry B,2006,110(39):19593-19600.
    [227]Fraser, K.J., Izgorodina, E.I., Forsyth, M., et al. Liquids Intermediate between "Molecular" and "Ionic" Liquids:Liquid Ion Pairs? Chemical Communications, 2007(37):3817-3819.
    [228]Kashyap, H.K., Annapureddy, H.V.R., Raineri, F.O., et al. How Is Charge Transport Different in Ionic Liquids and Electrolyte Solutions? Journal of Physical Chemistry B, 2011,115(45):13212-13221.
    [229]Kobrak, M.N. Electrostatic Interactions of a Neutral Dipolar Solute with a Fused Salt:A New Model for Solvation in Ionic Liquids. J. Phys. Chem. B,2007,111(18):4755-4762.
    [230]Castner, E.W., Jr., Margulis, C.J., Maroncelli, M., et al. Ionic Liquids:Structure and Photochemical Reactivity. Annual Reviews of Physical Chemistry,2011,62:85-105.
    [231]Sahu, K., Kern, S.J., and Berg, M.A. Heterogeneous Reaction Rates in an Ionic Liquid: Quantitative Results from Two-Dimensional Multiple Population-Period Transient Spectroscopy. Journal of Physical Chemistry A,2011,115(27):7984-7993.
    [232]Shim, Y., Jeong, D., Manjari, S., et al. Solvation, Solute Rotation and Vibration Relaxation, and Electron-Transfer Reactions in Room-Temperature Ionic Liquids. Acc. Chem. Res.,2007,40(11):1130-1137.
    [233]Song, X. and Chandler, D. Dielectric Solvation Dynamics of Molecules of Arbitrary Shape and Charge Distribution. Journal of Chemical Physics,1998,108:2594-2600.
    [234]Ruthmann, J., Kovalenko, S.A., Ernsting, N.P., et al. Femtosecond Relaxation of 2-Amino-7-Nitrofluorene in Acetonitrile:Observation of the Oscillatory Contribution to the Solvent Response. Journal of Chemical Physics,1998,109(13):5466-5468.
    [235]Lustres, J.L.P., Kovalenko, S.A., Mosquera, M., et al. Ultrafast Solvation of N-Methyl-6-Quinolone Probes Local Ir Spectrum. Angewandte Chemie, Int. Ed.,2005, 44(35):5635-5639.
    [236]Stoppa, A. Chemical Speciation in Mixtures of Ionic Liquids and Polar Compounds. Regensburg:Universitity of Regensburg,2010.
    [237]Sajadi, M. Local Thz Spectroscopy in the Condensed Phase:Femtosecond Stokes Shift of Molecular Probes. Berlin:Humboldt Universitity of Berlin,2013.
    [238]Bottcher, C.J.F., van Belle, O.C., Bordewijk, P., et al. Vol.1:Theory of Electric Polarization:Dielectrics in Static Fields. Vol. Ⅰ.1973, Amsterdam:Elsevier.377.
    [239]Jackson, J.D. Classical Electrodynamics 3rd Ed. New York:Wiley,1998.
    [240]Maxwell, J.C. Treatise in Electricity and Magnetism. Oxford:Claredon,1881.
    [241]Davidson, D.W. and Cole, R.H. Dielectric Relaxation in Glycerine. Journal of Chemical Physics,1950,18(10):1417-1417.
    [242]Davidson, D.W. and Cole, R.H. Dielectric Relaxation in Glycerol, Propylene Glycol, and Normal-Propanol. Journal of Chemical Physics,1951,19(12):1484-1490.
    [243]Cole, K.S. and Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. Journal of Chemical Physics,1941,9(4):341-351.
    [244]Cole, K.S. and Cole, R.H. Dispersion and Absorption in Dielectrics Ii Direct Current Characteristics. Journal of Chemical Physics,1942,10(2):98-105.
    [245]Turton, D.A. and Wynne, K. Structural Relaxation in the Hydrogen-Bonding Liquids N-Methylacetamide and Water Studied by Optical Kerr Effect Spectroscopy. Journal of Chemical Physics,2008,128(15):154516-10.
    [246]Havrilia.S and Negami, S. A Complex Plane Analysis of Alpha-Dispersions in Some Polymer Systems. Journal of Polymer Science Part C-Polymer Symposium,1966(14PC): 99-102.
