基于添加剂的天然HCCI发动机燃烧特性的试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪九十年代后期以来,国内外广泛开展了均质压燃(HCCI )、低温燃烧(LTC)研究。这是一种结合了传统柴油机和汽油机优点的全新的内燃机燃烧方式。人们发现,根据这一理论可以组织最清洁、热效率最高的燃烧过程,有望显著减少传统汽油机和柴油机的有害污染物排放,并降低其燃油消耗。
     HCCI燃烧主要受化学反应动力学因素的影响,但燃油与空的混合过程对HCCI燃烧过程和燃烧控制也有着较为重要的作用。因此,燃料与空的混合仍然是HCCI发动机需要解决的一个重要课题,提高燃油与空的混合速率成为最近几年HCCI研究的一个重点。为了探讨混合准备策略对HCCI发动机燃烧和排放性能的影响,本文从HCCI发动机工作过程的数值模拟入手,通过燃油/空混合过程与化学动力学的耦合联算与实机试验研究,探讨了提高压缩天然(CNG) HCCI发动机燃烧效率,降低其未燃碳化氢(UHC)和NO_x等燃烧污染物排放的技术途径,揭示出纯CNG、CNG掺氢或掺DME,以及CNG/DME双燃料掺氢发动机HCCI发动机的燃烧特性及其污染物排放的变化规律。本文的研究内容和取得的成果主要体现在以下几个方面:
     对CNG发动机实验与数值模拟研究的现状进行了综述,较全面地分析了实现CNG燃料HCCI燃烧的技术措施及其有关问题。以ZS195型直喷式柴油机为原型机,构建了CNG燃料HCCI发动机专用实验台架,在其上开展了纯CNG、CNG掺氢或掺DME,以及CNG/DME双燃料掺氢发动机的性能及污染物排放的测试研究。针对CNG特殊的理化性能,探讨了发动机不同燃烧边界条件(进温度、空燃当量比、压缩比、掺氢或掺DME等)对CNG燃料HCCI发动机的性能与排放的影响。台架实验结果表明,CNG燃料HCCI发动机的进加热温度随负荷和压缩比的增加而降低,掺烧氢可显著降低CNG燃料HCCI发动机对进加热的要求,并可使燃烧相位提前,加快燃烧速度,减少燃烧持续期,增加发动机的指示热效率。同时,掺氢还可拓宽CNG的燃极限范围,从而有利于CNG发动机实现更薄的燃烧,降低发动机的有害排放。
     应用零维热力学模型与详细化学反应动力学模型的耦合联算,在计及缸壁传热的情况下,研究了纯天然以及天然掺氢的均质压燃燃烧反应机理,探讨了发动机不同运行工况和燃烧边界对燃烧过程的影响规律。CNG燃烧的化学反应动力学模型涉及53种组分、325步基元反应。此外,还应用含有99种组分、477步基元反应的化学动力学模型,分析研究了掺烧10%和20%体积分数的氢对CNG/DME混合燃料发动机着火和燃烧过程的影响。结果表明,控制天然HCCI着火过程的反应步骤包括HO_2与RH反应生成H_2O_2,以及后续H_2O_2与H_2反应生成OH活性基。天然掺氢可使其在低温、低压条件下产生高浓度的H_2O_2和OH活性基。通过掺氢量与燃料空燃比控制相结合,可以有效控制着火定时和拓展HCCI发动机的负荷范围。
     鉴于零维单区模型关于混合在缸内处于完全均匀混合状态的假设与实际情况并不完全符合,因此,有必要开展多组分均质混合湍流混合过程与燃烧化学动力学耦合作用的理论研究。本文应用三维CFD和化学反应动力学的耦合模型,对由缸内复杂流动和燃烧室形状所引起的混合不均匀性及其对燃烧过程的影响进行了数值模拟计算。通过KIVA-3Vr2程序和CHEMKIN的耦合运算,分析研究了进道喷射CNG与缸内流场的相互作用及其对燃烧过程的影响,阐明了天然发动机在不同氢体积分数下的燃烧特性和在最高热效率下稳定运行的条件,对天然掺氢的最佳氢体积分数与发动机运行工况之间的关系进行了优化计算,为确定CNG发动机台架试验的最佳氢体积分数提供了理论依据。天然掺氢发动机的缸内压力、温度的预测值与实验值的对比表明,两者具有较好的一致性。
     在保证计算精度符合要求的条件下,为了尽可能地提高计算效率,并为化学反应动力学模型与CFD多维模型耦合的燃烧计算提供一个行之有效的途径,在DME详细化学反应动力学模型(包含了81种组分、362步基元反应)的基础上,构建了包含27种组分、145步基元反应的DME简化机理模型,建立了一整套从零维到三维耦合化学反应动力学的数值模型,初步形成了开展控制参数优化和燃烧控制策略研究的计算平台。通过简化模型与KIVA-3Vr2相耦合,进行了DME进道喷射和不同起喷相位下的DME缸内多脉冲直喷对混合均匀性和燃烧过程影响的对比研究。模拟计算给出了缸内压力、全历程混合浓度分布、温度分布和燃烧相位随预混合形成模式的变化情况,计算结果为理解均质混合的制备策略提供了参考。
     对采用高十六烷值(DME)和高辛烷值(CNG)双燃料,以及DME/CNG掺氢拓宽均质压燃(HCCI)发动机运行工况范围的技术途径开展了探索性研究。应用详细化学反应动力学模型研究了DME/ CNG双燃料HCCI燃烧模式的燃烧反应机理,以HCCI非正常燃烧(即部分燃烧和爆燃)所涉及的着火极限和最高压力极限为界限值,通过调整DME/CNG双燃料的不同比例,计算得到了HCCI发动机运行范围的MAP图。研究结果表明,通过调整DME/CNG双燃料的不同比例,可使HCCI发动机的运行范围分别向小负荷或大负荷工况扩展,并显著提高其最高平均指示压力。通过数值模拟计算,揭示了DME/CNG掺氢燃烧可实现着火定时控制和工况范围拓宽的作用机理。详细化学反应动力学数值模拟研究表明,氢预氧化产生的大量活性基团能抑制和延缓DME的预氧化,从而达到有效控制其着火延迟期、改善预混合制备并扩大发动机正常运转负荷范围的目的。
     在不掺氢的情况下,DME/CNG混合燃料HCCI发动机缸内压力示功图和UHC、NO_x排放的计算值与实验结果的对比表明,二者在数量上虽然存在一定的差别,但其变化趋势仍较符合。但在掺氢的情况下,由于氢燃烧可改善发动机的循环变动,致使发动机不同负荷工况的缸内压力示功图和UHC、NO_x排放的计算值与实验结果吻合较好。
During the last decade an alternative to conventional internal combustion engines, i.e. spark-ignited and Diesel engines, has been under investigation by an ever increasing number of research groups. This alternative process is called Homogeneous Charge Compression Ignition (HCCI). That engine tests have elucidated that it has a great potential to reduce significantly the harmful emissions, and it is expected to reduce fuel consumption as a comparison with conventional engines operation. HCCI is defined as the process in which a homogeneous mixture of air and fuel, diluted with excess air as well as combustion products, is compressed under such conditions in which the auto-ignition occurs near the end of the compression stroke, followed by a combustion process that is significantly faster than conventional Diesel or Otto combustion.
