孔雀鱼微卫星DNA标记的研制及其遗传连锁图谱的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为建立孔雀鱼(Poecilia reticulata)微卫星DNA序列快速分离方法,并利用微卫星DNA标记结合AFLP标记构建孔雀鱼的遗传连锁图谱,我们进行了两部分实验:(1)用磁珠富集法从孔雀鱼基因组DNA中分离富含微卫星的DNA序列;(2)利用SSR和AFLP分子标记结合拟测交策略,以孔雀鱼的单对杂交亲本及其F1代为作图群体,构建了孔雀鱼雌、雄两张遗传连锁图谱。
     主要内容如下:
     1、将孔雀鱼(P. reticulata)的一个个体的基因组DNA用Mse I单酶切并与AFLP分析所用的Mse I接头序列相连,通过AFLP体系扩增获得短片段;将这些片断与生物素标记的(AC)20寡核苷酸杂交,再通过生物素与包被在磁珠上的链亲和素结合;分离磁珠,洗脱,获得富集含微卫星DNA的单链短基因组DNA片段;再经过PCR扩增获得包含微卫星DNA的双链短基因组DNA片段;将这些片段与pMD18-T载体连接,电转化E. coli JM109,构建富集微卫星序列的基因组DNA短片段文库。
     随机挑取450个菌落,选用3个单独的PCR反应(第一个反应用载体上的正向测序引物M13(-47)和反向测序引物M13(-48);第二个反应用正向测序引物M13(-47)和SSR-1寡核苷酸序列;第三个反应用反向测序引物M13(-48)和SSR-1寡核苷酸序列(所用引物序列见论文第二章))筛选到阳性克隆287个(阳性克隆率约为63.78%);测序后得到262个含有微卫星序列的克隆(91.2%),利用Tandem Repeats Finder软件共找到281个微卫星重复序列。对所有重复类型进行统计:除两碱基重复类型(AC/TG)数目最多外(242个),还观察到GCTTT、AAAAG、ATGG、TGCG、TATG、GTAT、CAAG、CACG、CGCA、TCC、TAA、AGG、ACA、AAC、GAA、GAG、CAA、CT、GA、A/T等微卫星重复序列。此外,有一个克隆含有重复类型为7个核苷酸的串联重复序列(CACACAC),即小卫星序列。在得到的281个微卫星完整序列中,完美型微卫星共有76个,占27.05%:非完美型微卫星173个,占61.57% ;复合型微卫星32个,占11.39%。
     设计并合成189对微卫星引物,经过优化反应条件,共有156对引物在孔雀鱼基因组DNA上扩增出特异性条带。利用30尾孔雀鱼个体对其中51对引物进行多态性检测。结果表明:51对引物在孔雀鱼群体中均呈多态性,每个位点的等位基因数量从2到16个不等,揭示的观测杂合度值在0.10和0.63之间,揭示的期望杂合度值在0.23和0.77之间,有四个位点(G95、G278、G307和G401)显著偏离了哈温伯格平衡(P<0.05)。所有51个位点中都没有出现非扩增等位基因。
     利用上述51对孔雀鱼的微卫星引物对玛丽鱼(Poecilia latipinna),剑尾鱼(Xiphophorus hellerii)和月光鱼(Xiphophorus maculates)的基因组DNA进行PCR扩增,检测孔雀鱼微卫星引物的通用性。PCR结果表明,51对孔雀鱼微卫星引物中,有27对能在玛丽鱼上稳定扩增,16对和19对分别能在剑尾鱼和月光鱼基因组DNA上扩增。这些引物在玛丽鱼(花鳉属)基因组中扩增的成功率远高于在剑尾鱼属的两个物种(剑尾鱼和月光鱼)。
     2、利用微卫星和AFLP标记结合拟测交策略构建孔雀鱼的遗传连锁图谱。221个微卫星位点中,有101个符合1:1或1:1:1:1分离;此外,91对AFLP引物组合共产生符合1:1分离的标记336个,对这些分离标记进行连锁分析,得到了雌、雄两张遗传连锁图谱。
     在雌性连锁图谱中,135个标记(含38个微卫星和97个AFLP标记)构成了22个连锁群(4个或4个以上标记),每个连锁群含4-13个标记,连锁群长度在19.6-202.3cM之间,所有标记平均间隔为11.2cM,图谱长度为1267.7cM。计算产生20个小连锁群,包括2个三联体和18个连锁对。加上三联体和连锁对,图谱总长度为1469.7cM。在雄性连锁图谱中,有172个标记(含49个微卫星、122 AFLP和1个性别标记)定位在20个连锁群(4个或4个以上标记),每个连锁群含4-14个标记,连锁群长度在31.5-175.6cM之间,图谱总标记平均间隔为11.7cM,图谱长度为1771.2cM。另外有16个标记构成了4个三联体和2个连锁对。加上三联体和连锁对图谱总长度为1886.2cM。雌雄图谱框架图的长度分别为1267.7cM和1771.2cM,相应覆盖率分别为72.5%和79.3%;若把三联体和连锁对考虑在内,雌雄图谱的覆盖率则分别为84.0%和84.5%。
     作图群体所有个体的性别均作为标记整合到雌雄分离信息中,在61个F1个体中,30尾雌鱼,31尾雄鱼。在雄性图谱第2连锁群上,性别与13个标记(包括4个微卫星和9个AFLP)紧密连锁,4个微卫星标记与性别位点的图距分别为114. cM,23.3cM,12.1cM和9.2cM。
     本研究的结果表明:磁珠富集法可作为分离孔雀鱼微卫星DNA标记的有效手段,并可为今后进一步开发大量的孔雀鱼基因组微卫星DNA标记奠定基础;通用SSR引物在孔雀鱼、玛丽鱼、剑尾鱼和月光鱼中的应用,将促进这四种鱼基因组比较研究的顺利开展,有利于遗传信息在不同物种间的相互利用;利用SSR和AFLP分子标记构建的孔雀鱼遗传连锁图谱是国内孔雀鱼分子遗传学研究的新探索,并为经济鱼类的遗传学研究提供了借鉴。
In order to establish an efficient method to clone microsatellite DNA sequences and use microsatellite DNA and AFLP markers to construct genetic linkage maps of guppy (Poecilia reticulata), two parts of experiments were done: (1) isolation microsatellite DNA by magnetic beads enrichment; (2) construction of guppy (P. reticulata) genetic linkage maps using microsatellite DNA and AFLP markers and pseudo-testcross mapping strategy. The main contents were as follow:
     A genomic DNA library enriched with AC/TG-microsatellite DNA was constructed using DNA extracted from a guppy individual using FIASCO (Fast Isolation by AFLP of Sequences Containing Repeats) method. A biotinylated (AC)20 oligonucleotide was used as probe. DNA fragments containing microsatellite DNA were ligated with pMD18-T vector and electroporated into E. coli JM109.
