小球粘结高燃速推进剂燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高燃速推进剂广泛应用于高速动能弹、机载导弹、反坦克导弹等快速反应武器,因此高燃速推进剂是固体推进剂最热门的研究方向之一。采用一种膏体状推进剂粘结小球药而制备的复式结构体的高燃速推进剂具有燃烧速度高和燃烧稳定等特点。本文主要针对这种新型推进剂的配方设计及燃烧特性进行了系统的理论和实验研究。
     首先,分析讨论了小球粘结高燃速推进剂燃烧性能设计原理及方法,采用基于推进剂化学结构与特征反应关系的燃速预估程序和REAL热力学系统软件分别计算了组分含量与黏结剂和小球药燃烧性能、能量性能的关系,分析了推进剂燃烧性能、能量性能设计时组分含量的选择原则。根据小球粘结高燃速推进剂配方设计的特点,在综合了双基推进剂和复合推进剂部分制备工序的基础上,提出了常温、无溶剂、二步挤压制备小球粘结高燃速推进剂工艺。
     其次,分别研究了组分含量、小球药形态、结构及与黏结剂质量比对小球粘结高燃速推进剂燃烧性能的影响。实验结果表明:当膏体状黏结剂配方中NC、NG、AP含量增加,膏体状黏结剂燃速增大,推进剂燃速也增大;而随着小球药配方中NG/NC比例增大,小球药燃速增大,推进剂燃速下降。其内在规律是膏体状黏结剂与小球药燃速差越大,推进剂燃速越高,反之亦然。
     小球药粒径越小、表面越粗糙,则推进剂燃速越高。膏体状黏结剂与小球药质量比越小,推进剂燃速也越高,但二者质量比小到一定数值后易造成推进剂燃烧不稳定,根据理论分析,膏体状黏结剂与小球药质量比至少应大于41:59。
     然后,系统研究了铅、铜、铁化合物不同组合的催化剂对小球粘结高燃速推进剂主要组分热分解和燃烧性能的催化特性。实验结果表明:在铅、铜复合的基础上加入含铁的化合物,可使双基黏结剂的热分解峰大幅度提前,显示了较好的催化效果;同样可显著促进AP的热分解,特别是亚铁氰化铅/铜铬氧化物复合不仅使AP高温分解峰温提前了133.4℃,而且使低温分解峰温提前了55.1℃,是催化AP热分解中效果较好的一种催化剂组合。同时采用铅/铁/铜复合催化剂,可以较大幅度降低小球粘结高燃速推进剂在高压区间内的压强指数,特别是亚铁氰化铅/亚铬酸铜组合显示了对小球粘结高燃速推进剂较好的催化效果。
     对小球粘结高燃速推进剂燃烧及熄火照片分析表明,小球粘结高燃速推进剂燃烧熄火表面不是一个简单的曲面,而是由小球药表面熔化而又相互粘结成具有一定厚度的多孔透性结构的燃烧表面层,在该燃烧层内就可能发生一定程度的对流燃烧,其燃烧过程也有别于一般改性双基推进剂,可分为六个区,即凝聚相加热区、亚表面反应区、燃烧表面区、多孔透区、颗粒流动区和产物区。
     最后,对小球粘结高燃速推进剂发动机进行了实验研究和数据分析,结果表明,小球粘结高燃速推进剂在不同条件下有三种燃烧类型。类似于普通双基推进剂的平行层燃烧类型,类似于超高燃速推进剂的对流燃烧类型,以及介于二者之间的“有限对流燃烧”类型。可用一无量纲数值r大小和压强来判断新型高燃速推进剂出现三种类型燃烧的条件,在压强较小和r≈1.0时该推进剂在发动机内是类平行层进行燃烧;在压强较高和r>1.4时该推进剂在发动机内是类对流燃烧;在压强适中和r≈1.1~1.3时,该推进剂在发动机内是有限对流燃烧。同一种推进剂在不同的条件下可出现这三种不同的燃烧类型,是小球粘结高燃速推进剂燃烧特性的新颖之处。同时,这也为小球粘结高燃速推进剂提供了广阔的应用领域。
High-burning-rate propellant is widely used in quick response weapons such ashypervelocity kinetic antitank missiles, aircraft-launched missile, antitank missiles,etc. High-burning-rate propellant is one of the hottest research directions in the field ofsolid propellant. The investigated high-burning-rate propellant is characterized by highburning rate and stable combustion, the duplex structure of wchich is fabricated bybinding small grain propellants together by pasty propellant. In the paper, the formuladesign and combustion behavior of the novel high-burning-rate propellant is investigatedboth theoretically and experimentally.
