一维与二维铁电体超晶格中若干倍频效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以同成分钽酸锂晶体为例,研究了若干铁电晶体中的非线性光学过程。以二倍频发生为主线,阐释了近年来相关领域中的热点问题,主要包括:体块材料中非线性切伦科夫辐射,弹性散射准相位匹配锥形辐射,局域准相位匹配等效应。全文内容如下——
     前言部分由第一章与第二章构成,这一部分对目前基于各类相位匹配模式下的激光倍频过程作一概览。其中第一章给出本论文总的研究背景,第二章则简介了铁电晶体钽酸锂的晶体基本线性光学属性以及与激光倍频过程相关的非线性系数张量属性,同时详述了铁电极化样品的制备流程,和准相位匹配理论基础,为后续章节作一铺垫,方便本论文自成体系。后续章节围绕其中与论文作者研究相关的三个方向给出较为细致的讨论。
     第三章从简介非线性切伦科夫辐射概念及其成因入手,利用时空限域平面波模型导出了体块材料中的非线性切伦科夫辐射空间角谱分布条件,以及在基波激发的非线性极化相位纵向调制情况下的非线性切伦科夫辐射空间角谱条件;并从该模型得出了非线性切伦科夫辐射与二维非共线准相位匹配之间的关联。通过实验验证了前述的空间角谱。
     第四章概述了弹性散射锥形辐射当前的研究状态,鉴于弹性散射锥形辐射与切伦科夫辐射在空间分布上有相似性,本章尝试对两者之间的异同进行了一些讨论。本章特别针对高阶弹性散射作了实验和理论探索,在现有弹性散射准相位匹配规律下,导出了弹性散射倍频锥形辐射投影曲线族的代数方程,并导出了该过程中的有效非线性系数。另外,通过实验观察了一维和二维周期结构的弹性散射准相位匹配倍频高阶效应,尤其是在二维铁电体超晶格中发现了高阶弹性散射下准相位匹配锥形辐射的包络效应——即在高阶情形,弹性散射准相位匹配往往不能输出空间上可观测的单个或分立的多个锥形辐射,而是给出由各高阶倒格矢参与下的准相位匹配锥形辐射的空间包络,这一现象在各类铁电体超晶格实验现象中比低阶弹性散射更具普遍性。由于高阶效应同时可匹配的模式较多,文中发明了矢量球壳法统一对一维与二维铁电体超晶格中的弹性散射准相位匹配从整体上进行了较为细致的分析预测。利用此方法,我提出了“一切共线入射于非线性超晶格中的基波实现的共线准相位匹配或非共线准相位匹配过程都是弹性散射准相位匹配过程的特例”的这一论断,并通过实验确证;同时基于此方法,我设计了高阶弹性散射的旋转动力学实验,该旋转方式可以为铁电畴结构探测提供更多的倒格矢分量,给出了利用激光倍频方式精确解析厘米级尺度铁电体超晶格微观畴结构的新思路。本章还讨论并验证了旋转过程中的锥形光束存在的简并现象。
     第五章重点描述了局域准相位匹配理论,并通过对局域准相位匹配理论生成的毫米及尺度的畴结构进行快速傅里叶变换获得其倒空间结构,从而对局域准相位匹配理论进行了二次发现,指出局域准相位匹配理论中的倍频单点聚焦是由于样品结构倒空间中对应传统准相位匹配的倒格矢存在连续横向展宽造成的,且这些展宽倒格矢都处于非线性Ewald球上。在总结该方向工作的基础上,提出了将散点局域准相位匹配推广至准连续形式的线或面的局域准相位匹配,并提出一个简单的倍频缩束的设想。本章最后总结了目前局域准相位匹配理论可能存在的不足和一些可行的改进方向。
     第六章总结本论文工作,并指出了目前与本论文相关的铁电体超晶格中可能开展的和正在进行的非线性频率转换效应方面的一些工作。
This thesis focuses on the nonlinear phenomena occuring during the interaction between near infrared laser fundamental waves and ferroelectric materials. It keeps second harmonic (SH) generation as its thread, and set congruent LiTaO3(CLT) crystal samples as the main subject under examination. Throughout the thesis, several hot topics of the field in recent years are discussed, which include-nonlinear Cherenkov radiation (NCR) in bulk materials, elastic scattering quasi-phase matching (ESQPM) conical radiation, and local quasi-phase matching (LQPM) process, et al. The contents of the whole thesis are as the following:
     The first chapter is set as a background report of the thesis, making an outline to the latest research works in the fields which closely related to this thesis, and of my interest, of course, with personal bias. Its next chapters are designed to fixate on the details of three individual topics mentioned herein separately.