     This study concerns the numerical and experimental investigation of HCCI engine combustion process. The principal aim of the work underlying the thesis has been using and developing the simulation tools that can contribute for understanding and further development of CNG HCCI engine process. Since HCCI combustion is strongly dependent on chemical kinetics, most of the work presented achieved with the capabilities of the detailed oxidation mechanisms which can describe the oxidation of CNG fuels with and without hydrogen or/and DME additives.
     Two models, with varying levels of complexity and corresponding calculation times, have been developed, validated, and used in this analysis. These simulation tools discussed are the so-called single-zone (CHEMKIN) and multi-zone (KIVA-3Vr2) models. The detailed reaction mechanisms are implemented in these models and a detailed-chemistry approach is used to predict the auto-ignition timing and the rate of combustion. Whereas the zero-dimensional (single-zone) model is based on the assumption of a perfectly homogeneous mixture, while the 3D-CFD/chemistry coupling model is more sophisticated since multiple zones are used to represent the mixture inhomogeneity in the combustion chamber of complex engines geometry. Modeling of HCCI engine requires balanced approach that captures both fluid motion as well as low and high temperature fuel oxidation. A fully coupled 3D-CFD and chemistry scheme would be the ideal HCCI modeling approach, but is computationally very expensive. As a result, modeling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy.
     The major accomplishments and findings from this research can be recognized and traced by summarizing the sequence of collecting data from the results as follows:
     1- A zero-dimensional, thermodynamic model with detailed chemical kinetics and cylinder wall heat transfer correlations have been used to study the detailed oxidation mechanism of pure CNG and CNG/hydrogen in HCCI engine. This mechanism made up of 325 reversible elementary reactions among 53 species. The mechanism was numerically investigated at different operating and geometry conditions of HCCI engine during the time period in which both intake and exhaust valves are closed. In addition, an extended hydrocarbon oxidation reaction mechanism including 81 species and 362 elementary reactions has been used to simulate the combustion and emission behaviors of HCCI engine with DME fuel. Also, a detailed chemical kinetic mechanism considers 99 species and 477 reversible elementary reactions has been used to simulate the autoignition and combustion of CNG/DME fuel mixture with the effect of 10 and 20 % of hydrogen mole fraction.
     2- The gas fuel injection and its interaction with in-cylinder flow field and combustion behaviors of an HCCI engine with port fuel injection were numerically investigated by using numerous capabilities of multi-dimensional computational fluid dynamic (KIVA-3VR2) code coupled with a detailed chemical kinetics mechanism consisted from 314 elementary reactions among 52 species. The combustion process have been simulated successfully with the optimal hydrogen dose related to the specified operating conditions which give the highest thermal efficiency under stable working conditions of pure CNG and CNG with 20% of hydrogen blend. In addition, KIVA-3V is used to investigate the mixing process in HCCI engines prior to combustion, particularly for operation with liquid DME fuel. The calculations of complex chemical-kinetics/turbulent interaction, was carried out using a reduced oxidation mechanism of DME that mainly contains 145 elementary reactions among 27 species.