     Firstly, the principle and method of designing the combustion characteristics ofsmall grain-binding high-burning-rate propellant are analyzed and discussed, theburning behaviors and energy characteristic of the component content and binder andsmall grain propellant are respectively calculated by the estimating burning rateprocedure based on the chemical structure and characteristic of propellant, and theREALthermodynamics system software. The selection principle of component contentwhen designing the burning behavior and energy characteristic is analyzed. According tothe formula design of the small grain-binding high-buming-rate propellant as well as thepreparation processes of both double base propellant and composite propellant, thenovel process to prepare small grain-binding high-burning-rate propellant characterizedby the room temperature, solventlessness and two-step extruding is proposed.
     Secondly, the effects of the component content, small grain shape and structure,and the binder mass ratio of binder to small grain propellant on the burning behavior ofthe small grain-binding high-burning-rate propellant were respectively studied.Theexperimental results show that, the burning rate of pasty binder and the propellantincreases with the increasing the component content of NC, NG and AP and that as theratio of NC/NG in the small grain increases, the burning rate of small grain increasesbut the burning rate of the propellant redueces. The internal laws can be concluded thatthe greater burning rate difference between pasty binder and small grain is, the higherthe burning rate of the propellant is, vice versa.
     The smaller the particle size and the rougher the surface leads to the higher theburning rate of the propellant. The smaller the mass ratio of the pasty binder to smallgrain is, the higher the burning rate of the propellant is. But when the mass ratio isreduced to a certain value, it would easy to cause unstable combustion. Based ontheoretical analysis, the mass ratio of the pasty binder to small grain should be t higherthan 41: 59.
     The catalytic properties of the thermal decomposition and the burning behavior ofthe small grain-binding high- burning-rate propellant is systemically investigated.Experimental results that, ee the addition of iron composite into the lead/copper complexcatalyst significantly advances the peak temperature of double base binder thermaldecomposition, showing excellent catalytic performace., and also promotes the thermaldecomposition of AP. Especially the complex of lead ferrocyanide/C.C reducestemperature of AP higher temperature decomposition peak by 133.4℃and temperatureof AP lower temperature decomposition peak by 55.1℃, and is a good complex catalystin the catalytic thermal decomposition of AP. Moreover, using lead/iron/coppercomplex catalyst greatly reduces the pressure exponent in the higher pressure range ofthe small grain-binding high-burning-rate propellant. Remarkably, the complex of leadferrocyanide/C.C shows excellent catalytic effect on the small grain-bindinghigh-burning-rate propellant.
     The analyzed of the photos of the small grain-binding high-burning-rate propellantduring combustion and after extinguishing, the combustion extinguished surface is not asimple curved surface, but a surface with multi-perforated permeable structure composeof the melt and conglutinated small grain propellant, where convective combustion maybe exist, and its combustion can be divided into six different zones, condensed phaseheating zone, hypo-surface reaction zone, combustion surface zone, permeabilitymultiperforated zone, grain flowing zone and product zone.
     Under different conditions, the combustion of the small grain-bindinghigh-burning-rate propellant can be categorized into three types, i.e. parallel layercombustion similar to double base propellant, convective combustion similar to thesuper high-burning-rate propellant, and finite convective combustion between the twotypes. The dimensionless value r and pressure can be used to estimate when the threecombustion type appears. When the pressure is low and r≈1.0, the combustion in therocket motor is similar to parallel layer combustion; when the pressure is higher and r>1.4, the combustion in the rocket motor is similar to the convective combustion; andwhen the pressure is moderate and r≈1.1~1.3, the combustion in the rocket motor isfinite convective combustion.The coclusion can be drawn that the same propellant hasthree different combustion types under different conditions, which is the difference ofthe small grain-binding high-burning-rate propellant from traditional propellant and willprovide a wider application field for high-burning-rate propellant.