    [247]Chalmers, J.M. and Griffiths, P.R. Handbook of Vibrational Spectroscopy. Weinheim: Wiley-VCH,2001.
    [248]Martin, A.R. The Heats of Dissociation of Some Strong Electrolytes in Benzonitrile and Their Calculation from Molecular Structure. Philosophical Magazine,1929,8(51): 547-552.
    [249]Bell, R.P. The Electrostatic Energy of Dipole. Transactions of the Faraday Society,1931, 27:797-802.
    [250]Onsager, L. Electric Moments of Molecules in Liquids. Journal of the American Chemical Society,1936,58:1486-1493.
    [251]Kubo, R., Toda, M., and Hashitsume, N. Statistical Physics Ii. Non-Equilibrium Statistical Mechanics. Berlin:Springer,1985.
    [252]Bagchi, B. Dynamics of Solvation and Charge-Transfer Reactions in Dipolar Liquids. Annual Review of Physical Chemistry,1989,40:115-141.
    [253]Maroncelli, M., Castner, E.W., Bagchi, B., et al. Dipolar Solvation Dynamics. Faraday Discussions,1988,85:199-210.
    [254]Jortner, J. and Gaathon, A. Effects of Phase Density on Ionization Processes and Electron Localization in Fluids. Canadian Journal of Chemistry,1977,55(11):1801-1819.
    [255]Hubbard, J. and Onsager, L. Dielectric-Dispersion and Dielectric Friction in Electrolyte-Solutions.I. Journal of Chemical Physics,1977,67(11):4850-4857.
    [256]Wolynes, P.G Linearized Microscopic Theories of Nonequilibrium Solvation. Journal of Chemical Physics,1987,86(9):5133-5136.
    [257]Rips, I., Klafter, J., and Jortner, J. Solvation Dynamics in Polar Liquids. Journal of Chemical Physics,1988,89(7):4288-4299.
    [258]Loring, R.F. and Mukamel, S. Molecular Theory of Solvation and Dielectric Response in Polar Fluids. Journal of Chemical Physics,1987,87(2):1272-1283.
    [259]Born, M. Volumes and Hydration Warmth of Ions. Zeitschrift Fur Physik,1920,1:45-48.
    [260]Onsager, L. Electric Moments of Molecules in Liquids. Journal of the American Chemical Society,1936,58(8):1486-1493.
    [261]Bagchi, B., Oxtoby, D.W., and Fleming, G.R. Theory of the Time Development of the Stokes Shift in Polar Media. Chemical Physics,1984,86(3):257-267.
    [262]Vanderzwan, G. and Hynes, J.T. Time-Dependent Fluorescence Solvent Shifts, Dielectric Friction, and Nonequilibrium Solvation in Polar-Solvents. Journal of Physical Chemistry, 1985,89(20):4181-4188.
    [263]Castner, E.W., Fleming, G.R., and Bagchi, B. Influence of Non-Debye Relaxation and of Molecular Shape on the Time-Dependence of the Stokes Shift in Polar Media. Chemical Physics Letters,1988,143(3):270-276.
    [264]Ehrenson, S. Cavity Boundary Effects within the Onsager Theory for Dielectrics. Journal of Computational Chemistry,1981,2(1):41-52.
    [265]Block, H. and Walker, S.M. Modification of Onsager Theory for a Dielectric. Chemical Physics Letters,1973,19(3):363-364.
    [266]Ehrenson, S. Boundary Continuity and Analytical Potentials in Continuum Solvent Models-Implications for the Born Model. Journal of Physical Chemistry,1987,91(7): 1868-1873.
    [267]Kornyshev, A.A. and Ulstrup, J. Solvent Structural Effects on the Diffuse Double-Layer Capacitance of Metal Electrolyte Interfaces. Chemica Scripta,1985,25(1):58-62.
    [268]Bagchi, B., Castner, E.W., and Fleming, G.R. On the Generalized Continuum Model of Dipolar Solvation Dynamics. Journal of Molecular Structure,1989,194:171-181.
    [269]Castner, E.W., Fleming, G.R., and Bagchi, B. The Dynamics of Polar Solvation Inhomogeneous Dielectric Continuum Models. Journal of Chemical Physics,1988,89(6): 3519-3534.