     In total, about 450 white colonies were screened, each colony was subjected to 3 individual PCR reactions. In the first reaction, universal forward and reverse sequencing primers (M13-47 and M13-48) were used. In the second reaction, the universal forward primer was used in combination with a (CA)20 oligonucleotide and in the third one the universal reverse primer was used in combination with a (CA)20 oligonucleotide. In the white colonies screened, 287 clones are positive. After sequencing, 262 contained microsatellite repeat sequences. Besides the motif of (CA/GT) contained in the oligoprobe, we also found GCTTT、AAAAG、ATGG、TGCG、TATG、GTAT、CAAG、CACG、CGCA、TCC、TAA、
     AGG、ACA、AAC、GAA、GAG、CAA、CT、GA、A/T repeats. In addition, 1 (CACACAC) minisatellite clone was obtained. According to Weber (1990),the microsatellite sequences could be categorized structurally as follows: perfect (27.05%), imperfect (61.57%), and compound (11.39%).
     One hundred and eighty-nine microsatellite DNA primers of guppy (P.reticulata) were developed. Fifty-one of the markers detected the diversity in a guppy population. The number of alleles each locus ranged from 2 to16. Observed and expected heterozygosities varied from 0.10 to 0.63 and from 0.23 to 0.77, respectively. Four loci (G95, G278, G307and G401) displayed significant deviations from the expectations of Hardy–Weinberg equalifiation ( P<0.05 ). There was no null allele detected at any of the loci.
     Cross-species amplification was investigated in 3 closely related species, Poecilia latipinna, Xiphophorus hellerii and Xiphophorus maculates. The cases of successful cross-species amplification were higher in P. latipinna than in two species of genus Xiphophorus.
     Genetic linkage maps of guppy (P.reticulata) were constructed using microsatellite DNA and AFLP markers and pseudo-testcross mapping strategy. Of 221 microsatellite DNA markers, 101 segregated at 1:1 or 1:1:1:1 ratios. In addition, 336 AFLP markers segregated also in F1 progenies at 1:1 ratio, which were produced using 91 primer combinations.
     Two linkage maps were constructed: one for male parent and the other for female parent. The female parent map consisted of 219 markers, of which 135 (97 AFLP and 38 microsatellite DNA) were assigned to 22 linkage groups, at least four markers each. The 135 markers covered 1267.7 cM in length with an average interval of 11.2 cM,. The length of the individual linkage group varied from 19.6 to 202.3 cM. The remaining 46 markers distributed as two triplets and eighteen doublets. The male parent map consisted of 227 markers, of which 172 (122 AFLP, 49 microsatellite DNA and the sex determinant) were assigned to 20 linkage group. The 172 markers covered 1771.2 cM in length with an average interval of 11.7 cM. The length of the linkage groups ranged from 31.5 to 175.6 cM, the number of markers per group varied from 4 to 14. The remaining 16 distributed as four triplets and two doublets. On the basis of the expected genome lengths, genome coverage of female and male maps was 72.5% and 79.3%, respectively. When considering all the triplets and doublets, the map coverage increased to 84.0% for the female and 84.5% for the male.
     The sex of the mapping progenies was treated as a marker for linkage analysis in the female and male (Li et al., 2003). Of 61 progenies, 30 were female and 31 were male. The sex marker was the only phenotypic trait placed on the map. In the male parent map, sex was mapped onto linkage group 2, which contained 13 markers including four microsatellite DNA and nine AFLP. Four microsatellite DNA markers separated from the sex locus at the distance of 114.3 cM, 23.3 cM, 12.1cM and 9.2 cM, respectively.
     The present study has shown that enrichment by magnetic beads is a simple and efficient method for rapid isolation of guppy genome microsatellite DNA and the (AC) -enriched library created in this study will be useful resource for developing additional genomic microsatellite DNA markers for guppy in the future. Moreover, the construction of guppy linkage maps will be important for genetic studies of economically important fish.
引文
Agresti, J.J., Seki, S., Cnaani, A., Poompuang, S., Hallerman, E.M., Umiel, N., Hulata, G., Gall, G.A.E., May, B., 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185, 43–56.
    Ahn, S., Tanksley, S.D., 1993. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA 90, 7980-7984.