引文
[1] 《兵器工业科学技术辞典》编辑委员会编.兵器工业科学技术辞典.火药与炸药[M].北京:国防工业出版社,1991
    [2] 冉秀伦,杨荣杰.高燃速推进剂研制现状分析[J].飞航导弹,2006,9:44-50
    [3] 叶名兰.固体洲际导弹技术发展分析[J].世界导弹与航天,1990(3):37-42
    [4] 许会林编著.中国火药火器史话[M].北京:科学普及出版社,1986
    [5] 周起槐,白木兰.中国百科全书.火药:军事(1)[M].北京:中国大百科全书出版社,1989
    [6] 邵志强.硝化纤维素生产工艺与设备[M].北京:北京理工大学出版社,2002
    [7] 王伯羲,冯增国,杨荣杰等著.火药燃烧理论[M].北京:北京理工大学出版社,1997
    [8] William E H. High burning rate catalyst[P]. USP: 3962297,1976
    [9] Michels H H.Theoretical research investigation of high energy species [R].AD-A319054,1996
    [10] Schmitt R J,Bottaro J C,Penwell P E.The development of new protecting/leaving groups and application to the synthesis of cage nitramines [R].ADA2261496. US. Department of Commerce Technology Administration.
    [11] 欧育湘,贾会平,陈博仁等.六硝基六氮杂异伍兹烷的研究进展(3)——六硝基六氮杂异伍兹烷晶型研究[J].含能材料,1999,7(2):49-52
    [12] Weiser V.Buming behavior of CL-20/GAP and HMX/GAP propellants [C].The Proceeding of 31st ICT.2000.
    [13] Nedelko V V, Volk F I.Comparative investigation of thermal decomposition of various modification of hexanitro,hexaazaiso,wu—zitane[C].The Proceeding of 31 st ICT,2000.
    [14] Surapaneni R.Process improvements in CL-20 manufacture[A].The Proceeding of 31 st ICT[C].2000.
    [15] 黄洪勇.高能氧化剂二硝酰胺铵研究进展[J].上海航天,2005,4:31-35
    [16] Schmitt R J,Robert I,Bottaro J C,et al. Process for forming ammonium dinitramide salt by reaction between ammonia and a nitronium-containing compound[P]. USP:5316749,1994
    [17] S.Lobbecke,T.Keicher, H.Krause,A.Pfeil,et al.The new energetic material ammonium dinitramide and its thermal decomposition[J]. Solid State Ionics.1997, 101-103:945-951
    [18] 杨通辉,何金选,张海林.N-脒基脲二硝酰胺盐(FOX-12)的合成与表征[J].含能材料,2004,12(1):36-37
    [19] 庞维强,张教强,国际英等.21世纪国外固体推进剂的研究与发展趋势[J].化学推进剂与高分子材料,2005,3(3):16-20
    [20] Fogelzang A E. Mechanism of modifying ballistic properties of propellant for mulations by fast-burning inclusions[J].Defence Science,1998,48:357-364.