    [270]Chowdhury, P.K., Halder, M., Sanders, L., et al. Dynamic Solvation in Room-Temperature Ionic Liquids. Journal of Physical Chemistry B,2004,108(29):10245-10255.
    [271]Margulis, C.J., Stern, H.A., and Berne, B.J. Computer Simulation of a "Green Chemistry" Room-Temperature Ionic Solvent. Journal of Physical Chemistry B,2002,106(46): 12017-12021.
    [272]Lee, S.U., Jung, J., and Han, Y.K. Molecular Dynamics Study of the Ionic Conductivity of I-N-Butyl-3-Methylimidazolium Salts as Ionic Liquids. Chemical Physics Letters,2005, 406(4-6):332-340.
    [273]Kobrak, M.N. and Sandalow, N. An Electrostatic Interpretation of of Structure-Property Relations in Ionic Liquids, in Molten Salts Xiv, Mantz, A and Trulove, P, Pennington, NJ: The Electrochemical Society,2006.
    [274]Picalek, J. and Kolafa, J. Molecular Dynamics Study of Conductivity of Ionic Liquids: The Kohlrausch Law. Journal of Molecular Liquids,2007,134(1-3):29-33.
    [275]Jeong, D., Choi, M.Y., Jung, Y, et al.1/F Spectrum and Memory Function Analysis of Solvation Dynamics in a Room-Temperature Ionic Liquid. Journal of Chemical Physics, 2008,128(17):174504-7.
    [276]Shim, Y and Kim, H.J. Dielectric Relaxation, Ion Conductivity, Solvent Rotation, and Solvation Dynamics in a Room-Temperature Ionic Liquid. Journal of Physical Chemistry B,2008,112(35):11028-11038.
    [277]Wasserscheid, P. and Welton, Tlonic Liquids in Synthesis.2003, Wiley-VCH:Weinheim.
    [278]Greaves, T.L. and Drummond, C.J. Protic Ionic Liquids:Properties and Applications. Chemical Reviews (Washington, DC, United States),2008,108:206-237.
    [279]Mataga, N. and Kubota, T. Molecular Interactions and Electronic Spectra. New York: Marcel Dekker,1970.
    [280]Hsu, C.-P., Song, X., and Marcus, R.A. Time-Dependent Stokes Shift and Its Calculation from Solvent Dielectric Dispersion Data. Journal of Physical Chemistry B,1997,101: 2546-2551.
    [281]Mertz, E.L. Anomalous Microscopic Dielectric Response of Dipolar Solvents and Water. Journal of Physical Chemistry A,2005,109(1):44-56.
    [282]Bottcher, C.J.F. and Bordewijk, P. Vol. Ii:Dielectrics in Time-Dependent Fields. Vol. II. 1978, Amsterdam:Elsevier.
    [283]Wolynes, P.G Linearized Microscopic Theories of Nonequilibrium Solvation. Journal of Chemical Physics,1987,86:5133-5136.
    [284]Rips, I., Klafter, J., and Jortner, J. Dynamics of Ionic Solvation. Journal of Chemical Physics,1988,88:3246-3252.
    [285]Sangoro, J.R. and Kremer, F. Charge Transport and Glassy Dynamics in Ionic Liquids. Accounts of Chemical Research,2012,45(4):525-532.
    [286]Richert, R. The Modulus of Dielectric and Conductive Materials and Its Modification by High Electric Fields. Journal of Non-Crystalline Solids,2002,305(1-3):29-39.
    [287]Friedman, H.J. Financing Psychotherapy-Costs, Effects, and Public-Policy-Mcguire, T. American Journal of Psychotherapy,1983,37(2):299-301.
    [288]Kowert, B.A., Higgins, E.J., Mariencheck, W.I., et al. Electron Spin Resonance Studies of Reorientational Motion in Glass-Forming Liquids. Journal of Physical Chemistry,1996, 100(27):11211-11217.
    [289]Kashyap, H.K., Santos, C.S., Annapureddy, H.V.R., et al. Temperature-Dependent Structure of Ionic Liquids:X-Ray Scattering and Simulations. Faraday Discussions,2012, 154:133-143.
    [290]Stoppa, A., Hunger, J., Hefter, G., et al. Structure and Dynamics of 1-N-Alkyl-3-N-Methylimidazolium Tetrafluoroborate Plus Acetonitrile Mixtures. Journal of Physical Chemistry B,2012,116(25):7509-7521.