     The second chapter takes a brief tour of the material properties of the ferroelectric crystal CLT, including its nonlinear optical tensor properties. The rest of this chapter was put to illustrate the procedure of the room temperature poling technique of the CLT, as to complete this thesis as a self-contained source. Within this chapter, in the hope of making this thesis a self-contained source, I also make a brief introduction to the theory of quasi-phase matching.
     The third chapter gently leads the way through the Cherenkov radiation, a classical electromagnetic shocking wave to its counterpart in the nonlinear optical regime. It explains the formation of NCR and its mutation, radiation of the similar root, yet with a longitudinal phase tuning. With a space-time confined plane wave model, it succeeds in formulating the output angle spectrum of NCR, and finds out the relationship of NCR and the conventional two-dimensional quasi-phase matching. Careful experiments verified the validity of these output conditions.
     The fourth chapter deals with what are elastic scattering SHG conical beams and their present researching status. Considering its resemblance with NCR in its spatial distribution profile, I tried to argue the differences between these two effects. Most of the efforts were dedicated to high-order performance of elastic scattering conical beams, both in theory and in experiments. Based on the known output angle formula, I presented the algebric equaton of the SH projection curve set. And in keeping with the popular idea of harmonics intensities being related to the effective nonlinear coefficiencts, I deduced the effective nonlinear coefficiencts in this case. Experiments showed that phase-matched conical radiation with high-orders reciprocal vectors present a collective phenomenon other than low-orders, usually, only their spatial envelopes show up due to overlapping effect. I invented a vector shell method to decide the possible quasi-phase matching proccess in the experiment. And based on this method, I concluded and then verified it with experiments that "All quasi-phase matching processes with collinear incident fundamental waves are elastic scattering quasi-phase matching processes." I also proposed a rotational dynamic experiment of the high-order ESQPM, which could reveal more Fourier coefficients of the superlattice structure, and a degeneration phenomenon of the conical beams during the dynamic process was discussed.
     The fifth chapter describes the local quasi-phase matching theory. By paraphrasing the whole theory and observing the theory-determined domain structures with discrete Fourier transformation, a second discovery of the theory was achieved. In the reciprocal space of the local quasi-phase matching structure, the conventional phase matching reciprocal lattice vector has a transverse expansion, and the expansion is locating on the nonlinear Ewald sphere, which leads to the focusing effect of the LQPM.Then I proposed to extend this theory to manipulate wave front and a simple example was provided with both ferroelectric structure and numeric results of the outputs. At the end of this chapter, I discussed the potential weakness and possible improvements of the theory.
     The sixth chapter summarizes the thesis, and points out some potential research directions in the near future and my on-going research works.
引文
[1]FRANKEN P A, WARD J F. OPTICAL HARMONICS AND NONLINEAR PHENOMENA [J]. Reviews of Modern Physics,1963,35(1):23.
    [2]MAIMAN T H. STIMULATED OPTICAL RADIATION IN RUBY [J]. Nature,1960, 187(4736):493.
    [3]SCHAWLOW A L, TOWNES C H. INFRARED AND OPTICAL MASERS [J]. Physical Review,1958,112(6):1940.
    [4]BLOEMBERGEN N. NONLINEAR OPTICS [J]. Journal of the Optical Society of America,1964,54(4):566.
    [5]ARMSTRONG J A. LASERS AND NONLINEAR OPTICS [J]. J Electrochem Soc,1964, 111(3):C63.
    [6]BLOEMBERGEN N. Nonlinear optics:Past, present, and future [J]. leee Journal of Selected Topics in Quantum Electronics,2000,6(6):876.
    [7]ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric [J]. Physical Review,1962,127(6):1918.
    [8]BYER R L. Quasi-phasematched nonlinear interactions and devices [J]. Journal of Nonlinear Optical Physics & Materials,1997,6(4):549.