    [21] 廖林泉,覃光明,李笑江.含快燃物改性双基推进剂燃速模型的建立[J].火炸药学报,2004,27(3):21-25
    [22] 潘文达.利用高燃速化合物提高双基推进剂燃速[J].火炸药学报,1991(4):12-16
    [23] 郭万东,王珂,丁温霞.用快燃物提高固体推进剂燃速[J].推进技术,1998,19(2):89-93
    [24] Baldwin M G, et al. Solid composite propellants with very high buming rates[P]. USP:3791891,1974
    [25] Sayles D C. Embedded explosives as buming rate accelerators for solid propellants[P].USP:5015310.1991
    [26] Sayles D C. Heat—expandable beads as buming rate accelerators[P]. USP: 5053088, 1991
    [27] White K J,Mccoy D G, Doali J O, et al. Closed chamber buming characteristics of new VHBR formulations[R]. ADA 161250, 1985
    [28] 单文刚,李旭利等.高燃速推进剂研究进展与展望[J].飞航导弹,1996(11):40-43
    [29] Sayles D C. Azido-based propellants[P]. USP:4655859, 1987
    [30] Sayles D C. Burning rate enhancement of solid propellants by means of metal/oxidant agglomerates[P]. USP: 4655858,1987
    [31] Lista E L. Solid porous, coated oxidizer, method of preparation and novel propellant compositions[P]. USP: 3830672,1974
    [32] Sayles D C. Method for the manufacture of oxidizers of very large surface area and their use in high burning rate propellants[P]. USP: 4698106,1987
    [33] Keith E R,Melvin Cohen,Robert G N. Improvements in or relating to propellant graing[P]. BP:994184,1965
    [34] Leu A L, Yeh T F, Chang F M,et al. Burning behavior of composite solid propellant containing porous ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 1989,14 (3):108-112
    [35] Hagihara Y, Ito T.Studies on porous Ammonium Percholorate(1) Its Preparation by treatment of Heating at 31.5℃ under a Reduced Pressure[J].Industrial Explosives Soc. Japan, 1986, 47(4):238-247
    [36] 丁世俊,鲁国林,刘月华.铝粉粒径及形状对HTPB推进剂力学性能的影响[J].固体火箭技术,1994,4:43-49
    [37] Bemard M, Kosowski, Rudy T. A superior buming rate catalyst forsolid rocket propellants[C].29th (Energetic Materials) Int. Annual Conf. of ICT, 1998.
    [38] 江治,李疏芬,赵凤起等.纳米金属粉对HMX热分解特性的影响[J].推进技术,2002,23(3):258-261
    [39] 江治,李疏芬,赵凤起等.纳米金属粉对高氯酸铵热分解的影响[J].推进技术,2003,(5):460-463.
    [40] 鲁念惠.固体推进剂燃速的加速度敏感性[J].推进技术,1989(4):56-65
    [41] 谢剑宏,焦继革,胡昭志等.国外纳米铝粉应用推进剂研究进展[J].化学推进剂与高分子材料,2002,5(89):15-17
    [42] Mench M. M., et al. Comoarision of the Thermal Behavior of Regular and Ultra-fine Aluminum[J]. Combustion Science and Technology, 1998,135:269-292
    [43] Baschung B, Grune D,LichtH H, Samirant M.Combustion of Energetic Materials [M].Newyork:Begell House Inc,2002:219-225
    [44] 李颖,宋武林,谢长生等.纳米铝粉在固体推进剂中的应用进展[J].兵工学报,2005,26(1):121-125
    [45] 江治,李疏芬.纳米铝粉在含能材料中的应用之初探[J].飞航导弹,2001(9):39-41
    [46] 赵风起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向[J].火炸药学报,2001,(4):61-65
    [47] 陈沛,赵凤起,杨栋等.纳米级金属粉对GAP热分解特性的影响[J].推进技术,2002,21(5):73-76
    [48] 陈舒林,李凤生.长金属丝对固体推进剂燃速和装药的影响[J].华东工程学院学报,1978,1:1-21
