灰度图像插值优化方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像插值处理需要一幅参考图像或源图像以构造一幅新图像,其大小由设置的插值比例控制。该处理在许多领域有很重要的应用,包括卫星成像,医学成像,尤其在军用和民用电子产品领域。插值一幅数字图像,需要在源图像创建新空间并填入估计的像素值。如果估计技术精确度不高,则将得到一幅有可见痕迹且丢失细节的低分辨率图像。在超大图像数据库下,从低分辨率图像获得高分辨率是非常耗时的。但是,直接从传感器插值图像数据会导致细节不足,而在一些情况下,显示那些细节极为重要。而且,在多媒体系统中,用户浏览快速简洁,可以快速检索数据。
     论文中,提出了图像插值技术,并对算法在速度和PSNR方面作了改进。
     首先,提出了2种基于ACA的高分辨率图像插值算法。ACA最初由文献[118]提出,用于模拟电路缺陷的检测和标记,本文则用于处理图像插值问题。本论文提出的OBACA算法使用ACA确定有助于改善插值后输出图像分辨率的潜在像素。实验结果表明,本方案结果优于传统的双线性插值。本论文提出的第2个算法AACA,把图像像素的权重看作蚁群的信息素轨迹的函数。实验结果表明,AACA比OBACA算法要快。PSNR也比其他算法更优。
     第二,论文提出了3种图像插值算法,均基于高分辨率图像插值的最小绝对值差对应的像素值,减少了计算量。第一种算法SAD,对插值点的4邻域点选其一作了重新处理,计算该点的值和双线性插值的均值,并乘上一个控制因子k,k值由实验分析确定。实验表明,SAD有效且和最近邻插值,双线性插值和双三次插值相比具有更高的PSNR.对SAD改进后称为ASAD算法,直接令插值点的像素值为对应最小绝对值差的像素值。实验表明,ASAD在MET和PSNR上都优于SAD。最后,提出的NNV算法使用了模计算方法,实验表明,比SAD和ASAD算法获得了更优的结果。
     第三,论文提出了两种快速图像插值算法,一种基于勾股定理,另一种通过计算双线性加权平均,获得数字图像的高质量尺度变化,减少了像素组数量。第2种算法的理论分析表明PSNR和MET将优于传统的双线性插值(BI)算法,减少了BI加权平均操作次数,把直角三角形中的斜边和短边用图像像素绝对值差代替。两种算法和传统的插值算法相比,在处理速度和PSNR上都有更优的表现。
     最后,论文基于ACO提出了图像边缘细化方法并用于数字图像插值。图像边缘细化方法应用于线性插值后ACO边缘检测之后。细化过程建模类似于旅行商问题(TSP),在应用ACO找到最细的边缘前,根据某些规则集,并行的更改或移除不需要的像素信息。实验表明,基于插值的边缘细化能获得更高的分辨率/质量,且视觉上优于其他插值算法,但计算量较大。
     本论文提出的插值方法可以获得高分辨率,且插值快速。实验表明,这些方法可以提高PSNR和速度。下一步的工作可将之应用于彩色图像和实时低分辨率的图像插值。
Image interpolation process requires a reference or source image to construct a new image whose size is controlled by the interpolation ratio selected or set. This process has been a problem of prime importance in many fields due to its wide application in satellite imagery, biomedical imaging, and particularly in military and consumer electronics domains. Interpolating a digital image amounts to creating empty spaces in the source image and filling in with the guessed pixel values. If the guessing technique is not of high accuracy, it would result in a low resolution image with visible artefacts and missing details. With huge image databases, creating high resolution from the low resolution image is time-consuming. However, image data interpreted directly from sensors often come up with insufficient details whereas in some cases it is of high importance to visualize sufficiently those image details. In addition, with the advances on multimedia systems, users can retrieve data quickly with a relative ease for neat browsing and rapid availability of such data.
     In this dissertation, I present the results of a 3 years research study on image interpolation techniques and algorithms-improving the performance in speed and PSNR.