     3- Engine operating maps based on a series of simulation runs in the case of pure CNG fuel with and without hydrogen blends in addition with the effect of DME fuel additives into the engine missfire and knocking limits at different engine loads have been concluded. These tasks were achieved to find the optimum operating conditions of the HCCI engine fueled mainly by CNG with the minimum number of the laboratory engine tests.
     4- Experimental studies have been conducted in a commercial single cylinder diesel engine to investigate the basic performance characteristics of HCCI engines combustion and emissions. The CHEMKIN and improved KTVA-3Vr2/chemistry model results were validated using the HCCI engine experimental data. The predicted ignition timing by different model agree well with experimental data at different engine load since homogeneous charge was obtained with varying hydrogen or/and DME additives into the CNG/air mixture.
引文
[1] Onishi S, Jo SH, Shoda K, Jo PD, Kato S "Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines", SAE paper 790501
    [2] Najt PM, Foster DE " Compression-Ignited Homogeneous Charge Combustion", SAE paper 830264
    [3] Takeda Y, Keiichi N, Keiichi N" Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early staged Fuel Injection", SAE paper 961163
    [4] Aoyama T, Hattori Y, Mizuta J, Sato Y "An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engines", SAE paper 960081
    [5] Ishibashi Y, Asai M "Improving the Exhaust Emission of Two-Stroke Engines by Applying the Activated Radical Combustion", SAE paper 960742
    [6] Oakley A, Zhao H, Ladommatos N, Ma T "Experimental Studies on Controlled Auto-Ignition (CAI) Combustion of Gasoline in a 4-Stroke Engine", SAE paper 2001-01-1030
    [7] Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK " A Comprehensive Modeling Study of n-Heptane Oxidation", Combust. Flame 114, pp 149-177,1998
    [8] Yanagihara H "Ignition Timing Control at TOYOTA "UNIBUS" Combustion System. In: Duret p (ed) A New Generation of Engine Combustion Processes for the Future", Paris, pp 35-42
    [9] Kimura S, Aoki O, Kitahara Y, Aijoshizawa E, "Ultra-Clean Combustion Technology Combining a Low Temperature and Premixed Combustion Concept for Meeting Future Emission Standards", SAE paper 2001-01-0200
    [10] Thrmg RH "Homogeneous Charge Compression Ignition (HCCI) Engines",SAE paper 892068
    [11] Noguchi M, Tanaka Y, Tanaka T, Takeuchi Y " A Study on Gas oline EngineCombustion by Observation of Intermediate Reactive Products during Combustion", SAE paper 790840
    [12] Gatellier B, Walter B "Development of the High Power NADITM Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions.THIESEL 2002 Thermo- and Fluid-Dynamic Processes in Diesel Engines",Valencia, 10th-13th September 2002, pp 131-143
    [13] Duret P, Gatellier B, Miche M, Montreiro L, Zima P, Marotaux D, Blundell D, Ganser M, Zhao H, Perozzi M, Araneo L "Innovative Diesel HCCI Combustion Process for Passenger Cars: the European SPACE LIGHT Project", EAEC Congress, paper C108
    [14] Pucher GR, Gardiner DP, Bardon MF, Battista V "Alternative Combustion Systems for Piston Engines Involving Homogeneous Charge Compression Ignition Concepts - A review of Studies Using Methanol, Gasoline and Diesel Fuel", SAE paper 962063
    [15] Zheng J, Yang W, Miller L, Cernansky NP "Prediction of Pre-ignition Reactivity and Ignition Delay for HCCI Using a Reduced Chemical Kinetic Model,", SAE paper 2001-01-1025
    [16] Zheng J, Yang W, Miller L, Cernansky NP "A Skeletal Chemical Model for the HCCI Combustion Process", SAE paper 2002-01-0423
    [17] Tsurushima T, Shimazaki N, Asaumi Y "Gas Sampling Analysis of Combustion Processes in a Homogeneous Charge Compression Ignition Engine", Int. J. Engine Research, vol 1, no 4, pp 337-352
    [18] Groenendijk A, Miiller E "Mixture Formation and Combustion Control for Low Emission DI Diesel Combustion with HCCI-Characteristics", THIESEL 2002,Valencia, 10th-13th September 2002, pp 145-157
    [19] Westbrook CK "Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems. Proceedings of the Combustion Institute", vol 28, pp1563-1577
    [20] J.C.G. Andrae, P. Bjornbom, R.F. Cracknell , G.T. Kalghatgi, "Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics",Combustion and Flame 149 (2007) 2-24
    [21] Xingcai Lu, Libin Ji, Linlin Zu, Yuchun Hou, Cheng Huang, Zhen Huang, Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors,Combustion and Flame 149 (2007) 261-270
    [22] Carsten Baumgarten, "Mixture Formation in Internal Combustion Engines",?Springer-Verlag Berlin Heidelberg 2006, Germany
    [23] Shigeyuki Tanaka*, Ferran Ayala, James C. Keck, John B. Heywood, "Two-stage ignition in HCCI combustion and HCCI control by fuels and additives",Combustion and Flame 132 (2003) 219-239
    [24] Chevalier C, Louessard P, Miiller UC, Warnatz J "A Detailed Low- Temperature Reaction Mechanism of n-Heptane Auto-Ignition. Proceedings of the 2nd Symposium on Diagnostics and Modeling of Combustion in Reciprocating Engines", Comodia 90, pp 93-97
    [25] Chevalier C, Warnatz J, Melenk H "Automatic Generation of Reaction Mechanisms for the Description of the Oxidation in Higher Hydrocarbons",Berichte der Bunsen-Gesellschaft fur Physikalische Chemie vol 94, pp 1362-1367
    [26] Zhaolei Zheng, Mingfa Yao," Numerical study on the chemical reaction kinetics of n-heptane for HCCI combustion process", Fuel 85 (2006) 2605-2615, ELSEVIER
    [27] Griffith JF, Barnard JA "Flame and Combustion". Third Edition, Chapman Hall, London
    [28] Warnatz J " Hydrocarbon Oxidation at High Temperatures", Berichte der Bunsen-Gesellschaft fur Physikalische Chemie 87, pp 1008-1022
    [29] Warnatz J "Resolution of Gas Phase and Surface Combustion Chemistry into Elementary Reactions". 24th International Symposium on Combustion, The Combustion Institute, Pittsburgh, pp 553-579(1992).