    [49] 李凤生.嵌涂层金属丝药柱的稳态燃烧模型[J].华东工程学院学报,1984,3:65-74
    [50] 陈舒林,李凤生.金属丝涂层对推进剂药柱燃烧性能的影响[J].兵工学报—火化工分册,1980,2:10-17
    [51] 连舜华.超微细氧化剂对改善固体推进剂燃烧性能的作用[J].推进技术,1992(3):72-78
    [52] Hightower J, James O,Tomio. Solid rocket motor propellants with reticulated structures embedded thereinto provide variable burn rate characteristics[P]. USP: 4756251, 1988
    [53] 马玉英,郭效德,刘云志等.一种新型高燃速推进剂的燃烧性能[J].火炸药学报,2004,27(2):38-40
    [54] 郭效德,李凤生,宋洪昌等.新型高燃速推进剂在固体发动机内燃烧特性研究[J].固体火箭技术,2007,30(1):48-51
    [55] May I W, Lynn F R, Juhasz A A,etal. Thrust characterization of very high burning rate propellants[R].AD-A145891,1984
    [56] Juhasz A A,May I W, August W P, etal.Combustion diagnostics of very high burning rate propellant[R]. AD-A094821,1980
    [57] White K J,McCoy D G, Doali J O,etal. Closed Chamber Buming Characteristics of new VHBR (Very High Burning Rate) Formulations[R].ADA 161250,1984
    [58] 杨栋,李上文,宋洪昌.复合催化剂热分解特性与平台推进剂燃烧催化性能关系的初探[J].含能材料,1994,2(3):13-19
    [59] 杨栋,陈舒林,李上文等.黑索今对平台催化剂催化效果的增强作用[J].兵工学报—火化工分册,1995,1:15-19
    [60] 杨栋,李上文,宋洪昌.复合催化剂热分解特性与平台推进剂催化燃烧性能关系的初探[J].含能材料,1994,3:13-19
    [61] 李上文,孟燮铨,张蕊娥等.硝胺无烟推进剂燃烧性能调节及控制规律初探[J].推进技术,1995,3:63-69
    [62] 刘所恩.提高螺压高能改性双基推进剂性能的研究[J].火炸药,1997,2:9-11
    [63] 李上文,王江宁.某些NTO盐作为含能燃烧催化剂的探索[J].含能材料,1993,3:22-27
    [64] 李上文,赵凤起,刘所恩等,惰性与含能催化剂对Al-RDX-CMDB推进剂燃烧性能的影响[J].含能材料,1997,3:49-54
    [65] Mackey J R, Foster E T,. High performance fast buming solid propellant[P]. USP:4070212,1978
    [66] Chen J K, Cheng S S,Chou S C. DSC, TG and Infrared Spectroscopic studies of HTPB and butacene propellant polymers[C].AIAA94-3176,1994
    [67] 王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合推进剂的研究(1)[J].飞航导弹,1995(3):40-45
    [68] 王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合推进剂的研究(2)[J].飞航导弹,1995(4):39-44
    [69] 庞爱民.法国的固体推进剂技术[J].飞航导弹,2000(4):38-42
    [70] 徐思羽,唐大森.二茂铁衍生物结构与其迁移性关系探讨[J].推进技术,1984(4):27-29
    [71] 张仁,李建华,翁武军.二茂铁燃速催化剂的发展状况[J].推进技术,1994(3):62-65
    [72] Bohn Met al. Structure Influences of Ferrocenes on burning rate modification[C]. ICT,24th 1993.
    [73] 李谨卫.国外含能材料研究的新进展[J].固体火箭技术,1995,18(1):35-44
    [74] Kishaore K,sunitha M R.Mechanism of catalytic of transition metal oxides on solid propellant burning rate[J]. Combustion and Flame, 1978(33):311-314
    [75] Summerfield M,Sutherland G S. Burning mechanism of solid propellant rocket research progress in astronautics and rocketry[C]. M. Summerfield Academic Press, New York, 1960, 1: 141-148.
    [76] B.C.Howard,J.Powling.The use of the catalytic surfactants in plastic propellants[C].ERDE,Rept. 1965:15.
    [77] Kishore K, Sunitha M R. Mechanism of catalytic activity of transition metal oxide on solid propellant burning rate[J]. Combustion and Flame, 1978, 33:311-314.