     Firstly, I proposed two algorithms for high resolution image interpolation based on ACA. The idea to use the ACA, to deal with image interpolation problem, originated from the work presented in [118] about analog circuits faults detection and isolation. The OBACA algorithm used ACA to determine the potent pixels that would contribute in improving the output image resolution after interpolation. Experimentally, the proposed scheme yielded better results than conventional bilinear interpolation. The second AACA algorithm introduced the weights of image pixels as function of pheromone trails dropped by ants according to exploitation and exploration mechanism. Experimentally, AACA was found to be faster than OBACA algorithm. The PSNR also remained superior to all other algorithms compared with.
     Secondly, I proposed three image interpolation algorithms based on the pixel value corresponding to the smallest absolute difference for high resolution image interpolation using less computational efforts. The first proposed SAD algorithm was based on reprocessing one of the four pixels surrounding the unknown-value location and calculating the mean between that pixel and the value created by the conventional bilinear algorithm and by multiplying the mean the control factor k whose value was selected according to experimental analysis. Experimentally, SAD showed the effectiveness and higher performances only in terms of the PSNR when compared to the conventional nearest, bilinear and bicubic interpolation algorithms. The SAD improvement resulted in ASAD algorithm which replicated directly the pixel value corresponding to the smallest absolute difference to the unknown-value location. Experimentally, ASAD demonstrated higher in terms of MET and relatively PSNR than SAD. Finally, I proposed the NNV algorithm which achieved higher results than both SAD and ASAD using the mode calculation scheme. Experimentally, the results obtained were superior to those provided by SAD and ASAD.
     Thirdly, I proposed two speedy image interpolation algorithms, one based on the pythagorean theorem and another on reducing the number of pixel groups undergoing the bilinear weighted average operations have been introduced for high quality scaling of digital images. The latter showed that a simple theoretical analysis can lead to an improvement in PSNR and MET when compared to conventional bilinear (BI) interpolation by reducing the number of the BI weighted average operations while the pythagorean based algorithms replaced the hypotenuse and catheti with image pixels absolute difference. The two proposed algorithms demonstrated higher performances in terms of the processing speed as well as PSNR in some cases, when compared to the conventional interpolation algorithms mentioned.
     Finally, I proposed an image edge thinning scheme based on ACO and its application to digital image interpolation. The proposed edge thinning scheme was applied, after two processes, that is, the linear interpolation and the ACO edge detection have been completed. The thinning process was modeled like the Traveling Salesman Problem (TSP) before applying the ACO to find the thinnest ridge according to some rules set and the process of modifying/removing the unwanted pixels information was conducted in parallel. Experimentally, the edge thinning based interpolation demonstrated higher performances in terms of high resolution/quality and visibly outperformed other interpolation algorithms mentioned but at increased computational efforts.
     The methods presented in this dissertation permit to achieve High resolution (H.R) and either speedy image interpolation. Experiments showed that the proposed methods are able to increase the interpolation PSNR and speed. Future developments of the proposed methods may be adapted to color and real-time low resolution (L.R) images interpolation.