    [9]GIORDMAINE J A. MIXING OF LIGHT BEAMS IN CRYSTALS [J]. Physical Review Letters,1962,8(1):19.
    [10]HUM D S, FEJER M M. Quasi-phasematching [J]. Comptes Rendus Physique,2007, 8(2):180.
    [11]FEJER M M, MAGEL G A, JUNDT D H, et al. Quasi-phase-matched 2nd harmonic-generation-tuning and tolerances [J]. leee Journal of Quantum Electronics,1992,28(11):2631.
    [12]SZILAGYI A, HORDVIK A, SCHLOSSBERG H. QUASI-PHASE-MATCHING TECHNIQUE FOR EFFICIENT OPTICAL MIXING AND FREQUENCY DOUBLING [J]. Journal of Applied Physics,1976,47(5):2025.
    [13]闵乃本,王继扬,许东,et al探索新晶体——光电功能材料的结构、性能、分子设计及制备过程的研究[M].1 ed.长沙:湖南科学技术出版社,1998.
    [14]XIE Z D, LV X J, LIU Y H, et al. Cavity Phase Matching via an Optical Parametric Oscillator Consisting of a Dielectric Nonlinear Crystal Sheet [J]. Physical Review Letters,2011,106:083901.
    [15]W6HLECKE M, BETZLER K, IMLAU M. Nonlinear Optics [M]. Osnabruck; Universitat Osnabruck.2005.
    [16]RULLIERE C. Femtosecond Laser Pulses Principles and Experiments [M].2nd Edition ed. New York:Springer Science+Business Media, Inc.,2005.
    [17]CHANG Z. Fundamentals of Attosecond Optics [M]. Boca Raton:Taylor and Francis Group,2011.
    [18]FENG D, MING N B, HONG J F, et al. Enhancement of 2nd-harmonic generation in Iinbo3 crystals with periodic laminar ferroelectric domains [J]. Applied Physics Letters,1980,37(7):607.
    [19]KIM B J, KIM C-S, KIM D J, et al. Fabrication of Thick Periodically-poled Lithium Niobate Crystals by Standard Electric Field Poling and Direct Bonding [J]. Journal of the Optical Society of Korea,2010,14(4):420.
    [20]KURIMURA S, HARADA M, MURAMATSU K-l, et al. Quartz revisits nonlinear optics:twinned crystal for quasi-phase matching Invited [J]. Optical Materials Express,2011,1(7):1367.
    [21]GRILLI S, FERRARO P, SANSONE L, et al. Fabrication of Sub-Micron Period Surface Structures in LiNbO3 [J]. Ferroelectrics,2007,352(1):6.
    [22]SIMAGINA L V, MISHINA E D, SEMIN S V, et al. Second harmonic generation in microdomain gratings fabricated in strontium-barium niobate crystals with an atomic force microscope [J]. JOURNAL OF APPLIED PHYSICS,2011,110:052015.
    [23]BERGER V. Nonlinear photonic crystals [J]. Physical Review Letters,1998,81(19): 4136.
    [24]SALTIEL S M, SUKHORUKOV A A, KIVSHAR Y S. Multistep parametric processes in nonlinear optics [M]//WOLF E. Progress in Optics, Vol 47.2005:1.
    [25]XU P, Jl S H, ZHU S N, et al. Conical second harmonic generation in a two-dimensional chi((2)) photonic crystal:A hexagonally poled LiTaO3 crystal [J]. Physical Review Letters,2004,93(13):133904.
    [26]XIE Z D, ZHAO G, XU P, et al. Study of optical elastic scattering in a quasiperiodically poled LiTaO3 crystal [J]. Journal of Applied Physics,2007,101(5): 056104.
    [27]王春雷,李吉超,赵明磊.压电铁电物理[M].北京:科学出版社,2009.
    [28]王春雷.铁电物理[M].超星名师讲坛.2009.
    [29]张超.非线性光学超晶格耦合准位相匹配过程的动力学理论研究[D].南京;南京大学,2004.
    [30]BAUDRIER-RAYBAUT M, HAIDAR R, KUPECEK P, et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials [J]. Nature,2004,432(7015):374.