    [78] Stammler M, Schmidt W C. Oxidizer properties that affect combustion rate of solid propellants. Proceedings of the 10th Symposium on Combustion[C]. The combustion Institute, Pittsburgh, 1966
    [79] Barrere M. Solid propellant ignition: general consideration[J]. Recherche Aerospatiale. 1968, 123:15-28
    [80] 张汝冰.新型无机纳米催化剂的研究[D].南京:南京理工大学,2000
    [81] Betts R E.High rate propellant[P].USP:4092189,1978
    [82] Lawrence R W. Method of increasing propellant burning rate by the use of high conductive wires[P].USP:3793097,1974
    [83] 张淑慧,单建胜.纳米材料在固体发动机上的应用[J].宇航材料工艺,2001(1):1-3
    [84] 刘磊力,李凤生,谈玲华等.纳米Ni和Ni-B非晶合金的制备及对高氯酸铵热分解特性的影响[J].兵工学报,2004,25(4):428-430
    [85] 杨毅,李凤生,谈玲华.纳米α-Fe_2O_3的制备及其催化高氯酸铵热分解[J].兵工学报,2004,25(1):82-85
    [86] 张汝冰,刘宏英.纳米材料在催化领域的应用及研究进展[J].化工新型材料,1999,27(5):3-5
    [87] Goodson, Forrest R. Iron oxide catalyst and method for making same[P].EP:0289442,1988
    [88] 徐宏,刘剑洪,陈沛等.纳米氧化铁的制备及其对吸收药催化作用的研究[J].火炸药学报,2002,(3):51-53
    [89] 邓鹏图.纳米过渡金属氧化物的制备及其在固体火箭推进剂燃烧中的应用[D]. 长沙:国防科技大学,1997
    [90] 罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料,2002,10(4):148-152
    [91] 张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报,2000(3):9-13
    [92] 洪伟良,刘剑洪,陈沛等.纳米CuO的制备及其对RDX热分解特性的影响[J].推进技术,2001,22(3):254-257
    [93] 洪伟良,赵凤起,刘剑洪等.纳米PbO和Bi_2O_3粉的制备及其对燃烧性能的影响[J].火炸药学报,2001,24(3):7-9
    [94] Zhao Bao chang,Li Xin rui,Lu Lu de,Yang Dong,Li Li.The Appliation of Nano-oxide in Nitramide Propellant [J].Proc.int.Pyrotech.Semin., 1999,26:622-626
    [95] 洪仁,刘剑洪,赵风起等.纳米CuO·PbO的制备及对RDX热分解的催化作用[J].含能材料,2003,11(2):76-80
    [96] 洪仁,刘剑洪,田德余等.纳米铜铬复合氧化物对RDX热分解的催化作用[J].推进技术,2003,24(1):83-86
    [97] 李笑江,安芳延,王大安等.粒铸工艺特点评述[J].飞航导弹,2001(2):60-62
    [98] 寇军强.固体火箭推进技术发展趋势及关键技术分析[J].弹箭与制导学报,1999,1:53-56
    [99] 张海燕.高性能固体推进剂在海空军导弹武器中的应用[J].飞航导弹,1997,10:39-42
    [100] Kubota N, Summerfield M. The mechanism of supper-rate burning of catalyzed double-base propellants JR]. AD 763786,1973
    [101] 刘继华.火药物理化学性能[M].北京理工大学出版社,1997
    [102] 莫红军,张海燕.高速动能导弹及超高速导弹用固体火箭推进剂[J].火炸药学报,2005,28(1):1-4
    [103] Siegfried E. About the burning behaviors and other properties of smoke reduced composites based on A P/CL-20/GA P [C]. 32nd Int. Annu. Conf. ICT.2001
    [104] 魏庆生,彭宗法.单兵肩射筒式武器回顾与展望[J].轻兵器,2006,14:9-11
    [105] 葛瑟.杀遍全球战场的萨姆-7肩射防空导弹[J].航空档案,2004,1:59-60
    [106] 杨虹,马力超.中国“神箭”冲九霄[J].中国政协,2003,4:34-37
    [107] 周钟灵.海防导弹用固体火箭发动机对推进剂的特殊要求[J].推进技术,1992,4:35-38
    [108] Kuo K K, Summerfield M. Theory of flame front propagation in porous propellant changes under confinement[C]. AIAA. 1973,11 (4): 173-221
    [109] 李晓东,杨荣杰,李建民等.超高燃速推进剂燃速压力敏感性理论探讨[J].火炸药学报,2003,26(3):24-26