    [30] J. Huang, W.K. Bushe, "Experimental and kinetic study of auto-ignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions", Combustion and Flame 144 (2006) 74-88
    [31] Kimura S, Aoki O, Kitahara Y, Aijoshizawa E "Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards". SAE paper 2001-01-0200
    [32] Stranglmaier RH, Roberts, CE, "Homogeneous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications", SAE paper 1999-01-3682
    [33] Peng Z, Zhao H, Ladommatos N "Effects of Air/Fuel Rates on HCCI Combustion of n-heptane, a Diesel Type Fuel", SAE paper 2003-01-0747
    [34] Bohm H Hesse D, Jander H, Luers B, Pietscher J, Wagner HG, Weiss M "The Influence of Pressure and Temperature on Soot Formation in Premixed Flames".22nd Symposium (International) on Combustion, The Combustion Institute, pp . 403-411(1988).
    [35] Schloz E "Untersuchungen zur homogenen Dieselverbrennung bei innerer Gemischbildung", Dissertation, Universitat Karlsruhe(2003)
    [36] Magnus Sjoberg, John E. Dec, "An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines", Proceedings of the Combustion Institute 30 (2005) 2719-2726
    [37] Epping K, Aceves S Bechtold R, Dec J "The Potential of HCCI Combustion for High Efficiency and Low Emissions", SAE paper 2002-01-1923
    [38] Velji A, Gunthner M, Spicher U "Direkteinspritzung im Ottomotor mit Fremdund Kompressionszundung - Brennverfahren der Zukunft", Tagung Direkteinspritzung im Ottomotor (in German), In: Spicher U (ed) Direkteinspritzung im Ottomotor IV, Haus der Technik Fachbuch Band24, Expert-Verlag, pp 1-25(2003)
    [39] Fuerhapter A, Piock WF, Fraidl GK " CSI-Controlled Auto Ignition - the Best Solution for the Fuel Consumption Versus Emission Trade Off, SAE paper 2003-01-0754
    [40] Aoyama T, Hattori Y, Mizuta J, Sato Y, "An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engines", SAE paper 960081
    [41] Harada A, Shimazaki N, Satoru S, Miyamoto T, Akagawa H, Tsujimura K ,"The Effects of Mixture Formation on Premixed Lean Diesel Combustion", SAE paper 980533
    [42] Ryan III TW, Callahan TJ," Homogeneous Charge Compression Ignition of Diesel Fuel", SAE paper 961160
    [43] Allen J, Law D "Advanced Combustion Using a LOTUS Active Valve Train,Internal Exhaust Gas Recirculation Promoted Auto-Ingition", Duret P (ed) A New Generation of Engine Combustion Processes for the Future, Paris, pp 85-100(2001)
    [44] Song-Charng Kong and Rolf D. Reitz, "Application of Detailed Chemistry and CFD for Predicting Direct injection HCCI Engine Combustion and Emission",Proceedings of the Combustion Institute, Volume 29, 2002/pp. 663-669
    [45] D. Yap, J. Karlovsky, A. Megaritis, M.L. Wyszynski, H. Xu, "An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping", Fuel 84 (2005) 2372-2379
    [46] Seref Soylu, "Examination of combustion characteristics and phasing strategies of a natural gas HCCI engine", Energy Conversion and Management 46(2005) 101-119
    [47] Kitae Yeom, Jinyoung Jang, Choongsik Bae,"Homogeneous charge compression ignition of LPG and gasoline using variable valve timing in an engine", Fuel 86 (2007)494-503
    [48] Gregory M. Shaver , Matthew J. Roelle, J. Christian Gerdes, "Modeling cycle-to-cycle dynamics and mode transition in HCCI engines with variable valve actuation", Control Engineering Practice 14 (2006) 213-222
    [49] Rui Chen , Nesa Milovanovic, "A computational study into the effect of exhaust gas recycling on homogeneous charge compression ignition combustion in internal combustion engines fuelled with methane", International Journal of Thermal Sciences 41 (2002) 805-813.