    [31]SHENG Y, MA D L, REN M L, et al. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal [J]. Applied Physics Letters,2011,99(3):031108.
    [32]郭硕鸿.带电粒子和电磁场的相互作用[M].电动力学.北京;高等教育出版社.1997:297.
    [33]ZHANG Y, GAO Z D, QI Z, et al. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides [J]. Physical Review Letters,2008,100:163904.
    [34]REN H, DENG X, ZHENG Y, et al. Nonlinear Cherenkov Radiation in an Anomalous Dispersive Medium [J]. Physical Review Letters,2012,108(21):223901.
    [35]SALTIEL S M, NESHEV D N, KROLIKOWSKI W, et al. Multiorder nonlinear diffraction in frequency doubling processes [J]. Optics Letters,2009,34(6):848.
    [36]SALTIEL S M, SHENG Y, VOLOCH-BLOCH N, et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures [J]. leee Journal of Quantum Electronics,2009,45(11):1465.
    [37]SHENG Y, SALTIEL S M, KROLIKOWSKI W, et al. Cerenkov-type second-harmonic generation with fundamental beams of different polarizations [J]. Optics Letters, 2010,35(9):1317.
    [38]SHENG Y, ROPPO V, REN M, et al. Multi-directional Cerenkov second harmonic generation in two-dimensional nonlinear photonic crystal [J]. Optics Express, 2012,20(4):3948.
    [39]DENG X, CHEN X. Domain wall characterization in ferroelectrics by using localized nonlinearities [J]. Optics Express,2010,18(15):15597.
    [40]DENG X, REN H, CHEN X, et al. Phase-matched second harmonic generation by enhanced nonlinearities in ferroelectric domain walls; proceedings of the 2011 Conference on Lasers and Electro-Optics, F,2011 [C].
    [41]DENG X, REN H, LAO H, et al. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses [J]. Journal of the Optical Society of America B-Optical Physics,2010,27(7):1475.
    [42]REN H, DENG X, ZHENG Y, et al. SINGLE DOMAIN WALL EFFECT ON PARAMETRIC PROCESSES VIA CHERENKOV-TYPE PHASE MATCHING [J]. Journal of Nonlinear Optical Physics & Materials,2011,20(4):459.
    [43]SHENG Y, KONG Q, WANG W, et al. Theoretical investigations of nonlinear Raman-Nath diffraction in the frequency doubling process [J]. Journal of Physics B-Atomic Molecular and Optical Physics,2012,45:055401
    [44]SHENG Y, KONG Q, ROPPO V, et al. Theoretical study of Cerenkov-type second-harmonic generation in periodically poled ferroelectric crystals [J]. Journal of the Optical Society of America B-Optical Physics,2012,29(3):312.
    [45]QIN Y-Q, ZHANG C, ZHU Y-Y, et al. Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures [J]. Physical Review Letters,2008,100:063902.
    [46]MING N B, ZHU Y Y, FENG D. Ferroelectric-crystals with periodic laminar domains as the micron superlattices for optic acoustic processes [J]. Ferroelectrics,1990, 106(1):99.
    [47]ZHU Y Y, MING N B.2nd-harmonic generation in a fibonacci optical superlattice and the dispersive effect of the refractive-index [J]. Physical Review B,1990,42(6): 3676.
    [48]ZHU S, ZHU Y Y, MING N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice [J]. Science,1997,278(5339):843.
    [49]ZHANG C, ZHU Y Y, YANG S X, et al. Crucial effects of coupling coefficients on quasi-phase-matched harmonic generation in an optical superlattice (vol 25, pg 436,2000) [J]. Optics Letters,2000,25(13):988.
    [50]XU P, JI S H, ZHU S N, et al. Conical second harmonic generation in a two-dimensional chi((2)) photonic crystal:A hexagonally poled LiTaO3 crystal [J]. Physical Review Letters,2004,93(13):113904.
    [51]赵军伟.光学超晶格中耦合物理效应的研究[D].南京;南京大学,2011.
    [52]ZHU YY, MING N B. Dielectric superlattices for nonlinear optical effects [J]. Optical and Quantum Electronics,1999,31(11):1093.