    [110] 曹泰岳.关于复合改性双基推进剂燃速特性和燃烧机理的述评[J].推进技术,1989,5:51-57
    [111] 杨荣杰.超高燃速固体推进剂研究概况[J].推进技术,1992,4:57-61
    [112] 南焕杰,王许力,刘所恩等.鞣酸铅制造工艺改进及其在推进剂中的应用研究[J].含能材料,2004,12(A01):197-200
    [113] 王伯羲,罗善国.透性推进剂对流燃烧特性的影响因素[J].推进技术,1993,(5):59-65
    [114] 杨荣杰.多孔超高燃速推进剂的燃烧理论[J].固体火箭技术,1993(1):30-34
    [115] 王克秀,李葆萱,吴心平等著.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983
    [116] 李葆萱编著.固体火药性能[M].西安:西北工业大学出版社,1990
    [117] 施灵.药柱制造工艺对固体发动机燃速的影响[J].推进技术,2001,22(4):229-331
    [118] 单文刚,刘小刚,蔚红建等.工艺参数对浇铸CMDB推进剂性能的影响[J].含能材料,1997,5(2):55-58
    [119] 李笑江,李风生,安芳延.粒铸工艺对无烟EMCDB推进剂压强指数的改进[J].南京理工大学学报(自然科学版),2002,26(2):201-204
    [120] 白广梅,梁育民,张续柱等.硝胺推进剂燃烧性能的改善[J].火炸药学报,1998(2):7-9
    [121] Caveng L H, Glick R L. In juence of embedded metal fibers on solid-propellant burning rate[J].Spacecraft and rockets 1967,4(1):245-249
    [122] 刘静峰,田德余,贾跃全.超微细Cu_2O对改善RDX/AP/HTPB推进剂燃烧性能的作用[J].含能材料,1996,4(2):80-83
    [123] 刘所恩,赵风起,李上文等.改性双基推进剂主要组分的高压热分解[J].火炸药学报,1998.2:27-29
    [124] 罗运军.增能钝感火药的热分解特性[J].弹道学报,10(4):16-20
    [125] 李上文,赵凤起.铜化物作催化剂的固体推进剂的探索[J].:火炸药学报,1986,(1):25-32
    [126] Preckel R.Plateau Ballistic in Nitrocellulose Propellants[J]. AIAA Journal, Vol.3, No.2,1965, 346
    [127] Eisenreich N., and Pfeil A.The Influence of Copper and Lead Compounds on the Thermal Decomposition of Nitrocellulose in Solid Propellants[J].Thermochimica Acta,Vol.27, 1978,pp.339
    [128] Brachert H. Burning Rate Characteristics of Double Base Rocket Propellants, Internationale Jahrestagung[J]. Fraunhofer Inst. fuer Treib and Explosivstoffe, 1980,pp.265
    [129] Wanninger RProcedure for Determining the Effect of Burning Rate Modifiers, International Jahrestagung [J]. Fraunhofer Inst. fuer Treib and Explosivstoffe, 1980,pp.265
    [130] 董师颜,张兆良编著.固体火箭发动机原理[M].北京理工大学出版社,1996
    [131] Anatoly P Denisjuk, Yury G S, Babken M B, et al.Low-toxic burning rate catalysts for double-base propellant [C].27th International Annual Conference of ICT. Karlsruhe: ICT, 1996
    [132] 赵凤起,李上文.双基推进剂用生态安全含铋催化剂[J].火炸药学报,1988,21(1):53-55
    [133] 宋秀铎,赵凤起,徐司雨.2,4.二羟基苯甲酸铋对双基推进剂燃烧的催化作用[J].火炸药学报,2006,29(1):36-39
    [134] 黄根龙,唐松青,丁宏勋.国外二茂铁燃速催化剂研究的新进展[J].推进技术,1989(5):46-50
    [135] 武钦佩.二茂铁衍生物的合成及其应用研究:[研究生毕业论文].北京:北京理工大学,1992
    [136] 马庆云.复合火药[M].北京:北京理工大学出版社,1997
    [137] 彭培根,刘培谅,张仁.固体推进剂性能及原理[M].长沙:国防科技大学,1987
    [138] 张仁.固体推进剂的燃烧与催化[M].长沙:国防科技大学,1987
    [139] Duterque J,Hommel J,Lengelle G. Experimental study of double base propellant combustion mechanisms[J]. Propellants, Explosives, Pyrotechnics, 1985, 10(1):18-25
    [140] Bircumshaw W A,Inami S H.Thermal decomposition of ammonium perchlorate [J]. Combustion and Flame, 1968,12(5):427-435.