    Albertson, R.C., Streelman, J.T., Thomas, D.K., 2003. Directional selectionhas shaped the oral jaws of Lake Malawi cichlid fishes. PNAS 100, 5252 -5257.
    Albertson, R.C., Streelman, J.T., Kocher, T.D., Yelick, P.C., 2005. Integration andevolution of the cichlid mandible: The molecular basis of alternate feeding strategies. PNAS 102, 16287-16292.
    Arnheim, N., Strange, C., Erlich, H., 1985. Use of pooled DNA samples to detect linkage disequilibrum of polymorphic restriction fragment and human disease. Proc. Natl. Acad. Sci. USA 82, 6970-6974.
    Barinova, A.A., Nakajima, M., Fujio,Y., 1997. Genetic differentiation of laboratory populationsin the guppy Poecilia reticulata. Fish Genettics Breeding Science 25, 19–26.
    Becher, S.A., Russell, S.T., Magurran, A.E., 2002. Isolation and characterization of polymorphic microsatellites in the Trinidadian guppy (Poecilia reticulata). Molecular Ecological Notes 2, 456–458.
    Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573-580.
    Bingulac-Popovic, J., Figueroa, F., Sato, A., 1997. Mapping of the mhc class I and II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics 46, 129-134.
    Bostein, D., White, R.L., Skolnick, M., Davis, R.W., 1980. Construction of a genetic linkagemap in man using restriction fragment length polymorphisms. American Journal Human Genetics 32, 314-331.
    Brenner, S., Elgar, G., Sandford, R., Macrae, A., Venkatesh, B., Aparicio, S., 1993. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366, 265-268.
    Brook, A.L., Cook, D., Paul, B., 1994. Organization of microsatellites differs between mammals and cold-water teleost fishes. Candian Journal of Fisheries Aquatic Sciences 51, 1959-1966.
    Broun, P., Tanksley, S.D., 1996. Characterization and genetic mapping of simple sequences in the tomato genome. Mollecular Genetics 250, 29-49.
    Carvalho, G.R., Show, P.W., Magurran, A.E., Seghers, B.H., 1991. Marked genetic divergence revealed by allozymes among populations of the guppy Poecilia reticulata (Poeciliidae), inTrinidad. Biological Journal of Linnean Society 42, 389-405.
    Castiglioni, P., Ajmone-Marsan, P., van Wijk, R., Motto, M., 1999. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theoretical and Applied Genetics 99, 425-431.
    Cervera, M.T., Storme, V., Ivens, B., Gusm?o, J., Liu B.H., Hostyn, V., Slycken, J.V., Montagu, M.V., Boerjan, W., 2001. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158, 787-809.
    Chakravarti, A., Lasher, L.K., Reefer, J.E., 1991. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128, 175–182.
    Chistiakov, B.H., Dimitry, A., Chris, S., 2005. A Microsatellite Linkage Map of the European Seabass Dicentrarchus labrax L. Genetics 170, 1821-1826.
    Chistiakov, D.A., Hellemans, B., Tsigenopoulos, C.S., 2004. Development and linkage relationships for new microsatellite markers of the sea bass (Dicentrarchus labrax L.). Animal Genetics 35, 53-57.
    Chiyokubo, T., Shikano, T., Nakajima, M., Fujio, Y., 1998. Genetic features of salinity tolerance in wild anddomestic guppies (Poecilia reticulata). Aquaculture 167, 339-348.
    Cifarelli, R.A., Gallitelli, M., Cellini, F., 1995, Random amplified hybridization microsatellites (RA1-IM): isolation of a new class of microsatellite-containing DNA clones. Nucleic Acids Research 23, 3802-3803.
    Conner, P.J., Brown, S.K., Weeden, N.F., 1998. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees.Theoretical and Applied Genetics 96, 1027-1035.
    Coimbra, M.R.M., Kobayashi, K., Koretsugu, S., 2003. A genetic linkage map of the Japanese flounder, Paralichtys olivaceus. Aquaculture 220, 203-218.
    Crawford, A. M., Dodds, K.G., Ede, A.J., Pieirson, C.A., Montgomery, G..W., 1995. An atosomal genetic linkage map of the sheep genome. Genetics 140, 703-724.
    Davidson, A.J., Postlethwait, J.H., Yan, Y.L., 1999. Isolation of zebrafish gdf7 and comparative genetic mapping of genes belonging to the growth/differentiation factor 5, 6, 7 subgroup of the TGF-beta superfamily. Genome Research 9, 121-129.
    Devlin, R.H., Nagahama,Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
    Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J., Weissenbach, J., 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152-154.
    Dietrich, W. F., Miller, J., Steen, R., Merchant, M. A., Damron-Boles, D., 1996. A comprehensive map of the mouse genome. Nature 380, 149-152.
    Dinesh, K.R., Lim, T.M., Chua, K.L., Chan, W.K., Phang, V.P.E., 1993. RAPD analysis: an efficientmethod of DNA fingerprinting in fishes. Zoological Science 10, 849-854.
    Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith, T., Bowden, D., Smith, D., Lander, E., Botstein, D., Akots, G., Rediker, K., Gravius, T., Brown, V., Rising, M., Parker, C., Powers, J., Watt, D., Kauffman, E., Bricker, A., Phipps, P., Muller-Kahle, H., Fulton, T., Ng, S., Schumm, J., Braman, J., Knowlton, R., Barker, D., Crooks, S., Lincoln, S., Daly, M., Abrahamson, J., 1987. A genetic linkage map of human genome. Cell 51, 319-33.
    Falconer, D.S., 1989. Selection: II. the results of experiments, pp. 209, in Introduction to Quantitative Genetics, Longman Scientific and Technical, New York, 3rd edn.