    [50] Wolters, P., Salber, W., Dilthey, J. "Radical Activated Combustion, A new Approach for Gasoline Engines, in A New Generation of Engine Combustion Processes for the Future", P. Duret (Editor) and Editions Technip, Paris, 2001,pp. 153-162
    [51] Haiyun Su, Alexander Vikhansky, Sebastian Mosbach, Markus Kraft, Amit Bhave, Kyoung-Oh Kim, Tatsuo Kobayashi, Fabian Mauss, "A computational study of an HCCI engine with direct injection during gas exchange", Combustion and Flame 147(2006)118-132
    [52] Law D, Kemp D, Allen J, Kirkpatric G, Copland T "Controlled Combustion in an IC-Engine with a Fully Variable Valve Train", SAE paper 2000-01-0251
    [53] Xing-Cai Lu, Wei Chen, Zhen Huang, "A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR", Part 1. The basic characteristics of HCCI combustion, Fuel 84 (2005)1074-1083
    [54] Xing-Cai Lu, Wei Chen, Zhen Huang, "A fundamental study on the control of the HCCI combustionand emissions by fuel design concept combined with controllable EGR". Part 2. Effect of operating conditions and EGR on HCCI combustion, Fuel 84 (2005) 1084-1092
    [55] D. Flowers, S. Aceves, C.K. Westbrook, J.R. Smith, R. Dibble, "Sensitivity of Natural GAS HCCI Combustion to Fuel and Operating Parameters Using Detailed Kinetic Modeling", American Society of Mechanical Engineers International Mechanical Engineering Congress and Exposition, Nashville, TN,November 14-19, 1999
    [56] Zhao H, Peng Z, Milliams J, Ladommatos N "Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines", SAE paper 2001-01-3607
    [57] Law D, Allen J "On the Mechanism of Controlled Auto Ignition",SAE paper 2002-01-0421
    [58] Wolters P, Salber W, Kriiger M, Korfer T, Dilthey J "Variable Ventilsteuerung -Schliisseltechnologie fur Homogene Selbstziindung",Dresdner Motorenkolloquium(in German), 5th-6th June 2003, Dresden, pp 161-175
    [59] Stranglmaier RH, Li J, Matthews RD, "The Effect of In-Cylinder Wall Wetting on the HC Emissions from SI Engines", SAE paper 1999-01-0502
    [60] Steve T. Chin and Chia-Fon F. Lee, "Numerical Investigation of the effect of Wall Wetting on Hydrocarbon Emission in Engines, Proceedings of the Combustion Institute", Volume 29, 2002 /pp. 767-773
    [61] L. Andreassi , S. Ubertini , L. Allocca, "Experimental and numerical analysis of high pressure diesel spray-wall interaction", International Journal of Multiphase Flow (2007)
    [62] Hyun Kyu Suh , Sung Wook Park, Chang Sik Lee, "Effect of piezo-driven injection system on the macroscopic and microscopic atomization characteristics of diesel fuel spray", fuel.2007.03.015
    [63] Zhi Wang, Shi-Jin Shuai, Jian-Xin Wang, Guo-Hong Tian, "A computational study of direct injection gasoline HCCI engine with secondary injection", Fuel 85 (2006)1831-1841
    [64] Jeaduk Ryul, Hyungmin Kiml, Kihyung Lee, "A study on the spray structure and evaporation characteristic of common rail type high pressure injector in homogeneous charge compression ignition engine", Fuel 84 (2005) 2341-2350
    [65] M.R.O. Pana~o, A.L.N. Moreira, "Interpreting the influence of fuel spray impact on mixture preparation for HCCI combustion with port-fuel injection", Proceedings of the Combustion Institute 31 (2007) 2205-2213
    [66] Myung Yoon Kim , Chang Sik Lee, "Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine", fuel.2007.03.016
    [67] Mingfa Yao , Zheng Chen, Zunqing Zheng, Bo Zhang, Yuan Xing, "Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol", Fuel 85 (2006) 2046-2056
    [68] Toshio Shudoa, HiroyukiYamadab, "Hydrogen as an ignition-controlling agent for HCCI combustion engine by suppressing the low-temperature oxidation", Hydrogen Energy (2006) 12.002.