引文
[1]Martin E. Adobe Photoshop CS5 for Photographers. Focal Press (an imprint of Elsevier), ISBN 978-0-240-52200-5
    [2]Cambridge in colour. Digital Image Interpolation.,2011
    [3]Don L., Synergetics. A Review of Some Image Pixel Interpolation Algorithms.2007
    [4]Clarkson, Kenneth L. Fast algorithms for the all nearest neighbors problem.24th IEEE Symp. Foundations of Computer Science,1983:226-232
    [5]Jesse N. Bilinear Interpolation. Geog 493/593
    [6]Chen Y. A. An Improved Digital Image Interpolation Algorithm, in Proc. of the 2nd Int. Conf. on Multimedia and Information Technology (MMIT). Kaifeng, April 2010: 183-186
    [7]Wikipedia Free encyclopedia. "Bilinear Interpolation"., 2011
    [8]Wikipedia Free encyclopedia. "Bicubic Interpolation"., 2011
    [9]Wikipedia Free encyclopedia. "Satellite Imagery"., 2012
    [10]Wikipedia Free encyclopedia. "Medical Imaging"., 2012
    [11]Woodward P. M., Davies I. L. Information theory and inverse probability in telecommunication, in Proc. of the IEE-Part III:Radio and Communication Engineering,1952,99 (58):37-44
    [12]Giovanni R. Warped Distance for Space-Variant Linear Image Interpolation. IEEE Trans, on Image processing,1999,8(5):629-639
    [13]W. K. Pratt, Digital Image Processing. New York:Wiley,1991
    [14]R. G. Keys. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust, Speech, Signal Processing, Dec.1981, ASSP-29:1153-1160
    [15]Stephen J. Stephen Johnson on Digital Photography. O'Reilly. ISBN 059652370X, 2006
    [16]S. K. Park, R. A. Schowengerdt. Image reconstruction by parametric cubic convolution. Comput. Vis., Graph., Image Process., Sept.1983,23:258-272
    [17]Alessandro L., Hiep Q. L., et al. Greyscale Image Interpolation Using Mathematical Morphology. Springer Lecture Notes in Computer Science,2006,4179:78-90
    [18]Alessandro L., Hiep Q. L., et al. Image Interpolation Using Mathematical Morphology, in:Proceedings of the Second International Conference on Document Image Analysis for Libraries, Lyon,2006:10:-367
    [19]Lu Jing, Xiong Si, Wu S. H. An Improved Bilinear Interpolation Algorithm of Converting Standard definition Television Images to High-definition Television Images, in:Proceedings of the 2009 WASE International Conference on Information Engineering, Taiyuan, Chanxi,2009:441-444
    [20]Iaroslav D., Bogdan I., Les'a C. Bilinear Interpolation from Polar to Rectangular Point Raster for Inverse Problem Solving, in:Proceedings of the VIth International Conference on Mathematical Methods in Electromagnetic Theory, Lviv, Ukraine, 1996:429-431
    [21]Gribbon K. T., Bailey D. G. A Novel Approach to Real-time Bilinear Interpolation. in:Proceedings of the Second IEEE International Workshop on Electronic Design Test and Applications, Perth, Australia,2005:126-131
    [22]Hassan A., Atif B. M., Muhammad A. A New Single Image Interpolation Technique for Super Resolution. In:Proceedings of the 12th IEEE International Multitopic Conference, Karachi,2009:592-596
    [23]Hsu C. T., Chen M. J., Huang C. H. An Edge-Based Interpolation Algorithm for Resolution Enhancement at Low Bit-Rate. In:Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, Taiwan,2004:1153-1156
    [24]Aleks Jakulin. Baseline JPEG and JPEG2000 Artifacts Illustrated. Department of Statistics, Columbia University,2000-2004
    [25]Bankman, Isaac N. Handbook of medical imaging,2000, section I.6, Enhancement: Frequency Domain Techniques, Academic Press, ISBN 978 0 12077790 7
    [26]Kim S. J., Jun S. Y., et al. Ringing Artifact Removal in Digital Restored Images Using Multi-Resolution Edge Map. Int. Journal of Signal Processing, Image Processing and Pattern Recognition,2009,2(4)
    [27]Lim H. J., Park H. A Ringing-Artifact Reduction Method for Block-DCT-Based Image Resizing. IEEE Trans, on Circuits and Systems for Video Technology,2011, 21(7):879-889