    Faris, J.D., Laddomada, B., Gill B.S., 1998. Molecular mapping of segregation distortion loci in Aegilops taushii. Genetics 149, 319–327.
    Fernando, A.A., Phang, V.P.E., 1985. Culture of the guppy, Poecilia reticulata, in Singapore. Aquaculture 51, 49–63.
    Fisher, D., Bachmann, K., 1998. Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biothchniques 5, 796-800.
    Fishman, L., Kelly, A.J., Morgan, E., Willis, J.H., 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159, 1701–1716.
    Foo, C.L., Dinesh, K.R., Lim, T.M., Chan, W.K., Phang, V.P.E, 1995. Inheritance of RAPD markers in the guppy fish, Poecilia reticulate, Zoological Science 12, 535–541.
    Fujio, Y., Nakajima, M., Nomura, G., 1995. Selection response on thermal resistance of the guppy Poecilia reticulata. Fisheries Science 61, 731–734.
    Gardner, M.G., Cooper, S.J.B., Bull, C.M., 1999. Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. Journal of Genetics 90, 301-304.
    Gharbi, K., Gautier, A., Danzmann, R. G., Gharbi, S., Sakamoto, T., H?yheim, B.,Taggart, J. B., Cairney, M., Powell, R., Krieg, F., Okamoto, N., Ferguson, M.M., Holm, L., Guyomard, R., 2006. A linkage map for brown trout (Salmotrutta): chromosome homeologies and comparative genome organization withother Salmonid fish. Genetics 172, 2405-2419.
    Gilbey, J., Verspoor, E., McLay, A., Houlihan, D., 2004. A microsatellite linkage map for Atlantic salmon (Salmo salar). Animimal Genetics 35, 98-105.
    Giovannim, C., Tina, L., Maguire, K.J., Edwards., Robert, J., Henr.Y., Grist, S.A., Firgaira, F.A., Morley, A.A., 1993. Dinucleotide repeat polymorphismisolated by the Polymerase chain reaction. BioTechniques 15, 304-309.
    Grattapaglia, D., Sederoff, R., 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121-1137.
    Grattapaglia, D., Bertolucci, F.L.G., Penchel, R.R., Sederoff, R., 1996. Genetic mapping of quantitativetrait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144, 1205-1214.
    Haanstra, J.P.W, Wye, C., Verbakel, H., Meijer-Dekens, F., Berg, P., Odinot, P., van Heusden, A. W., Tanksley, S., Lindhout, P., Peleman, J., 1999. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations. Theoretical and Applied Genetics 99, 254-271.
    Hakki, E. E., Akkaya, M.S., 2000. Microsatellite isolation using amplified fragment length polymorphism markers: no cloning, no screening, Molecular Ecology 9, 2149-2145.
    Hamada, H., and Kakunaga, T., 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Pro Natl Acad Sci USA 79, 6465-6469.
    Haskins, C.P., Haskins, E.F., 1951. The inheritance of certain color patternsin wild populations of Lebistes reticulatus in Trinidad. Evolution 5, 216–225.
    Hauswaldt, J.S., Glenn, T.C., 2003. Microsatellite DNAloci from the Diamondback terrapin (Malaclemys terrapin). Molecular Ecology Notes 3, 174-176.
    Hulata, G., 2001. Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies. Genetica 111, 155- 173.
    Huxley, J. S., 1928. Sexual difference of linkage Grammarus chereuxi. J Genet 20, 145-156.
    Jiang, C., Chee, P.W., Draye, X., Morrell, P.L., Smith, C.W., Paterson, A.H., 2000. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution 54, 798–814.
    Kappes, S. M., Keele, J.W., Stone, R. T., Mcgraw, R. A., Sonstegard, T. S., 1997. A second-generation l inkage map of the bovine genome. Genetics Research 7, 235-249.
    Kaya, Z., Sewell, M.M., Neale, D.B., 1999. Identification of quantitative trait loci influencing annual height and diameter-increment growth in loblolly pine (Pinus taeda L.). Theoretical and Applied Genetics 98, 586-592.
    Khoo, G., Lim, M.H., Suresh, H., Gan, D.K.Y., Lim, K.F., 2003. Genetic linkage maps of the guppy: Assignment of RAPD markers to multipoint linkage groups. Marine Biotechnological 5, 279-293.
    Kimura, T., Yoshida, K., Shimada, A., Jindo, T., Sakaizumi, M., Mitani, H., Naruse,K., Takeda, H., Inoko, H., Tamiya, G., Shinya, M., 2005. Genetic linkagemap of medaka with polymerase chain reaction lengthpolymorphisms. Gene 363, 24-31.
    Kirpichnikov, V.S., 1981. The genetics of aquarium fish species. In“Genetic Bases of Fish Selection”Translated by GG Gause. Springer-Verlag, pp: 77-103, Berlin-Heidelberg, Germany.
    Knapik, E. W., Goodman, A., Atkinson, O.S., Roberts, C.T., Shiozawa, M., 1996. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms.Development 123, 451-460.
    Knapik, E.W., Goodman, A., Ekker, M., Chevrette, M., Delgado, J., Neuhauss, S., Shimoda, N., Driever, W., Fishman, M.C, Jacob, H, J., 1998. A microsatellite genetic linkage map for zebrafish (Danio rerio). Natture Genetics 18, 338-343.
    Kocher, T.D., Lee, W.J., Sobolewska, H., Penman, D., McAndrew, B., 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148, 1225-1232.