    [53]QIN Y Q, ZHU S N. Novel physical effects in dielectric superlattices and their applications [M]//YE Z-G. Handbook of dielectric, piezoelectric and ferroelectric materials:Synthesis, properties and applications. Boca Raton; Woodhead Publishing Limited and CRC Press LLC.2008.
    [54]LENG H Y, YU X Q, GONG Y X, et al. On-chip steering of entangled photons in nonlinear photonic crystals [J]. Nature Communications,2011,2:429.
    [55]ZHANG Y, WEN J, ZHU S N, et al. Nonlinear Talbot Effect [J]. Physical Review Letters,2010,104:183901.
    [56]BLOCH N V, SHEMER K, SHAPIRA A, et al. Twisting Light by Nonlinear Photonic Crystals [J]. Physical Review Letters,2012,108:233902.
    [57]SHAPIRA A, SHILOH R, JUWILER I, et al. Two-dimensional nonlinear beam shaping [J]. Optics Letters,2012,37(22):4795.
    [58]KURZ J R, SCHOBER A M, HUM D S, et al. Nonlinear physical optics with transversely patterned quasi-phase-matching gratings [J]. leee Journal of Selected Topics in Quantum Electronics,2002,8(3):660.
    [59]KOURTEV S, MINKOVSKI N, ALBERT O, et al. Nonlinear polarization interferometer:application for efficient cross polarized wave generation and beam shaping-art. no.66041E [M]//ATANASOV PADTNGSVKLM.14th International School on Quantum Electronics:Laser Physics and Applications. 2007:E6041.
    [60]SHAPIRA A, JUWILER I, ARIE A. Nonlinear computer-generated holograms [J]. Optics Letters,2011,36(15):3015.
    [61]ARIE A. Beam transformation in quadratic nonlinear photonic crystals [M]//DREISCHUH T T E B E S A.15th International School on Quantum Electronics: Laser Physics and Applications.2008.
    [62]SALTIEL S M, NESHEV D N, FISCHER R, et al. Generation of Second-Harmonic Bessel Beams by Transverse Phase-Matching in Annular Periodically Poled Structures [J]. Japanese Journal of Applied Physics,2008,47(8):6777.
    [63]ELLENBOGEN T, VOLOCH-BLOCH N, GANANY-PADOWICZ A, et al. Nonlinear generation and manipulation of Airy beams [J]. Nature Photonics,2009,3(7):395.
    [64]DOLEV I, KAMINER I, SHAPIRA A, et al. Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media [J]. Physical Review Letters, 2012,108(11):113903.
    [65]DOLEV I, KAMINER I, SHAPIRA A, et al. Self-Accelerating Beams in Quadratic Nonlinear Media [M].2012.
    [66]BAHABAD A, MURNANE M M, KAPTEYN H C. Quasi-phase-matching of momentum and energy in nonlinear optical processes [J]. Nature Photonics,2010, 4(8):570.
    [1]YARIV A, YEH P. Optical Waves in Crystals:Propagation and Control of Laser Radiation. New York; John Wiley & Sons, Inc.1984.
    [2]DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook of Nonlinear Optical Crystals [M].3 ed. Berlin Heidelberg:Springer-Verlag,1999.
    [3]NIKOGOSYAN D N. LiTaO3, Lithium Tantalate (LT) [M]. Nonlinear Optical Crystals:A Complete Survey. New York; Springer Science+Business Media, Inc.2005:185.
    [4]孔勇发,许京军,张光寅,et al.多功能光电材料——铌酸锂晶体[M].1 ed.北京:科学出版社,2005.
    [5]HUM D. Frequency conversion in near-stoichiometric Lithium Tantalate fabricated by vapor transport equilibration [D]; Stanford University,2007.
    [6]蒋建,杭寅,朱永元, et al. Unpublished and undergoing work [M].
    [7]Ferroelectric materials [M]//KASAP S, CAPPER P. Springer Handbook of Electronic and Photonic Materials. New York; Springer Science+Business Media, Inc.2006: 597.
    [8]ABEDIN K S, ITO H. Temperature-dependent dispersion relation of ferroelectric lithium tantalate [J]. Applied Physics Letters,1996,80(11):6561.
    [9]MEYN J P, FEJER M M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate [J]. Optics Letters,1997,22(16): 1214.