    [141] Said A A,A1-Qasmi R.The role copper cobaltite spinel,Cu_xCo_(3-x)o_4 during the thermal decomposition of ammonium perchlorate[J].Thermochimica Acta,1996, 275:81-93.
    [142] Sergey Vyazovkin,Charles A.Wight.Kinetics of thermal decomposition of cubic ammonium perchlorae[J].Chem, mater, 1999,11:3386-3393
    [143] Jacobs P W M.The Thermal Decomposition of Ammonium Perchlorate at low Temperature [J]. Proc. Roy. Soc,1960,254:455-469
    [144] Kuo k k, Summerfield M. Fundamental of Solid Propellant Combustion.New York[C].AIAA Inc, 1984,90:1-52
    [145] 兵器工业第204研究所编.火炸药手册[M](2),1987
    [146] 张晓宏.纳米氧化剂在双基推进剂中的应用研究[D].北京:北京理工大学,2000
    [147] 马凤国,季树田,吴文辉等.纳米氧化铅为燃烧催化剂的应用研究[J].火炸药学报,2000,23(2):13-15
    [148] 马振叶,李凤生,崔平等.纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2003,24(10):795-798
    [149] 徐宏,刘剑洪,陈沛等.纳米氧化镧对黑索今热分解的催化作用[J].推进技术,2002,23(4):329-331
    [150] 张晓宏,龙村,王铁成等.纳米级氧化铅对双基推进剂燃烧性能影响的研究[J].火炸药学报,2002,25(2):39-41
    [151] Wiloxn J P, Thuston T R,Martin J E. Application of Metal and Semiconductor nanoclusters as Thermal and Photo-catalysis in Proceedings of Nanostructure Materials and Coatings'95[R], Atlanta, Airport Marriott, Atlanta, Georgia, USA, 1995,103
    [152] Leili liu, Fengsheng li, Linghua tan, et al. Effects of Ni, Cu, Al and NiCu nanopowders on the thermal decomposition of Ammonium Perchlorate [J]. Propellants, explosives, pyrotechnics, 2004, 29(1):34-38
    [153] Liu Leili, Li Fengsheng, Tan Linghua. Effect of Nanometer Metal and composite metal powders on the Thermal Decomposition of AP and AP/HTPB composite solid propellant [J]. Chinese Journal of Chemical Engineering, 2004,12 (4):595-598
    [154] 徐宏,刘剑洪,蔡弘华等.纳米氧化铈的制备及其催化性能研究[J].深圳大学学报(理工版),2002,19(2):13-16
    [155] 杨毅,刘宏英,李凤生等.过渡金属/土金属氧化物纳米粒子催化AP热分解研究[J].推进技术,2006,27(1):92-96
    [156] Weifan Chen, Fengsheng Li, Jiyi Yu.Salt.assisted combustion synthesis of highly dispersed perovskite NdCoO_3 nanoparticles[J].Materials Letters, 2007,61 (2):397-400
    [157] 杨荣杰.超高燃速固体推进剂燃烧问题的讨论[J].固体火箭技术,1990,2:75-78
    [158] Frolov Y V, Korostelev V G.Combustion of gas-permcable porous systems[J]. Pro.pcl.,Explos.,Pyrotech.1989; 14:140-149
    [159] 王利,唐汉云.一种点火压强峰的控制方法[J].固体火箭技术,2002,25(1):24-25
    [160] 王晨,郑朝民,徐司雨.影响固体火箭发动机初始压强峰的因素分析[J].火炸药学报,2005,28(4):44-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700