    Khoo, G., Lim, K.F., Damien, K.Y.G., Chen, F., Chan, W.K., Phang,V.P.E, 2002. Genetic diversity within and among feral populations and domesticated strains of the guppy (Poecilia reticulata) in Singapore. Marine Biotechnology 4, 367-378.
    Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann. Eugen. 12, 172-175.
    Lander, E.S., Botstein, D., 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.
    Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L., 1987. MAPMAKER: an interactive computer package of constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.
    Lee, B.Y., Lee, W.J., Streelman, J.T., Carleton, K.L., Howe, A.E., Hulata, G., 2005. A Second-Generation Genetic Linkage Map of Tilapia (Oreochromis spp.). Genetics 170, 237-44.
    Lespinasse, D., Grivet, L., Troispoux, V., Rodier-Goud, M., Pinard, F., Seguin, M., 2000. Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theoretical and Applied Genetics 100, 975-984.
    Lian, C., Zhou, Z.H., Hogetsu, T., 2001. A Simple Method for Developing Microsatellite Markers using Amplified Fragments of Inter-simple Sequence Repeat (ISSR). Journal of Plant Research 114, 381-385.
    Li, Y.T., Byrne, K., Miggiano, E., Whan, V., Moore, S., Keys, S., Crocos, P., Preston, N., Lehnert, S., 2003. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219, 143–156.
    Li, L., Xiang, J., Liu, X., Zhang, Y., Dong, B., Zhang, X., 2005. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farrere Jones et Preston and mapping of sex linked markers. Aquaculture 245, 63–73.
    Liu, Z., Nichols, A., Li, P., Dunham, R.A., 1998. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. Frucatus), and their F1,F2, and backcross hybrids Molecular and General. Genetics 258, 260-268.
    Liu, Z.J., Karsi, A., Dunham, R.A., 1999a. Development of polymorphic EST markers suitable for genetic linkage mapping of catfish. Marine Biotechnology 5, 437-447.
    Liu, Z., Li, E., Kucuktas, H., Nichols, A., Tan, G., 1999b. Development of Amplified Fragment Length Polymorphism (AFLP) markers suitable for genetic linkage mapping of catfish. Trans American Fish Soc.128, 317-327.
    Liu, Z., Karsi, A., Li, P., Cao, D., Dunham, R., 2003. An AFLP-based genetic linkage map of channel catfish (lctalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165, 687-694.
    Lyttle, T. W., 1991. Segregation distorters. Annual Review of Genetics 25: 511-557.
    Macaranas, J.M., Fujio, Y., 1988. Strain differences and heteroticeffects among three strains of the guppy, Poecilia reticulata. Tohoku L. Agr. Res 39, 19–28.
    Marklund, L.M., Moiler, M.J., Hoyheim, B., Davis, W., Fredholm, M., 1996. A combrehensive linkage map of the pig based on a wild pig-large white intercross. Animal Genetics 27, 255-269.
    Martin, G.B., Williams, J. G.K., Tanksley, S.D., 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenetic lines. Pro Natl Acad Sci USA 88, 2336-2340.
    Matsuda, M., Matsuda, C., Hamaguchi, S., Sakaizumi, M., 1998. Identification of the sex chromosome of the medaka, Oryzias latipes, by fluorescence in situ hybridization. Cell Genetics 82, 257-262.
    Matsuda, M., Sotoyama, S., Hamaguchi, S. And Sakaizumi, M., 1999. Male-specific restriction of recombination freguency in the sex chromosome of the medaka, Oryzias latipes. Genetics Research 73, 225-231.
    Matsuda, M., Nagahama, Y., Shinomiya, A., Sato,T., Matsuda, C., Kobayashi, T., 2002. DMY is a Y-specific DM domain gene required for male development in the medaka fish. Nature 417, 559–563.
    Michelmore, R., Paran, L, Kessili, R.V., 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions using segregation populations. Proc Natl Acad Aci USA 88, 9828-9832.
    Moen, T.B., Hoyheim, H., Munck., 2004. A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Animal Genetics 35, 81-92.
    Morgante, G., Ditto, A., La Marcia, A., 1998. Surgical treatment of dermoid cysts. Eur. J. Obstet. Gynecol. Reproduction Biological 81, 47–50.
    Morizot, D.C., 2000. Reconstructing the genome of the vertebrate ancestor. In: Genomes,Gustafson, P. (ed.). New York: kluwer academic/Plenum Publishers 43-60.
    Morizot, D., Nairn, C., Simhambhatla, R.S., Coletta, P., Trono, L.D., Choranec, D., Walter, L., 2001. Xiphophorus genetic linkage map: Beginnings of comparative gene mapping in Fishes. Marine Biotechnology 3,153-161.
    Nakadate, M., Takahito, S.T., Taniguchi N., 2003. Inbreedingdepression and heterosis in various quantitative traits of the guppy, Poecilia reticulata. Aquaculture 220, 219-226.
    Nakajima, M., Fujio, Y., 1993. Genetic determination of the growth of the guppy. Nippon Suisan Gakkaishi 59, 461–464.
    Nakajima, M., Taniguchi, N., 2001. Genetics of the guppy as a model for experiment in aquaculture. Genetica 111, 279-289.
    Nakajima, M., Taniguchi, N., 2002. Genetic control of growth in the guppy (Poecilia reticulata). Aquaculture 204, 393–405.
    Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99, 11778-11783.
    Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Shima, A., 2000. A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution. Genetics 154, 1773-1784.
    Naruse, K., Tanaka, M., Mita, K., Shima, A., Postlethwait, J. and Mitani H., 2004. A Medaka Gene Map: The Trace of Ancestral Vertebrate Proto-Chromosomes Revealed by Comparative Gene Mapping. Genome Research 14, 820-828.
