微正压ICVI制备C/C复合材料及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对炭/炭复合材料的应用背景,以缩短材料的制备周期、降低成本为目的,本文工作采用微正压等温化学气相渗透工艺制备C/C复合材料。系统地研究了碳源气体浓度、碳源气体种类、沉积温度、气体滞留时间、毡体初始密度、反应容器空间等工艺条件对C/C复合材料增密速度、微观结构的影响。发现减小反应气体在反应容器内的自由流动空间对炭/炭复合材料的致密化有较为显著的影响,采用石油液化气作为碳源气体,氮气作为载气,沉积温度830~950℃,沉积35h可将60mm×20mm×10mm的预制体增密至1.73g/cm~3,总炭收率达32%。采用偏光显微镜、扫描电镜、X—射线衍射仪等手段对热解炭的微观组织结构、沉积表面形貌以及石墨化度进行了研究,结果表明热解炭结构均为中等织构热解炭且石墨化度随沉积温度的升高有明显的增大趋势,材料经2300℃,2h高温石墨化处理后发现在1000℃沉积的样品石墨化度为32.5%,在1100℃达到55.5%。采用本文工艺材料的增密速度和炭收率与负压等温化学气相渗透工艺相比较,均有较大幅度的提高。而且本文工艺无需机械泵抽真空,也不需要循环冷却水,降低了材料的制备成本。
     对材料的力学性能进行了测试,探讨了影响材料抗弯强度的主要因素以及材料的弯曲破坏机理。结果表明:实验制备的二维C/C复合材料在垂直方向的抗弯强度为20~68MPa。随着炭纤维和热解炭含量的增加,C/C复合材料的抗弯强度也随之增大。C/C复合材料的弯曲破坏属于脆性断裂,微观破坏行为主要表现为由于纤维与热解炭结合强度较强,当施加载荷超过材料的最大承受能力时,基体炭与纤维几乎同时断裂,只有少许纤维从基体炭中拔出且长度很短。
With the application background of carbon/carbon composites and the purpose of cutting down the preparing cycle and cost, micro-positive pressure isothermal chemical vapor infiltration was studied and employed for fabricating C/C composites. The influences of infiltration conditions (including the concentration of hydrocarbon gas, different hydrocarbon gas, deposition temperature, hydrocarbon gas residence time, preform initial density, reaction container space ) on the densification behavior and microstructure of pyrocarbon have been systematically investigated. The results shown that, with micro-positive isothermal chemical vapor infiltration furnace, reducing the free flowing space of reaction gas has greatly effected on the densification of C/C composites, using the liquefied petroleum gas as hydrocarbon gas and nitrogen gas as dilute gas, the porous preforms, 60mm×20mm×10mm, with the density of more than 1.73g/cm~3 are obtained in 35 hours at deposition temperature from 830℃to 950℃, the carbon yield reached 32%. The microstructure, deposition surface morphology and graphitization degree of pyrocarbon in C/C composites were analyzed by PLM, SEM, and XRD respectively. The studies shown that the medium-texture was mainly obtained by PLM, the graphitization degree of C/C composites has obvious improved with the enhancing of deposition temperature, the researchs shown that the graphitization degree was 32.5% at 1000℃, however it reached 55.5% at 1100℃after 2300℃, 2 hours high temperature heat treatment. The studies of experiments shown that the rate of densification and carbon yield have been improved greatly compared with negative-pressure isothermal chemical vapor infiltration, and this craft didn't need atmospheric pump and cooling water circulation for reducing the preparing cost of C/C composites.
     Mechanical performance of C/C composites are also tested, and the influencing factors of them are discussed. The results shown that the flexural strength of 2D C/C composites has a value of 20~68MPa in perpendicular direction. The flexural strength of C/C composites has improved with the content of carbon fibers and pyrocarbon increasing. The flexural failure of C/C composites is brittle fracture, the micro-fracture mechanisms are shown as the intensity of combining carbon fibers with pyrocarbon was strong tightly, when the enforcing load exceeded the maximum support load limit of C/C composites, pyrocarbon and carbon fibers nearly simultaneous fractured and only a little carbon fibers have been pulled out and the pulled out length was very short.