    [10]YAMADA M, NADA N, SAITOH M, et al. First-order Quasi-phase Matched LiNbO3 Waveguide Periodically Poled by Applying an External Field for Efficient Blue Second-harmonic Generation [J]. Applied Physics Letters,1993,62:435.
    [11]吕新杰.介电体超晶格材料光学性质的表征及其在非线性频率变换中的应用[D].南京;南京大学,2010.
    [12]赵丽娜.光学超晶格多波长全固态激光器研究[D].南京;南京大学,2011.
    [13]陆骏,袁烨,赵刚.私人通信:极化图形预修正DSL制作标准[M].2011.
    [14]FERRARO P, GRILLI S, NATALE P D. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques [M]. Berlin Heidelberg:Springer-Verlag,2009.
    [15]吕新杰,赵丽娜,陆骏,e tal.用二维傅里叶变换方法评价光学超晶格的极化质量[M].第15届全国晶体生长与材料学术会议论文集.2009.
    [16]BOYD R W. The Wave Equation for Nonlinear Optical Media [M]. Nonlinear Optics.北京;世界图书出版公司北京公司.2010:69.
    [17]NEW G. Introduction to Nonlinear Optics [M]. New York:Cambridge University Press,2011.
    [18]SUTHERLAND R L, MCLEAN D G, KIRKPATRICK S. Handbook of Nonlinear Optics [M].2 ed. New York:Marcel Dekker, Inc.,2003.
    [19]WoHLECKE M, BETZLER K, IMLAU M. Nonlinear Optics [M]. Osnabruck; Universitat Osnabruck.2005.
    [20]李港.非线性振幅耦合波动方程[M].激光频率的变换与扩展:实用非线性光学技术.科学出版社.2005.
    [21]ARIE A, VOLOCH N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals [J]. Laser & Photonics Reviews,2010,4(3):355.
    [22]ZHU Y Y. Classical waves in micron superlattice (acoustic and optic superlattice) [D]. Nanjing; Nanjing University,1991.
    [23]GANANY A, ARIE A, SALTIEL S. Is The Sign of The Nonlinear Coefficient d22 Reversed in PPLN? [M]. Advanced Solid-State Photonics (OSA). Incline Village, Nevada; The Optical Society of America.2006:MB22.
    [24]GANANY A, ARIE A, SALTIEL S M. Quasi-phase matching in LiNbO3 using nonlinear coefficients in the XY plane [J]. Applied Physics B-Lasers and Optics, 2006,85(1):97.
    [1]Cherenkov radiation [M], Encyclopaedia Britannica Online.2012.
    [2]KONG J A. Cerenkov radiation [M]. Electromagnetic Wave Theory. Beijing; Higher Education Press.2002:499.
    [3]郭硕鸿.带电粒子和电磁场的相互作用[M].电动力学.北京;高等教育出版社.1997:297.
    [4]ASKAR'YAN G A. Cerenkov Radiation and Transition Radiation from Electromagnetic Waves [J]. Soviet Physics JETP,1962,15(5):4.
    [5]L'HUILLIER J A, TOROSYAN G, THEUER M, et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate-Part 1:Theory [J]. Applied Physics B-Lasers and Optics,2007,86(2):185.
    [6]LUO C, IBANESCU M, JOHNSON S G, et al. Cerenkov radiation in photonic crystals [J]. Science,2003,299(5605):368.
    [7]ABDULLIN U A, LYAKHOV G A, RUDENKO O V, et al. EXCITATION OF DIFFERENCE FREQUENCIES IN NONLINEAR OPTICS AND CHERENKOV RADIATION CONDITIONS [J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki,1974,66(4):1295.
    [8]张勇.光学超晶格波导中非线性Cerenkov辐射研究[D].南京;南京大学,2007.
    [9]ZHANG Y, GAO Z D, QI Z, et al. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides [J]. Physical Review Letters,2008,100:163904.
    [10} ZHANG Y, HU X P, ZHAO G, et al. Cerenkov second-harmonic arc from a hexagonally poled LiTaO(3) planar waveguide [J]. Journal of Physics D-Applied Physics,2009,42:215103.
    [11]张勇,祝世宁.准相位匹配非线性切连科夫倍频与和频效应[J].物理,2011,05.