    [69] Westbrook C.K., and Pitz W., "Effect of Propane and Ignition of Methane-Ethane-Air Mixture", Combustion Science and Technology,(1983) Vol. 33, pp.315-319
    [70] TNO report, 12 of 76, Table 2.1,14, June (1996)
    [71] Liss, W.E., and W.H., Thrasher, "Natural gas as a stationary engine and vehicle fuel", SAE Paper 912364
    [72] King S.R., 1992, "The impact of natural gas composition on fuel metring and engine operating characteristics", SAE Paper 920593
    [73] Fraser, A.F., Siebers, D.L., Edwards. C.F., "Autoignition of methane and natural gas in a simulated diesel environmental", SAE Paper 910227
    [74] Naber J.D., D.L.,Siebers. J.A. Caton, Westbrook C.K., Di Julio S.S., "natural gas autoignition under diesel condition: experimental and chemical kinetic modeling",SAE Paper 942034, 1994
    [75] Fiveland, S.B., Agama, R., Christensen, M., Johansson, B., Hiltner, J., Mauss, F., and Assanis, D.N., "Experimental and simulation results detailed the sensitivity of natural gas HCCI engine to fuel composition", SAE Paper 2001-01-3609
    [76] Fiveland, S.B., and Assanis, D.N., "Development of a two zone HCCI combustion model accounting for boundary layer effects", SAE Paper 2001-01-1028
    [77]Agarwal A.and D.N.Assanis,“Modeling the effect of natural gas composition on ignition delay under compression ignition conditions”,SAE Paper 971711
    [78]Hiltner,J.H,Fiveland,S.B.,Agama,R.,Willi,M.,“System efficiency considerations in a large bore,HCCI engine for stationary power generation”,SAE Paper 2002
    [79]Takuji Ishiyama,Hiroshi Kawanabe,Kenji Ohashi and Masahiro Shioji,“A Study on PCCI Combustion of Natural Gas with Direct Injection”,comodia 2004,B3-2-072
    [80]Daesu JUN,Kazuaki ISHII,and Norimasa IIDA,“Autoignition and combustion of natural gas in a 4 stroke HCCI engine”,JSME International Journal,Series B,Vol.46,No,1,2003
    [81]Thring,R.H.and Leet,J.A.,1991,“The Stratified Charge Glowplug Ignition(SCGI)Engine with Natural Gas Fuel”,SAE Paper 911767.
    [82]Iida,N.,1997,“Alternative Fuels and Homogeneous Charge Compression Ignition”,SAE Paper 972071(JSAE 9734043).
    [83]Richhter,M.,Alden,M.,Hultqvist,A.and Johansson,B.,“Optical Diagnostics Applied to a Naturally Aspirated Homogeneous Charge Compression Ignition Engine”,SAE Paper 1999-01-3649.
    [84]Hultqvist,A.,Christensen,M.,Johansson,B.,Franke,A.,Richhter,M.and Alden,M.,1999,“A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging”,SAE Paper 1999-01-3680.
    [85]Hultqvist,A.,Christensen,M.and Johansson,B.,“The Application of Ceramic and Catalytic Coatings to Reduce the Unburned HC Emissions from HCCI Engines,” SAE Paper 2000-01-1833.
    [86]Richhter,M.,Engstr(o|¨)m,J.,Franke,A.,Alden,M.,Hultqvist,A.and Johansson,B.,“The Influence of Charge Inhomogeneity on the HCCI Combustion Process,” SAE Paper 2000-01-2868.
    [87]Olsonn,J.-O.,Erlandsson,O.and Johansson,B.,“Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition(HCCI)Engine,” SAE Paper 2000-01-2867.
    [88]Christensen,M.and Johansson,B.,“Homogeneous Charge Compression Ignition with Water Injection,”SAE Paper 1999-01-0182.
    [89]Christensen,M.,Hultqvist,A.and Johansson,B.,“Demonstrating Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio,” SAE Paper 1999-01-3679.
    [90]Christensen,M.,and Johansson,B.,“Influence of Mixture Quality on Homogeneous Charge Compression Ignition,” SAE Paper 982454.
    [91]Christensen,M.,Johansson,B.,Amneus,P.and Mauss,F.,“Supercharged Homogeneous Charge Compression Ignition,” SAE Paper 980787.
    [92]Aceves,S.M.,Flowers,D.L.,Westbrook,C.K.,Smith,J.R.,Dibble,R.W.,PitzW.J.,Christensen,M.and Johansson,B.,“A Multizone Simulation for Prediction of HCCI combustion an d Emissions,” SAE paper 2000-01-0327.
    [93] Flowers D., S. Aceves, C. K. Westbrook, and J. R. Smith, "Detailed Chemical Kinetic Simulation of Natural Gas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies", J. Eng. Gas Turbines Power - April 2001-Volume 123, Issue 2,433
    [94] Christensen M., B. Johansson, P. Einewall, "Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas a comparison with park-ignition operation", SAE Paper 972874.
    [95] Vahid Hosseini, M. David Checkel, "Reformer Gas Enrichment of Natural Gas Homogeneous Charge Compression Ignition (HCCI) Combustion", Combustion Institute Davis Center, 2006 CI/CS spring Technical Meeting
    [96] Kongsereeparp P., B. Kashani, M. D. Checkel, "A stand-alone multi-zone model for combustion in HCCI engines", in: Fall Technical Conference of the ASME Internal Combustion Engine Division, Ottawa, Canada, 2005.
    [97] Kongsereeparp P., M. D. Checkel, "Investigation of the effects of reformed fuel blending in a natural gas-HCCI engine using a multi-zone model", in: Combustion Institute Canadian Section, Spring Technical Meeting, Waterloo, Canada, 2006.