    [291]Lohse, P.W., Ehlers, F., Oum, K., et al. Ultrafast Solvation Dynamics of 12 '-Apo-Beta-Carotenoic-12'-Acid in [C(6)Mim](+)[Tf2n](-). Chemical Physics,2010, 373(1-2):45-49.
    [292]Mladenova, B.Y., Kattnig, D.R., and Grampp, G. Room-Temperature Ionic Liquids Discerned Via Nitroxyl Spin Probe Dynamics. Journal of Physical Chemistry B,2011, 115(25):8183-8198.
    [293]Liu, Q.S., Tong, J., Tan, Z.C., et al. Density and Surface Tension of Ionic Liquid [C(2)MimJ[Pf3(Cf2cf3)(3)J and Prediction of Properties [C(N)Mim] [Pf3(Cf2cf3)(3)] (N=1,3,4,5,6). Journal of Chemical and Engineering Data,2010,55(7):2586-2589.
    [294]Trivedi, S., Malek, N.I., Behera, K., et al. Temperature-Dependent Solvatochromic Probe Behavior within Ionic Liquids and (Ionic Liquid Plus Water) Mixtures. Journal of Physical Chemistry B,2010,114(24):8118-8125.
    [295]Yamada, T. and Otomo, A. Optimization of Microscope Unit for Studying Fluorescence Emitters under High-Vacuum and Ambient Gas Conditions:Optical Properties for Various Ionic Liquids as a Refractive Index Matching Medium. Physics Procedia,2011, 14:7-20.
    [296]Li, X., Liang, M., Chakraborty, A., et al. Solvent-Controlled Intramolecular Electron Transfer in Ionic Liquids. Journal of Physical Chemistry B,2011,115(20):6592-6607.
    [297]Tokuda, H., Baek, S.J., and Watanabe, M. Room-Temperature Ionic Liquid-Organic Solvent Mixtures:Conductivity and Ionic Association. Electrochemistry,2005,73(8): 620-622.
    [298]Xiao, C.H., Rehman, A., and Zeng, X.Q. Dynamics of Redox Processes in Ionic Liquids and Their Interplay for Discriminative Electrochemical Sensing. Analytical Chemistry, 2012,84(3):1416-1424.
    [299]Fitchett, B.D., Knepp, T.N., and Conboy, J.C. I-Alkyl-3-Methylimidazolium Bis(Perfluoroalkylsulfonyl)Imide Water-Immiscible Ionic Liquids-the Effect of Water on Electrochemical and Physical Properties. Journal of the Electrochemical Society,2004, 151(7):219-225.
    [300]Appetecchi, GB., Montanino, M., Zane, D., et al. Effect of the Alkyl Group on the Synthesis and the Electrochemical Properties of N-Alkyl-N-Methyl-Pyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquids. Electrochimica Acta,2009,54(4): 1325-1332.
    [301]Poole, C.F. and Poole, S.K. Ionic Liquid Stationary Phases for Gas Chromatography. Journal of Separation Science,2011,34(8):888-900.
    [302]Leys, J., Rajesh, R.N., Menon, P.C., et al. Influence of the Anion on the Electrical Conductivity and Glass Formation of 1-Butyl-3-Methylimidazolium Ionic Liquids. Journal of Chemical Physics,2010,133(3):034503-10.
    [303]Seki, S., Kobayashi, Y., Miyashiro, H., et al. Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid. Journal of Physical Chemistry B, 2006,110(21):10228-10230.
    [304]Abdallah, T., Lemordant, D., and Claude-Montigny, B. Are Room Temperature Ionic Liquids Able to Improve the Safety of Supercapacitors Organic Electrolytes without Degrading the Performances? Journal of Power Sources,2012,201:353-359.
    [305]Chen, P.Y. and Hussey, C.L. Electrodeposition of Cesium at Mercury Electrodes in the Tri-1-Butylmethylammonium Bis((Trifluoromethyl)Sulfonyl)Imide Room-Temperature Ionic Liquid. Electrochimica Acta,2004,49(28):5125-5138.
    [306]Vaughan, J., Haggins, J., and Dreisinger, D. Density, Viscosity and Conductivity of Tetra-Alkylphosphonium Ionic Liquids. ECS Transactions,2006,2:381-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700