    [12]CHEN C, SU J, ZHANG Y, et al. Mode-coupling Cerenkov sum-frequency-generation in a multimode planar waveguide [J]. Applied Physics Letters,2010,97:161112.
    [13]CHEN C, LU J, LIU Y, et al. Cerenkov third-harmonic generation via cascaded chi((2)) processes in a periodic-poled LiTaO(3) waveguide [J]. Optics Letters,2011, 36(7):1227.
    [14]SHENG Y, BEST A, BUTT H-J, et al. Three-dimensional ferroelectric domain visualization by Cerenkov-type second harmonic generation [J]. Optics Express, 2010,18(16):16539.
    [15]WANG W, SHENG Y, KONG Y, et al. Multiple Cerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure [J]. Optics Letters,2010,35(22): 3790.
    [16]KALINOWSKI K, KONG Q, ROPPO V, et al. Wavelength and position tuning of Cerenkov second-harmonic generation in optical superlattice [J]. Applied Physics Letters,2011,99:181128
    [17]SHENG Y, ROPPO V, KONG Q, et al. Tailoring Cerenkov second-harmonic generation in bulk nonlinear photonic crystal [J]. Optics Letters,2011,36(13): 2593.
    [18]SHENG Y, WANG W, SHILOH R, et al. Cerenkov third-harmonic generation in chi((2)) nonlinear photonic crystal [J]. Applied Physics Letters,2011,98:241114.
    [19]SHENG Y, KONG Q, ROPPO V, et al. Theoretical study of Cerenkov-type second-harmonic generation in periodically poled ferroelectric crystals [J]. Journal of the Optical Society of America B-Optical Physics,2012,29(3):312.
    [20]KELLER F J, GETTYS W E, SKOVE M J. PHYSICS-Classical and Modern [M]. New York:McGraw-Hill, Inc.,1993.
    [21]FRAGEMANN A, PASISKEVICIUS V, LAURELL F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4 [J]. Applied Physics Letters,2004, 85(3):375.
    [22]DENG X, CHEN X. Domain wall characterization in ferroelectrics by using localized nonlinearities [J]. Optics Express,2010,18(15):15597.
    [23]DENG X, REN H, LAO H, et al. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses [J]. Journal of the Optical Society of America B-Optical Physics,2010,27(7):1475.
    [24]CHEN C D, ZHANG Y, ZHAO G, et al. Experimental realization of Cerenkov up-conversions in a 2D nonlinear photonic crystal [J]. Journal of Physics D-Applied Physics,2012,45:405101
    [25]SALTIEL S M, SHENG Y, VOLOCH-BLOCH N, et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures [J]. leee Journal of Quantum Electronics,2009,45(11):1465.
    [26]XIE Z D, ZHAO G, XU P, et al. Study of optical elastic scattering in a quasiperiodically poled LiTaO3 crystal [J]. Journal of Applied Physics,2007, 101(5):056104.
    [27]HUANG H, HUANG C-P, ZHANG C, et al. Second-harmonic generation in a periodically poled congruent LiTaO(3) sample with phase-tuned nonlinear Cherenkov radiation [J]. Applied Physics Letters,2012,100(2):022905.
    [28]BAUDRIER-RAYBAUT M, HAIDAR R, KUPECEK P, et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials [J]. Nature,2004,432(7015):374.
    [29]SHENG Y, MA D L, REN M L, et al. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal [J]. Applied Physics Letters,2011,99(3):031108.
    [30]PAIN H J. Superposition of n squal SHM Vectors of Length a with Random Phase [M]. The Physics of Vibrations and Waves. Chichester; John Wiley & Sons, Ltd. 2005.
    [1]BERGER V. Nonlinear photonic crystals [J]. Physical Review Letters,1998,81(19): 4136.
    [2]BRODERICK N G R, ROSS G W, OFFERHAUS H L; et al. Hexagonally poled lithium niobate:A two-dimensional nonlinear photonic crystal [J]. Physical Review Letters, 2000,84(19):4345.
    [3]SALTIEL S M, SUKHORUKOV A A, KIVSHAR Y S. Multistep parametric processes in nonlinear optics [M]//WOLF E. Progress in Optics, Vol 47.2005:1.