    Nichols, K., Young, W., Danzmann, R., Robison, B., Rexroad, C., Noakes, M.,Phillips, R., Bentzen, P., Spies, I., Knudsen, K., Allendorf, F., Cunningham, B., Brunelli, J., Zhang, H., Ristow, S., Drew, R., Brown, K., Wheeler, P., Thorgaard, G., 2003. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Animal Genetics 34,102-115.
    O'Brien, S.J., Graves, J.A.M., 1990. Report of the committee on comparative gene mapping. Cytogenet Cell Genetetics 90, 8308-8309.
    Ohara, E., Nishimura, T., Nagakura, Y., Sakamoto, T., Mushiake, K., Okamoto, N., 2005. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi). Aquaculture 244, 41-48.
    Ohtsuka, M., Makino, S., Yoda, K., 1999. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Research 9, 1277-1287.
    Olendorf, R., Reudi, B., Hughes, K.A., 2004. Primers for 12 polymorphic microsatellite DNA loci from the guppy (Poecilia reticulata). Molecular Ecological Notes 4, 668–671.
    Parker, K.M., Hughes, K., Kim, T.J., Hedrick, P.W., 1998. Isolation and characterization of microsatellite loci from the Gila topminnow (Poeciliopsis.O.occidentalis) and their utility in guppies (Poecilia reticulata). Molecular Ecological Notes 7, 361–363.
    Paterson, I.G., Crispo, E., 2005. Characterization of tetranucleotide microsatellite markers in guppy(Poecilia reticulata). Molecular Ecological Notes 5, 269–271.
    Peichel, C.L., Nereng, K.S., Ohgi, K.A., Cole, B.L., Colosimo, P.F., Buerkle, C.A., Schluter, D., Kingsley, D.M., 2001.The genetic architecture of divergence between threespine stickleback species. Nature 414, 901-9055.
    Poompuang, S., Na-Nakorn, U., 2004. A preliminary genetic map of walking catfish (Clarias macrocephalus). Aquaculture 232, 195-203.
    Postlethwait, J.H.,Johnson, S.L., Midson, C.N.,Talbot, W. S., Gates, M., 1994. A Genetic linkage map for the zebrafish. Science 264, 699-703.
    Postlethwait, J.H., Yan, Y.L., Gates, M.A., 1998. Vertebrate genome evolution and the zebrafish gene map. Nature Genetics 18, 345-349.
    Protas, M.E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens H., Jeffery, W.R., Zon, L.I., Borowsky, R., Tabin C.J., 2006. Genetic analysis of cavefish revealsmolecular convergence in the evolution of albinism. Nature Genetics 38,107-111.
    Rafalski, J.A., Vogel, J.M., Morgante, M., Powell, W., Andre, C., Tingey, S.V., 1996. Generating and using DNA markers in plants. In: Birren, B., Lai, E., (Eds.), Nonmammalian Genome Analysis. A Practical Guide. Academic Press, San Diego, pp. 75-134.
    Raymond, M., Rousset,F., 1995. GENEPOP (Ver.1.2): a population genetics software for exact test and ecumenicism. Journal of Heredity 86:248-249. HYPERLINK http//www.cefe. cnrs-mop. fr/.
    Remington, D.L., Whetten, R.W., Liu, B.H., O’Malley, D. M., 1999. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theoretical and Applied Genetics 98, 1279-1292.
    Refseth, U.H., Fangan, B.M., Jakonbsen, K.S., 1997. Hybridization capture of microsatellites directly from genomic DNA. Electrophoresis 18, 1519- 1523.
    Rodriguez, M. F., LaPatra, S., Williams, Scott, Famula T., and May B., 2004.Genetic markers associated with resistance to infectious hematopoieticnecrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses.Aquaculture 241,93-115.
    Rouppe van der Voort, J.N., van Zandvoort, P., van Eck, H.J., Folkertsma, R.T., Hutten, R.C., Draaistra, J., Gommers, F.J., Jacobsen, E., Helder, J., Bakker, J., 1997. Use of allele specificity of comigrating AFLP markers to align geneticmaps from different potato genotypes. Mol. Gen. Genet. 255, 438–447.
    Sakamoto, T., Danzmann, R.G., Gharbi, K., Howard, P., Ozaki, A., Khoo, S.K., Woram, R.A., Okamoto, N., Ferguson, M.M., Holm, L.E., Guyomard, R., Hoyheim, B., 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155, 1331-1345.
    Scalfi, M., Troggio, M., Piovani, P., Leonardi, S., Magnaschi, G., Vendramin, G.G., Menozzi, P., 2004. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech Fagus sylvatica L. Theoretical and Applied Genetics 108, 433-441.
    Schlotterer, C., Tautz, D., 1992. Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20, 211-215.
    Schmidt, J., 1919. Racialstudies in fishes: II. experimental investigations with Lebistes reticulates (Peters) Regan. J. Genet. 8, 147–153.
    Shaw, P.W., Carvalho, G.R., Magurran, A.E., Seghers, B.H., 1991. Population differection in Trinidadian guppies (Poecilia reticulata): patterns and problems. Journal of Fish Biology 39, 203-209.
    Shaw, P.W., Carvalho, G.R., Magurran, A.E., Seghers, B.H., 1994. Factors affecting the distribution of genetic variability in the guppy (Poecilia reticulata). Journal of Fish Biology, 45, 875-888.