    [98] Isadore L. Drell and Frank E. Belles. "Survey of Hydrogen Combustion Properties," Report 1383-National Advisory Committee for Aeronautics, 1957
    [99] Chenglong Tang, Zuohua Huang, Chun Jin, Jiajia He, Jinhua Wang, Xibin Wang Haiyan Miao, "Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures", ELSEVIER, I. J. of Hydrogen Energy,(2008) 10.028
    [100] Chenglong Tang, Zuohua Huang, Chun Jin, Jiajia He, Jinhua Wang, Xibin Wang Haiyan Miao, "Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flames", ELSEVIER, I. J. of Hydrogen Energy,33(2008)4906-4914
    [101] Zhiyuan Zhang, Zuohua Huang , Xiangang Wang, Jun Xiang, Xibin Wang, Haiyan Miao, "Measurements of laminar burning velocities and Markstein lengths for methanol-air-nitrogen mixtures at elevated pressures and temperatures",ELSEVIER, Combustion and Flame 155 (2008) 358-368
    [102] Haiyan Miao, Qi Jiao, Zuohua Huang, Deming Jiang, "Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas", ELSEVIER,I. J. of Hydrogen Energy, 33 (2008) 3876- 3885
    [103] Jinhua Wang, Zuohua Huang, Haiyan Miao, Xibin Wang, Deming Jiang, "Study of cyclic variations of direct-injection combustion fueled with natural gas-hydrogen blends using a constant volume vessel", ELSEVIER, I. J. of Hydrogen Energy, 2008.09.041
    [104] Cozzi F., A. Coghe, "Behavior of hydrogen-enriched non-premixed swirled natural gas flames", ELSEVIER, International Journal of Hydrogen Energy 31-2006-669-677
    [105] L.P.H. de Goey, R.T.E. Hermanns, R.J.M. Bastiaans, "Analysis of the asymptotic structure of stoichiometric premixed CH4-H2-air flames", ELSEVIER,Proceedings of the Combustion Institute 31 (2007) 1031-1038
    [106] Fabien Halter, Christian Chauveau, Iskender G(?)kalp, "Characterization of the effects of hydrogen addition in premixed methane/air flames", ELSEVIER,International Journal of Hydrogen Energy 32 (2007) 2585-2592
    [107] S. Gersena, N.B. Anikina , A.V. Mokhova , H.B. Levinskya,b, "Ignition properties of methane/hydrogen mixtures in a rapid compression machine", ELSEVIER,International Journal of Hydrogen Energy 2008.01.017
    [108] D.Yap, S.M. Peucheret,A.Megaritis,M.L.Wyszynski, H. Xu, "Natural gas HCCI engine operation with exhaust gas fuel reforming", ELSEVIER, International Journal of Hydrogen Energy 31 (2006) 587-595
    [109] S. Peucheret, M. L. Wyszynski, R.S. Lehrlea, S. Golunski, H. Xuc, "Use of catalytic reforming to aid natural gasHCCI combustion in engines: experimental and modeling results of open-loop fuel reforming", ELSEVIER, International Journal of Hydrogen Energy 30 (2005) 1583-1594
    [110] Troy A. Semelsberger, Rodney L. Borup, Howard L. Greene, "Dimethyl ether (DME) as an alternative fuel", ELSEVIER, Journal of Power Sources 156(2006)497-511
    [111] Song-Charng Kong, "A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics", ELSEVIER, Fuel 86 (2007) 1483-1489
    [112] M Yao, J Qin, and Z Zheng, "Numerical study of the combustion mechanism of homogeneous charge compression ignition engine fuelled with dimethyl ether and methane, with a detailed kinetics model". Partl: the reaction kinetics of dimethyl ether, Proc. IMechE Vol. 219 Part d:j, Oct 2005, Automobile Engineering
    [113] Sukho Jung, Masahiro Ishida, Hironobu Ueki, Daisaku Sakaguchi, "Ignition Characteristics of Methanol and Natural-Gas in a HCCI Engine Assisted by DME", SAE Paper 2007-01-1863
    [114] Mingfa Yao, Zunqing Zheng,Jin Qin, "Experimental Study on Homogeneous Charge Compression Ignition Combustion With Fuel of Dimethyl Ether and Natural Gas", Transactions of the ASME, Vol. 128, APRIL 2006
    [115] Zhili Chen and Mitsuru Konno, Mitsuharu Oguma and Tadanori Yanai, "Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine",SAE Paper 2000-01-0329
    [116] Mitsuru Konno, Zhili Chen, "Ignition Mechanisms of HCCI Combustion Process Fueled With Methane/DME Composite Fuel", SAE Paper 2005-01-0182
    [117] Mingfa Yao and Jing Qin, "Simulating the Homogeneous Charge Compression ignition Process Using a Detailed Kinetic Model for Dimethyl Ether (DME) and Methane Dual Fuel", SAE Paper 2004-01-2951
    [118] Yusuke Narioka, Tomoyuki Yokoyama, Shinichi Iio and Yasuo Takagi, HCCI Combustion Characteristics of Hydrogen and Hydrogen-rich Natural Gas Reformate Supported by DME Supplement, SAE Paper 2006-01-0628
    [119] Hideyuki Ogawa, Noboru Miyamoto, Naoya Kaneko and Hirokazu Ando, "Combustion Control and Operating Range Expansion With Direct Injection of Reaction Suppressors in a Premixed DME HCCI Engine", SAE Paper 2003-0-0746
    [120] U.S. Department of Transportation Federal Transit Agency, DOT-FTA-MA-26-7021-98-1, DOT-VNTSC-FTA-98-6, April 1999
    [121] Hansel, J.G., G.W. Mattern, and R.N. Miller. "Safety Considerations in the Design of HydrogenPowered Vehicles." Int. J. of Hydrogen Energy, Vol. 18, No. 9, pp. 783-790, 1993. Hansel, J.G. "Private Communication. Air Products & Chemicals,Inc",May 1996.