    [4]BRODERICK N G R, BRATFALEAN R T, MONRO T M, et al. Temperature and wavelength tuning of second-, third-, and fourth-harmonic generation in a two-dimensional hexagonally poled nonlinear crystal [J]. Journal of the Optical Society of America B-Optical Physics,2002,19(9):2263.
    [5]TUNYAGI A R, ULEX M, BETZLER K. Noncollinear optical frequency doubling in strontium barium niobate [J]. Physical Review Letters,2003,90:243901.
    [6]GIUSFREDI G, MAZZOTTI D, CANCIO P, et al. Spatial mode control of radiation generated by frequency difference in periodically poled crystals [J]. Physical Review Letters,2001,87:113901.
    [7]GOUL'KOV M, ODOULOV S, NAUMOVA I, et al. Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe [J]. Physical Review Letters,2001, 86(18):4021.
    [8]GOULKOV M, SHINKARENKO O, IVLEVA L, et al. New parametric scattering in photorefractive Sr0.61Ba0.39Nb2O6:Cr [J]. Physical Review Letters,2003,91: 243903.
    [9]XU P, JI S H, ZHU S N, et al. Conical second harmonic generation in a two-dimensional chi((2)) photonic crystal:A hexagonally poled LiTaO3 crystal [J]. Physical Review Letters,2004,93:133904.
    [10]徐平.光学超晶格中光散射效应和光子纠缠研究[D].南京;南京大学,2007.
    [11]XIE Z D, ZHAO G, XU P, et al. Study of optical elastic scattering in a quasiperiodically poled LiTaO3 crystal [J]. Journal of Applied Physics,2007,101(5): 083901.
    [12]CHEN C D, ZHANG Y, ZHAO G, et al. Experimental realization of Cerenkov up-conversions in a 2D nonlinear photonic crystal [J]. Journal of Physics D-Applied Physics,2012,45:405101.
    [13]SALTIEL S M, NESHEV D N, KROLIKOWSKI W, et al. Nonlinear Diffraction from a Virtual Beam [J]. Physical Review Letters,2010,104:083902.
    [14]DENG X, REN H, LAO H, et al. Non-collinear efficient continuous optical frequency doubling in periodically poled lithium niobate [J]. Applied Physics B-Lasers and Optics,2010,100(4):755.
    [15]SALTIEL S M, NESHEV D N, KROLIKOWSKI W, et al. Multiorder nonlinear diffraction in frequency doubling processes [J]. Optics Letters,2009,34(6):848.
    [16]BAUDRIER-RAYBAUT M, HAIDAR R, KUPECEK P, et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials [J]. Nature,2004,432:374.
    [17]STIVALA S, BUSACCA A C, PASQUAZI A, et al. Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate [J]. Optics Letters,2010,35(3):363.
    [18]ARIE A, VOLOCH N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals [J]. Laser & Photonics Reviews,2010,4(3):355.
    [19]菲赫金哥尔茨「M.曲线族的包络[M].微积分学教程.高等教育出版社.2006:238.
    [20]DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook of Nonlinear Optical Crystals [M].3 ed. Berlin Heidelberg:Springer-Verlag,1999.
    [21]陈纲,廖理几,郝伟.有效倍频系数[M].晶体物理学基础(第二版).北京;科学出版社.2007:300.
    [22]GRAHAM A. Kronecker Products and Matrix Calculus:With Applications [M]. Chichester:ELLIS HORWOOD LIMITED,1981.
    [23]SALTIEL S M, SHENG Y, VOLOCH-BLOCH N, et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures [J]. leee Journal of Quantum Electronics,2009,45(11):1465.
    [1]张超.非线性光学超晶格耦合准位相匹配过程的动力学理论研究[D].南京;南京大学,2004.
    [2]张超,秦亦强,朱永元.基于局域相位补偿原理的二维光学超晶格设计方法:中华人民共和国,CN101319406 [P/OL].2008.
    [3]QIN Y-Q, ZHANG C, ZHU Y-Y, et al. Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures [J]. Physical Review Letters,2008,100:063902.
    [4]张超.Unpublished work and DSL group meeting presentations [M].
    [5]朱鼎.光学超晶格中偏振耦合非线性效应的研究[D].南京;南京大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700