    [28]Khambete M., Joshi M. Blur and Ringing Artifact Measurement in Image Compression using Wavelet Transform. World Academy of Science, Engineering and Technology 26 2007
    [29]Ringing artifacts. Scientific Volume Imaging.,2012
    [30]Hwang Y. K., Park J. J. Reduction of Compression Artifacts (Blocking Artifacts, Ringing Artifacts) Using POSC. http://homepages, cae. wisc. edu/~ece533/project/ f04/hwang_park. pdf
    [31]Yang S. J., Hu Y. H., et al. Maximum-Likelihood Parameter Estimation for Image Ringing-Artifact Removal. IEEE Trans. Circuits Syst. Video Technology,2001
    [32]Lim J. S. Two-dimensional Signal Processing and Image Processing. Prentice-Hall, London, U.K.,1990
    [33]Keys R. G. Cubic Convolution Interpolation for Digital Image Processing. IEEE Trans. Acoust. Speech Signal Process,1981,29(6) 1153-1160
    [34]Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In:Proc. IEEE Int. Conf. Comput. Vision (ICCV),1998:839-846
    [35]Durand F., Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graphics,2002,21(3):257-266
    [36]Elad M. On the bilateral filter and ways to improve it. IEEE Trans. Image Processing,2002,11(10):1141-1151
    [37]Eisemann E., Durand F. Flash photography enhancement via intrinsic relighting. ACM Trans. Graphics,2004,23(4):673-678
    [38]Petschnigg G, Szeliski R., et al. Digital photography with flash and no-flash image pairs. ACM Trans. Graphics,2004,23(3):664-672
    [39]Sun G. L, Shen Z. B. Single Image Super-Resolution via Edge Reconstruction and Image Fusion. Communications in Computer and Information Science,2010,123: 16-23
    [40]Jensen K., Anastassiou D. Subpixel edge localization and the interpolation of still images. IEEE Trans. Image Process,1995,4(3):285-295
    [41]Darwish A. M., Bedair M. S. An adaptive resampling algorithm for image zooming. Proc. SPIE,1996,2466:131-144
    [42]Martucci S. A. Image resizing in the discrete cosine transform domain. Proc. Int. Conf. Image Processing,1995,2:244-247
    [43]Chang S. G., Z. Cvetkovic, Vetterli M. Locally adaptive wavelet-based image interpolation. IEEE Trans, on Image Processing,2006,15(6):1471-1485
    [44]Candonica F. M., Principe J. C. Super resolution of images based on local correlations. IEEE Trans. Neural Netw,1999,10(2):372-380
    [45]Plaziac N. Image interpolation using neural networks. IEEE Trans. Image Process, 1999,8(11)1647-1651
    [46]Pan F., Zhang L. New image super-resolution scheme based on residual error restoration by neural networks. Opt. Eng.,2003,42(10):3038-3046
    [47]Noriaki S., Morihiko S., Eiji U. Image Super-resolution Based on Local Self-similarity. Optical Review,2008,15(1):26-30
    [48]Hideaki K., Noriaki S., et al. Image Enlargement Based on Low-to High-frequency Components Mapping Derived from Self-decomposed Images. Springer Lecture Notes in Electrical Engineering,2008,4:425-435
    [49]Suykens J., Van G. T., et al. Least Squares Support Vector Machines. World Scientific,2002, Singapore
    [50]Vapnik V. N. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995
    [51]Fu K. S. Digital Pattern Recognition,2nd ed. New York:Springer-Verlag,1980
    [52]Devroye L. P., Gyorfi L., et al. On the strong universal consistency of nearest neighbor regression function estimates. Ann. Statist,1994,22(3):1371-1385
    [53]Devroye L. P., Wagner T. J. Distribution-free consistency results in nonparametric discrimination and regression function estimation. Ann. Statist.,1980,8(2):231-239
    [54]Karl S. N., Truong Q. N. An Adaptable k-Nearest Neighbors Algorithms for MMSE Image Interpolation. IEEE Transactions on Image Processing,2009,18(9): 1297-1300
    [55]Shi Z. F., Yao S. Y, et al. A Novel Image Interpolation Technique Based on Fractal Theory, in:Proceedings of the IEEE International Conference on Computer Science and Information Technology, Singapore,2008:472-475