    Shen, X.Y., Yang, G. P., Liao, M. J., 2007. Development of 51 genomic microsatellite DNA markers of guppy (Poecilia reticulata) and their application in closely related species. Molecular Ecological Notes 7, 302-306.
    Shikano, T., Nakadate, M., Nakajima, M., Fujio, Y., 1997. Heterosis and maternal effects in salinity toleranceof the guppy Poecilia reticulata. Fisheries Science 63, 893–896.
    Shikano, T., Chiyokubo, T., Nakadate, M., Fujio, Y., 2000. The relationship between allozyme heterozygosity and salinity tolerance in wild and domestic populations of the guppy (Poecilia reticulata). Aquaculture 184, 233– 245.
    Shikano, T., Chiyokubo, T., Taniguchi, N., 2001. Effect of inbreeding on salinity tolerance in the guppy (Poecilia reticulata). Aquaculture 202, 45– 55.
    Shikano, T., Taniguchi, N., 2002a. Relationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in the guppy (Poecilia reticulata). Aquaculture 209, 77– 90.
    Shikano, T., Taniguchi, N., 2002b. Using microsatellite and RAPD markers to estimate the amount of heterosis invarious strain combinations in the guppy (Poecilia reticulata) as a fish model. Aquaculture 204, 271–281.
    Shimoda, N., Kmapik, E.W., Ziniti, J., Sim, C., Yamada, E., Kaplan, S., Jackson, D., Jacob, H., Fishman, M.C., 1999. Zebrafish genetic map with 2000 microsatellite markers. Genomics 58, 219-232.
    Sibov, S.T, de Souza Jr C.T, Carcia, A.A.F., 2003. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1.Map construction and localization of loci showing distorted segregation. Hereditas 139, 96-106.
    Singer, A., Perlman, H., Yan, Y., Walker, C., Corleyp-Smith, G., 2002. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics 160, 649-657.
    Slettan, A., Olsaker, I., Lie, O., 1997. Segregation studies land linkage analysis of Atlantic salmon microsatellite using haploid genetics. Heredity 78, 620-627.
    Stemshorn, K.C., Nolte, A.W., Tautz D., 2005. A genetic map of Cottus gobio(Pisces, Teleostei) based on microsatellites can be linked to the physical map of Tetraodon nigroviridis. J.Evological Biological 18: 1619-1624.
    Suiter, K. A., Wendel, J.F., Case, J. S., 1987. Linkage-1: Pascal computer program for the detection and analysis of genetic linkage maps of experimental and natural populations. Genomics 1, 174-184.
    Sun, X., Liang, L., 2004. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238, 165-172.
    Tan, Y.D., Wan, C., Zhu, Y., Lu, C., Xiang, Z., Deng, H.W., 2001. An amplified fragment length polymorphism map of the silkworm. Genetics 157, 1277-1284.
    Tanksley, S.D., Ganal, M.W., Prince, J.P., De-Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Roder, M.S., Wing, R.A., Wu, W., Young, N.D., 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160.
    Tóth, G., Gáspári, Z., Jurka, J., 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Reseach 10, 967-981.
    Traut, W., Winking, H., 2001. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy. Chromosome Research 9, 659–672.
    Tsigenopoulos, C.S., Hellemans, B., Chistiakov, D.A., 2003. Eleven new microsatellites of the sea bass (Dicentrarchus labrax L.). Molecular Ecology Notes, 3, 352-354. USDA(U.S. Department of Agriculture). Five years of project of genetic maps of aquaculture species. In: USDA Regional Project Number: NE-186, Duration: October1, 1997-September 30, 2002. USA. 1997.
    Valdes, A.M., Slatkin, M., Freimer, N.B., 1993. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737-749.
    Voorrips, R.E., 2002. MapChart: software for the presentation of linkage maps and QTLs. Journal of Genetics 93, 77–78.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M., Zabeau, M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407-4414.
    Wada, H., Naruse, K., Shimada, A.,1995. Genetic linkage map of a fish, the Japanese medaka Oryziao latipes. Mol Mar Biol Biotech. 4, 269- 274.
    Waldbieser, G.C., Bosworth, B.G., Nonneman, D.J., Wolters, W.R., 2001. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158, 727-734.
    Walter, R. B., Rains, J. D., Russell, J. E., Guerra, T. M., Daniels, C., Johnston, D.A., Kumar, J.,Wheeler, A., Kelnar, K., Khanolkar, V. A., Williams, E. L.,Hornecker, J. L., Hollek, L., Mamerow, M. M., Pedroza, A., Kazianis, S., 2004. A microsatellite genetic linkage map for Xiphophorus. Genetics 168, 363-372.
    Wang, S., Bao, Z., Pan, J., Zhang, L., Yao, B., Zhan, A., Bi, K., Zhang, Q., 2004. AFLP linkage map of an intraspecific cross in Chlamys farreri. Journal Shellfish Research 23, 491-499.
    Wataru, K., Kiyoshi, K., Fujita, M., 2005. A Genetic Linkage Map for the Tiger Pufferfish, Takifugu rubripes. Genetics 171, 227-238.
    Wang, L., Song, L., Chang, Y., Xu, W., Ni, D., Guo, X., 2005. A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquaculture Research 36, 643-653.
    Watanabe, T., Yoshida, M., Nakajima, M., Taniguchi, N., 2003. Isolation and characterization of 43 microsatellite DNA markers for guppy (Poecilia reticulata). Molecular Ecological Notes 3, 487–490.
    Watanabe, T., Nakajima, M., Yoshida, M., Taniguchi, N., 2004. Construction of six linkage groups in the guppy (Poecilia reticulata). Animal Genetics 35, 147-148.
