触发真空开关工作特性及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
触发真空开关( triggered vacuum switch,TVS)作为一种大功率的可控快速关合器件,因为TVS自身具有结构紧凑、性能优良、成本低、操作无噪声、可靠性高及环境适应性强等优点,因而在高功率脉冲技术应用中越来越受到重视,成为脉冲功率技术中重要的控制器件。
     随着高功率脉冲技术及TVS的广泛应用,尤其在一些高精度电源控制领域及高重复频率脉冲技术方面的应用,对TVS的工作性能提出了进一步的要求。
     本文主要针对TVS工作机理,通过大量的实验研究,分别研究了TVS的三个工作阶段,即触发过程,导通过程和弧后介质恢复过程的特性。主要研究了TVS触发时延、触发电阻特性,导通时延及高频大电流条件下的电弧特性及其介质恢复特性。
     论文首先结合触发真空开关的结构和工作机理,通过实验研究了TVS触发阶段的触发时延及其分散性、触发电阻的特性。触发时延不仅与触发间隙长度及间隙的材料、结构有关,还受主间隙电压,触发电压的极性及触发能量的影响。研究表明,TVS在正极性下(触发极位于阴极),容易触发导通。且在正极性下,触发极电压为正时触发时延及其分散性小于触发电压为负的情况。用ansys对TVS静态空间电场的分布进行的仿真,仿真结果证明了实验结果。随着触发能量的增大,TVS的触发时延及其分散性都会减小,触发可靠性增加。影响TVS触发寿命的触发电阻受触发电流和主间隙电弧两种因素的作用,研究表明,主间隙电弧的作用远大于触发电流的作用,且在通流实验次数不多时有使触发极电阻增大、触发电压减小的趋势。并提出在TVS研制中,应尽量控制金属蒸气沉积带来的影响,提高产品的使用寿命并稳定其工作性能。
     对于导通阶段,本文通过实验,研究了导通阶段的导通时延及其分散性,以及TVS高频大电流导通燃弧过程中电弧特性。研究表明导通时延受触发极性以及触发能量的影响。正脉冲触发比负脉冲触发,导通时延及其分散性小。导通时延随着触发能量、主间隙电压的增大而减小。TVS电弧在高频大电流下具有正的伏安特性。随着电弧电流的增大,TVS电弧会出现三种电弧形态:扩散型电弧形态、过渡型电弧形态以及集聚型电弧形态。扩散型电弧弧压较低,弧压上叠加有轻微的高频噪声电压信号。在过渡型电弧中,电弧电压急剧增大,并且叠加有高频的电压分量。当形成稳定的集聚型电弧时,电极烧蚀严重,电弧电压相对会下降。并就可能导致TVS电弧电流过零时,开断失败。电弧电压上叠加的高频噪声电压信号是由于电弧燃烧过程中阳极斑点的产生、熄灭所造成的。阳极斑点越不稳定,使得电弧电压的噪声分量就越多。
     通过实验研究获得,TVS的高频介质恢复特性不仅受峰值电流、电流变化率影响,还受主电流频率以及弧后恢复电压的上升速度的影响。随着主回路频率的增大,TVS开断能力降低,频率较低时,即频率小于2500Hz时,随着频率的增大,TVS开断能力显著降低。而当主回路频率大于2500Hz,随着频率的增大,TVS开断能力有所降低,但是趋势区域平缓。随着频率的提高,开断的峰值电流大体上也呈下降趋势,但极限峰值电流并不是线性地随着频率上升而下降。TVS高频开断能力随着恢复电压的上升速度的提高而降低。
Triggered vacuum switch (TVS),as a high-power controlled-switch, has some advantages of compact construction, excellent performance, lower cost, quietness, high reliability, adaptability to environment and so on. TVS gets more and more attention in high power pulse technology applications and becomes an important control device in pulse power technology. And it expects TVS has future performance.
     This article is based on the work mechanism of TVS, the characteristics of TVS three stages are studied by experiments, which are triggering stage, switching stage and dielectric recovery stage. And it focuses on the characteristics of triggering delay time and trigger resistance; switching delay time; vacuum arc and dielectric recovery characteristics under high-frequency high-current conditions.