引文
[1]Li W Z,Xie S S,Qian L X,et al.Large-scale synthesis of aligned carbon nanotubes.Science[J],1996,274:1701-1703.
    [2]邹林华.航空刹车用C/C复合材料的结构及性能:[D].长沙:中南大学,1999.
    [3]王茂章,杨全红,成会明.碳的结构及其同素异形体[J].炭素技术,2001,(1):23-28.
    [4]Buckley J D,Edie D D.Carbon-carbon materials and composites[M].Park Ridge,NJ:Noyes Publication,1993.12-14.
    [5]Benzingr W,Huttinger K J.Chemistry and kinetic of chemical vapor infiltration of pyrocarbon-Ⅵ.Mechanical and structural properties of infiltrated carbon fiber felt[J].Carbon,1999,37:1311-1322.
    [6]Reznik B,Gerthsen D,W.Zhang,et al.Texture changes in the matrix of an infiltrated carbon fiber felt studied by polarized light microscopy and selected area electron diffraction[J].Carbon,2003,41:376-380.
    [7]王秀飞,黄启忠,宁可焱,等.硅化处理对炭纤维石墨化度的影响[J].材料工程,2007,1:52-45.
    [8]王茂章,贺福.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984.
    [9]梁锦华.短纤维C/C-SiC复合材料的制备及性能研究:[D].长沙:中南大学,2005.
    [10]陈腾飞.炭纤维坯体结构及增密方式对炭/炭复合材料界面及其性能的影响:[D].长沙:中南大学,2003.
    [11]巩前明.航空刹车用C/C复合材料制备工艺及其性能的研究:[D].长沙:中南大学,2002.
    [12]杨桂,敖大新,张志勇,等.编织结构复合材料制作、工艺及工业实践[M].北京:科学出版社,1999:31.
    [13]Savage G.Carbon-carbon composites[M].London:Champman & Hall,1993,117.
    [14]贺福.碳的结构[J].炭素,1984,(3):12-20.
    [15]稻垣道夫,白石稔,中沟实,等.石墨化度的评价[J].刘洪波译.炭素技术,1991,(5):38-43.
    [16]巩前明,黄启忠,黄伯云.炭化压力对沥青成焦形貌及航空刹车用C/C复合材料浸渍增密效果的影响[J].新型炭材料,2002,17(2):23.
    [17]Schmidt D T.Carbon/carbon Composites[J].SAMPE Journal,1972,8(3):9.
    [18]I.Golecki.Rapid vapor-phase densifieation of refractory composites [J].Materials Science and Engineerin,1997,20:37-124.
    [19]于澍,黄启忠,黄伯云,等.炭/炭复合材料化学气相沉积工艺进展[J].粉末冶金材料科学与工程,2006,11(5):262-267.
    [20]Gupte S M,Tsamopoulos J A.Densification of porous materials by chemical vapor infiltration[J].Electrochem.Soc.,1989,136(2):555-561.
    [21]邹志强,汤中华,熊杰.用热梯度式CVD增密技术制造C/C复合材料刹车盘[J].新型炭材料,2002,2:22-26.
    [22]W.J.Lackey.Review Status and future of the chemical vapor infiltration process for fabrication of fiber-reinforced ceramic composites[J].Ceram.Eng.Sci.Proc.1989,10(7):577.
    [23]邹林华,黄伯云,黄勇,等.航空刹车用C/C复合材料致密化工艺及其进展[J].高技术通信,2001,10:103-106.
    [24]A.Lachter,M.Trinquecoste,P.Delhaes.Fabrication of carbon-carbon composites by d.c.plasma enhanced CVD of Carbon[J].Carbon,1985,23(1):111.
    [25]Bruneton E.Carbon-carbon composite prepared by a rapid densification process 1:Synthesis and physico-chemical data[J].Carbon,1997,35(10):1593-1598.
    [26]Houdayer M.Spitz.J.Tran Van D.Process for the densification of a porous structure[P].USP 4472454,1984.
    [27]Bertrand S,Lavaud J F,Vignoles G,et al.The thermal gradient-pulse flow CVI process:a new chemical vapor infiltration technique for the densification of fibre performs[J].Journal of the European Ceramic society,1998,18:857-870.