    Watanabe, T., Yoshida, M., Nakajima, M., Taniguchi, N., 2005. Linkage mapping of AFLP and microsatellite DNA markers with the body color and sex-determining loci in the guppy (Poecilia reticulata). Zoological Science 8, 883-892.
    Weber, J.L., 1990. Informativeness of human (dC-dA)n (dD-dT)n polymorphisms. Genomics 7, 524- 530.
    Whan, V.A., Wilson, K.J., Moore, S.S., 2000. Two polymorphic microsatellite markers from novel Penaeus monodon ESTs. Animal Genetics 31, 143-144.
    Winge, O., 1922. A peculiar mode of inheritance and its cytological explanation. Journal of Genetics 12, 137–144.
    Winge, O., 1927. The location of eighteen genes in Lebistes reticulatus. Journal of Genetics 18, 1–43.
    Winge, O, Ditlevsen, E., 1947. Color inheritance and sex determination in Lebistes. Heredity 1, 65–83.
    Woods, I.G., Kelley, P.D., Chu, F., Ngo-Hazelett, P., Yan, Y., et al., 2000. A comparative map of the zebrafish genome. Genom Research 10, 1903-1914.
    Woods, I.G., Wilson, C., Friedlander, B., Chang,P., Reyes, D.K., Nix, R., Peter D. K., Chu, F., John H.P., Talbot, W.S., 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Research 15, 1307-1314.
    Woram, R.A., McGowan, C., Stout, J.A., Gharbi, K., Ferguson, M.M., Hoyheim, B., Davidson, E.A., Davidson, W.S., Rexroad, C., Danzmann, R.G., 2004. A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47, 304-315.
    Yamamoto, T.O., 1975. The medaka, Oryzias latipes, and the guppy, Lebistes reticularis. In: King, R.C.(ed.), Handbook of Genetics, Vol 4, Plenum Press, New York, USA, pp. 133-149.
    Yamamoto, T., 1961. Progenies of sex-reversal femalesmated with sex-reversal males in the medaka, Oryziaslatipes. Journal of Experimental Zoology 146, 146-179.
    Young, W.P., Wheeler, P.A., Coryell, V.H., Keim, P., Thorgaard, G.H., 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148, 839-850.
    Yue, G.H., Orban, L., 2004. Novel microsatellites from the green swordtail (Xiphophorus hellerii) also display polymorphism inguppy (Poecilia reticulata).Molecular Ecological Notes 4, 474–476.
    Zane, L., Bargelloni, L., Patarnello, T., 2002. Strategies for microsatellite isolation: a review. Molecular Ecological 11, 1-16.
    Zhang, L., Yang, C., Zhang, Y., Li, L., Zhang, X., Zhang, Q., Xiang, J., 2006. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica, DOI 10.1007/s10709-006-9111-8.
    陈红菊,陈灿菊,姜中伸,2003.微卫星分子标记的研究进展.扬州大学学报,249 (2), 1-6.
    杜长斌,楼允东,沈俊宝,孙孝文,2000.微卫星分子标记技术及其在鱼类遗传连锁图谱构建中的应用.上海水产大学学报9 (3), 254-258.
    方宣钧,吴为人,唐纪良, 2001.作物DNA标记辅助育种.北京:科学出版社.
    胡波,周新,2000.微卫星DNA的研究.国外医学临床生物化学与检验学分册, 21 (2), 88-90.
    萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南:第二版[M].北京:科学出版社,1992, 1-1062.
    景润春,黄青阳,朱英国,2000.图位克隆技术在分离植物基因中的应用.遗传22 (3), 180-185.
    李琪,木岛明博, 2004.长牡蛎微卫星克隆快速分离及特征分析.海洋与湖沼35 (5), 364-370.
    鲁翠云,孙效文,梁利群,2001.鳙鱼微卫星分子标记的筛选.中国水产科学12 (2), 192-196.
    刘志毅,相建海,2001.微卫星DNA分子标记在海洋生物遗传分析中的应用.海洋科学25 (6), 11-13.
    全迎春,梁利群,孙效文,姚昆,雷清泉,2006.斑马鱼微卫星分子标记检测鲤鱼种间多态性.中国水产科学13 (2), 300-304.
    孙效文,梁利群,2000.鲤鱼的遗传连锁图谱(初报).中国水产科学7 (1), 1-5.
    孙效文,鲁翠云,梁利群,2005.磁珠富集法分离草鱼微卫星分子标记.水产学报29 (4), 482-486.
    万俊芬,2003.鲍与扇贝遗传育种中的分子标记研究,中国海洋大学博士学位论文.
    王伟,尤锋,高天翔,张培军,2005.人工诱导牙鲆异质雌核发育群体的微卫星标记分析.高技术通讯15 (7), 85-88.
    魏东旺,楼允东,孙效文,沈俊宝,2001.鲤鱼微卫星分子标记的筛选.动物学研究22 (3), 238-241.
    晏鹏,吴孝兵,史燕,张方,2003.微卫星多态性检测技术及其在保护遗传学中的应用,应用生态学报14 (3), 461-464.
    徐鹏,周岭华,相建海,2001.中国对虾微卫星DNA的筛选.海洋与湖沼32 (3), 55-259.
    余守武,刘宜柏,2003.微卫星标记在水稻遗传育种中的应用.江西农业大学学报25 (1),157-183.
    岳志芹,2003.中国对虾抗病选育群体的遗传分析及遗传连锁图谱的构建,中国海洋大学博士学位论文.
    张丽娟,张保军,耿杜民,2003.微卫星标记及动物遗传育种.黄牛杂志29 (2), 49-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700