     First of all paper, on the TVS structure and working mechanism, the triggering delay time and its jitter, trigger resistance characteristics are studied by experiments. Triggering delay time is influenced not only by the materials and structural of electrode, but also by the amplitude of main gap voltage and the polarity of main gap voltage and triggering voltage polarity. It is found that, Polarities of the main gap voltage and the trigger pulse strongly influence the triggering time delay characteristics of TVS. TVS has high working stability in the operation mode applying a positive voltage to the main gap and it has a range of stably working voltage. Too low or too high voltage across the main gap is inconvenient for successful triggering. In the range of stably working voltage, the influence of the main gap voltage magnitude on triggering delay time is not prominent. It is also found that, as the trigger energy increases, triggering time delay and the jitter decrease. Trigger resistance affects the life of TVS, and is affected by the trigger current and the arc. It is found that the action of the arc is far greater than that of the trigger current. After several experiments, it has the trends that the trigger resistance increases, triggering voltage decreases. And it is proposed that the impact of vapor deposition should be controlled, to improve product life and stability of their work performance
     The characteristics of switching delay time and its jitter, vacuum arc under high-frequency high-current conditions are also studied by experiments. Switching time delay is affected by polarity of trigger voltage and trigger energy. TVS has high working stability in the operation mode applying a positive voltage to the main gap and as the trigger energy increases, switching time delay and its jitter decrease. Under the high-frequency and large-current, TVS has the positive volt - ampere characteristics. With the arc current increasing, the arc voltage increases significantly. TVS arc will appear as three arc shape: diffused arc, gathering arc and transition arc. The arc voltage of diffusion arc is lower, and is superimposed on a slight high-frequency noise voltage signal. In the transition process, arc voltage increases dramatically, and is superimposed on a high frequency voltage components. It is caused by appearance and disappear of the anode spots produce and disappear. The more unstable of anode spots, the more noise component superimposed on the arc voltage.
     And it is also found that, dielectric recovery characteristics under high-frequency high-current conditions are affected not only by the peak current and current rate of change, but also by frequency and rise of recovery voltage. As the frequency increases, the breaking capacity of TVS decreased. When frequent is lower, less than 2500Hz, as the frequent increases, the breaking capacity decreases significant. But when frequency is more than2500Hz, the decreasing trend is not significant. As frequency increases, the peak of breaking current trends to decrease but the current rate of change trends to increase. The breaking capacity of TVS under high-frequency is decreased as the recovery voltage increases.
引文
[1] Rolf Dethlefsen, Triggered Vacuum Switches for Electric Guns, presented at the 1 lth ELA Meeting, Huntington, W. Va. Sept. 14-16, 1993.
    [2]魏荣华等.触发真空开关[J], .高压电器,1993,25(6)
    [3] Shi Jing , Zou Jiyan, He Junjia. Triggered-vacuum switch based fault current limiter. IEEE Power Engineering Review, June, 2000, P5
    [4]王季梅,真空开关理论及应用,西安交通大学出版社,1986.
    [5] Lafferty J M. Triggered vacuum gaps. Proceedings of the IEEE, 1966, 54(1):23-32.
    [6] Boxman R I. Triggered mechanisms in triggered vacuum gaps[J]. IEEE Transon Electron Devices, 1997, 24(2):122-128.
    [7] Govinda Raju G R. Breakdown mechanisms and electrical properties of triggered vacuum gaps[J]. Jounal of Appl Phys, 1976, 47(4):1310-1317.
    [8] Takuma T. Field behaviou at a triple junction in composite dielectric arrangements. IEEE. Trans. Elec. Insul, 1991, 26(3)500-509.
    [9] Kanakshaish S, Rau R S N. Delay characteristics of a simpled triggered vacuum gap[J]. J. Phys. D: Appl. Phys., 1975(8):1426-1429
    [10] Kanakshaish S, Rau R S N. Low voltage firing characteristics of a simple triggered vacuum gap. IEEE Trans. on Plasma Science, Vo l. 5,No. 3, 164- 170, 1977
    [11] G.R.Govinda Raju, Breakdown mechanism and electrical prosperities of triggered vacuum gap. J. App l. Phys. , Vo l. 47, No. 4, 1310- 1317, 1976
    [12] G.R.Govinda Raju, R ,Hackam, F. A. Benson . Firing characteristics of a triggered vacuum gap employing a dielectric coated with a semiconducting layer. Journal of Applied Physics, 1977, 48(3):1101-1105
    [13] Farrall G A. Low Voltage Firing Characteristics of a Triggered Vacuum Gap[J]. IEEE Trans. On Electron Devices, 1966.ED13(4):432-438.
    [14]尚文凯.真空触发间隙与马蹄形触发真空灭弧室特性的研究[D].西安交通大学博士论文,1997.
    [15]邹积岩,段雄英.触发真空开关通断特性实验研究.大连理工大学学报, 2000, 40(S1): 20-23.