    [122] Ringland, J.T. "Safety Issues for Hydrogen Powered Vehicles." Report No. SAND94-8226.UC-407, NTIS No. DE94-008909. Sandia National Laboratory,Albuquerque, NM. March 1994.
    [123] Dec, J. E., "A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines," SAE Paper 2002-01-1309,2002.
    [124] Hiltner, J., Agama, R., Mauss, F., Johansson, B., and Christensen, M., "HCCI Operation with Natural Gas: Fuel Composition Implications," Proceedings of the ASME Internal Combustion Engine Fall Technical Conference, ASME Paper 2000-ICE-317,2000
    [125] Smith, J. R., Aceves, S. M., Westbrook, C. K., and Pitz, W. J., "Modeling of Homogeneous Charge Compression Ignition (HCCI) of Methane," Proceedings of the ASME Internal Combustion Engine Fall Technical Conference, ASME Paper 97-ICE-68, 1997
    [126] Goldsborough, S. S., and Van Blarigan, P., "A Numerical Study of a Free Piston Engine Operating on Homogeneous Charge Compression Ignition Combustion,"SAE Paper 1999-01-0619, 1999.
    [127] Ogink, R., and Golovitchev, V., "Gasoline HCCI Modeling: an Engine Cycle Simulation Code with a Multi-zone Combustion Model," SAE Paper 2002-01-1745,2002.
    [128] Fiveland, S. B., and Assanis, D. N., "Development and Validation of a Quasi-Dimensional Model for HCCI Engine Performance and Emissions Studies under Turbocharged Conditions," SAE Paper 2002-01-1757, 2002.
    [129] A. A. Amsden, P. J. O'Rourke, T. D. Butler, "KIVA-Ⅱ: A Computer Program for Chemically Reactive Flows with Sprays", LA-11560-MS, May 1989
    [130] Anthony A. Amsden, "KIVA-3: A KIVA Program with Block-Structured Mesh forComplex Geometries", LA-12503-MS, March 1993
    [131] Anthony A. Amsden, "KTVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves", LA-13313-MS, July 1997
    [132] Anthony A.Amsden, "KTVA-3V, RELEASE 2, Improvements to KIVA-3V", LA-13608-MS,May 1999
    [133] Kong, S.-C, Marriot, C. D., Reitz, R. D., and Christensen, M., "Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD," SAE Paper 2001-01-1026
    [135] Kong, S.-C, and Reitz, R. D., "Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions,"Proceedings of the Combustion Institute 29:663-669, 2002.
    [136] Hong, S., Assanis, D., and Wooldridge, M., "Multi-Dimensional Modeling of NO and Soot Emissions with Detailed Chemistry and Mixing in a Direct Injection Natural Gas Engine," SAE Paper 2002-01-1112, 2002
    [137] Hong, S. J., Wooldridge, M. S., and Assanis, D. N., "Modeling of Chemical and Mixing Effects on Methane Autoignition Under Direct-Injection, Stratified Charge Conditions," Proceedings of the Combustion Institute 29:711-718, 2002.
    [138] Kee R. J. , F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar. "CHEMKIN-4:chemical kinetics package for the analyses of gas phase chemical kinetics",RD01400-C01-000-001 May 2004
    [139] Robert J. Kee, Michael E. Coltrin, and Peter Glarborg, "Chemically Reacting Flow: Theory and Practice, John Wiley and Sons, Hoboken, New Jersey (2003)",
    [140] Oran E.S. , J.P. Boris. "Numerical approaches to combustion modeling, in:Progress in Astronautics and Aeronautics," Vol. 135, Naval Research Laboratory,University of Boulder, Washington, USA, 1996
    [141] Milovanovic N., R. Chen. "A review of experimental and simulation studies on controlled auto-ignition combustion," 2001-01-1890, SAE Paper, 2001.
    [142] S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations", NASA Report SP-273, 1971.
    [143] Heywood J. B., "Internal Combustion Engines Fundamentals", McGraw-Hill Science/Engineer, 1988.
    [144] Chang Junseok, Orgun Guralp, Zoran Filipi, and Dennis Assanis. "New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux," 2004-01-2996, SAE paper.
    [145] Woschni, G. "A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine", SAE Paper, 670931
    [146] Glassman I. Combustion, 2nd edition, Academic Press, Orlando, ISBNO-12-285851-4, 1987
    [147] Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B.,Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W.C., Jr.,Lissianski, V.V., and Qin, Z.,Gri-MechTM,URL:http://www.me.berkelev.edu/grimech/ [cited 30 July 1999].
    [148] Curran H.J., S.L. Fischer, F.L. Dryer. "The Reaction Kinetics of Dimethyl Ether.Part Ⅰ, and Ⅱ," 32-741, Int. J. Chem. Kinet, 2000,http://www-cms.llnl.gov/Combustion/combustion2.html.
    [149] http://homepages.cae.wisc.edu/~hessel/research/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700