    [28]朱东波.催化CVD对C/C复合材料结构和性能的影响:[D].长沙:中南大学,2002.
    [29]Liu Wenchuan,Deng Jingyi,Du Haifeng,et al.Development of a new,efficient,faster,save-energy process for the fabrication of C/C composites by HCVI[P],China patent,No.99122649.6.
    [30]汤素芬,邓景屹,杜海峰,等.直热式化学气相渗C/C复合材料研究[J].材料工程,2003,11:36-39.
    [31]Hyeok Je Jeong,Hee Dong Park,et al.Densification of carbon/carbon composites by pulse chemical vapor infiltration[J].Carbon,1996,34(3):417-421.
    [32]徐国忠,李贺军,张守阳,等.ICVI工艺参数对C/C复合材料快速均匀致密化的影响[J].材料导报,2006,20(12):87-90.
    [33]谢志勇,黄启忠,苏哲安,等.多元耦合物理场作用下化学气相沉积快速制备炭/炭复合材料的方法[P].中国专利,2004100-29034.X.2004.
    [34]Lavinac J,Langlais F,Feron O,et al.Microstructure of the pyrocarbon matrix in carbon/carbon composites[J].Comp Sci Technol.2001,65:339-345.
    [35]黄志锋,熊翔,徐惠娟.C/C复合材料的金相制样[J].新型炭材料,2000,15(4):71-74.
    [36]廖寄乔,黄伯云,黄志锋,等.热解炭微观结构的表征—热解炭各向异性的偏振光分析[J].理化检验-物理分册.2002,38(11):501-506.
    [37]Lieberman M L,Pierson H O.Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites[J].Carbon,1974,12(3):233-241.
    [38]Pierson H O,Lieberman M L.The chemical vapor deposition of carbon on carbon fibers[J].Carbon,1975,13(3):159-166.
    [39]邹林华,黄启忠,邹志强等.C/C复合材料石墨化度的研究[J].炭素,1998,93(1):8-11.
    [40]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [41]Reznik B,Guellali M,Gerthsen D,et al.Microstructure and mechanical properties of carbon-carbon composites with multilayered pyrocarbon matrix[J].Materials letters.2002,52(1):14-19.
    [42]Vaidyaraman S,Lacky W J,Freeman G B,et al.Fabrication of carboncarbon composites by forced flow-thermal gradient chemical vapor infiltration[J].Mater.Res,1995,10(6):1369-1477.
    [43]孟广耀.化学气相沉积与无机新材料[M].北京:科学出版社.1984.
    [44]Benzinger W,Huttinger K J.Chemical vapor infiltration of pyrocarbon-Ⅲ:the influence of increasing methane partial pressure at increasing total pressure on infiltration rate and degree of pore filling[J].Carbon,1999,37:181-193.
    [45]邹继兆,曾燮榕,熊信柏,等.沉积温度对微波热解CVI制备碳/碳复合材料密度及组织结构的影响[J].硅酸盐学报.2007,35(8):1062-1065.
    [46]TANG Zhong-hua,ZOU Zhi-qiang,XIONG Jie.Effect of infiltration conditions on densification behavior of carbon/carbon composites prepared by directional flow thermal gradient CVI process[J].Carbon,2003,41(14):2703-2710.
    [47]Dong G L,Huttinger KJ.Consideration of reaction mechanisms leading to pyrolytic carbon of different textures[J].Carbon,2002,40:2515-2528.
    [48]Oberlin A.Pyrocarbons[J].Carbon,2002,40(1):7-24.
    [49]HU Z J,Zhang W G,Huttinger K J,et al.Influence of pressure,temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane[J].Carbon,2003,41(4):749-758.
    [50]Fu-qin Zhang,Bai-yun Huang,Qi-zhong Huang,et al.Effects of the inter-face on the graphitization of a carbon fiber/pyrolytic carbon composite[J].Carbon,2003,41:610-612.
    [51]左劲旅,张红波,黄启忠,等.整体毡纤维体积分数对CVD增密的影响[J].粉末冶金材料科学与工程,2003,8(1):93-96.