    [16] Wilson J.M.,Boxman R.L.,Thompson J.E.,Sudarshan T.S., Breakdown time of a triggered vacuum and low pressure switch[J]. Electrical Insulation, IEEE Transactions on Volume EI-18, Issue 3, June 1983 Page(s):238– 242
    [17] Sugawara A, Satou K.,Itou T., Itagaki K., Effects of electrode materials for arc-firingprobablity and switching time in UV-laser triggered vacuum gap[J]. Eleventh International Symposium, 1999 vol.5 Page(s):383– 385
    [18] Miller H C. Surface flashover of insulators. IEEE Trans. Elec. Insul, 1989,24(5):765-786
    [19]何俊佳,邹积岩,王海,程礼椿.触发真空开关中初始等离子体的产生和扩展[J].高压电器,1996,32.(6):3-5.
    [20]周正阳,赵纯,董华军,廖敏夫.触发真空开关的触发能量和延时特性分析[J].真空VACUUM, 2007 Vol.44 No.1 P.58-61.
    [21] Vozdvijensky V.A.,Sidorov V.A,Initial stage of discharge current growth in a triggered vacuum gap[J] IEEE Transactions on Plasma Science, Volume 19, 1991 Page(s):778– 781
    [22] Shang. W, Damstra.G..C, The main gap discharge type and mechanism of a triggered vacuum gaps[J]. Proceedings. ISDEIV, July 1996 Page(s):51– 55
    [23]邹积岩,程礼椿,秦红三.真空开关介质强度恢复的研究[J].华中理工大学学报,1990,18(4):9-14
    [24]王季梅,苑舜.大容量真空开关理论及其产品开发(第1版).西安:西安交通大学出版社,2001
    [25] Bauville G., Delmas A, Haddad N, Rioux C, Study of recovery phenomena in a high current pulse triggered vacuum switch[J]. Plasma Science, IEEE Transactions on Volume 17, Issue 5, Oct. 1989 Page(s):781– 785
    [26] Delmas A, Lequitte P. Arc voltage of a fast triggered vacuum gap[J]. Plasma Science, IEEE Transactions on Volume 21, Issue 5, Oct. 1993 Page(s):501– 505
    [27] Shang W.K.,Damstra G.C.,Songmin S. The high level chopping phenomena of sink in type triggered vacuum gaps[J]. Plasma Science, IEEE Transactions on Volume 21, Issue 4, Aug. 1993 Page(s):358– 365
    [28]王立军,贾申利,史宗谦,荣命哲.大电流真空电弧磁流体动力学模型与仿真[J].中国电机工程学报,2006,26 (22):174-179.
    [29] (美)拉弗蒂(Lafferty,J.).真空电弧理论及其应用[M].机械工业出版社,1985
    [30] R.Latham. High voltage vacuum insulation. Academic press, 1981
    [31] Davis W D, Miller H C. Analysis of the electrode products emitted by dc arcs in a vacuum ambient[J].J. Appl. Phys., 1969, 40(5): 2212-2221.
    [32] Slade P G. The Effect of Electrode Material on the Initial Expansion of an Arc in Vacuum [ J ], IEEE Trans. Parts, Hybrids Package, 1972PHP28: 35247.
    [33]修士新,金黎,王季梅.大电流真空电弧特性的研究与分析[J].电网技术, 1997, 21(6):29-34.
    [34]史宗谦,贾申利,王立军,王政.真空电弧电压与电弧形态关系的实验研究[J].高压电器,2004. Vol40, 4:250-252
    [35]王立军,贾申利,史宗谦,荣命哲.电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J].电工技术学报,2007,22(1):54-61.
    [36] Zou Jiyan, Cong Jiyuan. Theoretical analyses of arcs in triggered vacuum switchs. Dalian University of Technology. IEEE Trans.Mag2000:192-194
    [37] L.Harris. Transverse forces and motions at cathode spots in vacuum arcs. IEEE PS-11(3) ,pp94-102
    [38]欧阳立新.电磁电热发射技术现状,电磁发射研究论文集2,pp50
    [39] J.G.Andrews and R.H.Varrey, Sheath Growth in a low pressure plasma, Phys. fluidity, Volume, 14,P339,1971.
    [40] K.H.K.PIJTOB.电真空技术的物理基础.孟昭英等译,高等教育出版社,1955年.
    [41]岩原皓一,真空开关,煤炭工业出版社,1981
    [42]秦红三.真空间隙实际介质强度恢复过程的研究.华中科技大学硕士论文,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700