    [52]P.Delhaes.Chemical vapor deposition and infiltration processes of carbon materials[J].Carbon,2002,40:641-657.
    [53]Weigang Zhang,Klaus J,Huttinger K J.Chemical vapor infiltration of carbon-revised Part Ⅰ:Model simulations[J].Carbon,2001,39:1013-1022.
    [54]张伟刚.化学气相沉积-从烃类气体到固体碳[M].北京:科学出版社.2007.
    [55]Goma J,Oberlin A.Characterization of low temperature pyrocarbons obtained by densification of porous substrates[J].Carbon,1986,24(2):135-142.
    [56]Bokros J C.Deposition,Structure and Properties of Pyrolytic Carbon [J].Chemistry and Physics.1969,5:1-118.
    [57]肖春,朱光明,侯卫权,等.热解炭含量对C/C复合材料性能的影响[J].火箭推进,2005,31(6):45-49.
    [58]Xiang Xiong,Bai-yun Huang,Jiang-hong Li,et al.Friction behaviors of Carbon/carbon composites with different pyrolytic carbon textures [J].Carbon,2006,44:463-467.
    [59]陈腾飞,龚伟平,张红波,等.高温热处理对光滑层热解炭裂纹形成的影响[J].粉末冶金材料科学与工程,2006,11(4):210-213.
    [60]Reznik B,Huttinger K J.On the terminology for pyrolytic carbon[J].Carbon,2002,40:621-624.
    [61]Diefendorf R J,Tokarsky E W.Air Force Report,1971,AF33(615)-70-C-1530.
    [62]汤中华.用定向流动热梯度CVI工艺制备航空刹车用C/C复合材料的研究:[D].长沙:中南大学,2003.
    [63]于澎,张红波,张传福,等.热解炭的表征[J].航空材料学报,2007,27(1):57-60.
    [64]Bourrat X,Fillion A,Naslain R,et al.Regenerative laminar pyrocarbon[J].Carbon,2002,40:2931-2945.
    [65]Hu Z,Huttinger K J.Chemical vapor infiltration of carbon-revised Ⅱ.Experimental results[J].Carbon,2001,39(7):1023-1032.
    [66]刘立海,黄启忠,谢志勇,等.热解炭的微观结构及其测试方法[J].炭素技术,2007,16(151):17-22.
    [67]谢志勇.多元耦合物理场CVI/CVD快速制备热解炭材料及其结构、机理的研究:[D].长沙:中南大学,2005.
    [68]谢志勇,黄启忠,苏哲安,等.毡体密度对C/C复合材料增密和结构的影响[J].湖南科技大学学报(自然科学版),2005,20(2):41-44.
    [69]W.G.Zhang,K.J.Huttinger.Densification of a 2D carbon fiber preform by isothermal,isobaric CVI:Kinetics and carbon microstructure[J].Carbon,2003,41(12):2325-2337.
    [70]W.Benzinger,K.J.Huttinger.Chemical vapour infiltration of pyrocarbon I:Some kinetic onsiderations[J].Carbon,1996,34(12):1465-1471.
    [71]方勋华,黄启忠,刘根山.纤维体积含量对炭/炭复合材料性能的影响[J].炭素,2001,3:3-6.
    [72]Ko Tse-Hao,Kuo Wen-Shyong.Effect of carbon fabric type on the mechanical performance of 29 carbon/carbon composites[J].Polymer composites,1998,19(5):618-625.
    [73]习年生,于志成,陶春虎.纤维增强复合材料的损伤特征及失效分析方法[J].航空材料学报,2000,20(2):55-63.
    [74]陶杰,王咏梅.复合材料层合板层间破坏及其断口形貌分析[J].复合材料学报,1993,10(4):57-63.
    [75]Sa KM,Matsuyama R,MiyajimaT.The pull-out and failure of a fiber bundle in a carbon fiber reinforced carbon matrix composites[J].Carbon,2000,38(15):2123-2131.
    [76]Gupta V,Anand K,Kryska M.Failure mechanisms of laminated carbon-carbon composites I:Under uniaxial compression[J].ActaMetall Mater,1994,42(3):781-795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700