    [56]Hausdorff dimension. Wikipedia Free encyclopedia, http://en. wikipedia. org/wiki/Hausdorff_dimension>,2012
    [57]List of fractals by Hausdorff dimension. Wikipedia Free encyclopedia.,2012
    [58]Ram B. S., Kiran S., et al. Image Interpolation Using E-spline. Communications in Computer and Information Science,2011,168(4):535-537
    [59]Erik H. W. M., Wiro J. N., et al. Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation. Springer Lecture Notes in Computer Science,1999,1679:210-218
    [60]Miklos P. Comparison of Convolutional Based Interpolation Technique in Digital Image Processing, in:Proceedings of the 5th International Symposium on Intelligent Systems and Informatics, Subotica,2007:87-90
    [61]Kim H. C., Park S. J., et al. Advanced Bilinear Image Interpolation Based On Edge Features. In:Proceedings of the First International Conference on Advances in Multimedia, Colmar,2009:33-36
    [62]Kim H. C., Park S. J., et al. Enhanced Edge-Weighted Image Interpolation Algorithm. In:Proceedings of the 8th International Conference on Hybrid Intelligent Systems, Barcelona,2008:957-958
    [63]Zhou D. W. An Edge-directed Bicubic Interpolation Algorithm, in:Proceedings of the 3rd International Congress on Image and Signal Processing, Yantai,2010: 1186-1189
    [64]Hsu C. T, Chen M. J., Huang C. H. An Edge-Based Interpolation Algorithm for Resolution Enhancement at Low Bit-Rate, in:Proceedings of the IEEE Asian-Pacific Conference on Circuits and Systems,2004
    [65]Casciola G, Lazzaro D., Montefusco L. B., et al. Fast surface reconstruction and hole filling using radial basis functions. Numer. Algorithms,2005,39:289-305
    [66]Casciola G., Montefusco L. B., Morigi S. Edge-driven Image Interpolation using Adaptive Anisotropic Radial Basis Functions. Journal of Mathematical Imaging and Vision,2009,36(2):125-139
    [67]Li X., Michael T.O. New Edge-Directed Interpolation. IEEE Transaction on Image Processing,2001,10(10):1521-1527
    [68]Chen M. J., Huang C. H., Lee W. L. A Fast edge oriented Algorithms for Image Interpolation. Image and Visual Computing,2005,23(9):791-798
    [69]Qiu G. Multi-grid edge models for magnifying digital images. Springer Lecture Notes in Computer Science,1997,1352:81-88
    [70]Piedad B., Iluminada B., Santiago S. S. A Fuzzy Edge-Dependent Interpolation Algorithm. Studies in Fuzziness and Soft Computing,2007,210:157-185
    [71]Doyle T., Looymans M. Progressive scan conversion using edge information, in Proc.3rd Int. Workshop on HDTV, Torino, Italy,1989:711-721
    [72]Sugeno M., Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Systems,1993,1(1):7-31
    [73]Lee M. H., Kim J. H., et al. A new algorithm for interlaced to progressive scan conversion based on directional correlations and its IC design. IEEE Trans, on Consumer Electronics,1994,40(2):119-129
    [74]Kuo C. J., Liao C, Lin C. C. Adaptive interpolation technique for scanning rate conversion. IEEE Trans, on Circuits and Systems for Video Technology,1996,6(3): 317-321
    [75]Lee H. Y., Park J. W., et al. Adaptive scan rate up-conversion system based on human visual characteristics. IEEE Trans, on Consumer Electronics,2000,46(4): 999-1006
    [76]Salonen J., Kalli S. Edge adaptive interpolation for scanning rate conversion, in Signal Processing of HDTV IV, Elsevier,1993:757-764
    [77]Simonetti R., Filisan A. P., et al. A de-interlacer for IQTV receivers and multimedia applications. IEEE Trans, on Consumer Electronics,1993,39(3):234-240
    [78]De Haan G, Lodder R. De-interlacing of video data using motion vector and edge information, in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), Los Angeles, USA,2002:70-71
    [79]Chang Y. L., Lin S. F., Chen L. G. Extended intelligent edge-based line average with its implementation and test method, in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), Vancouver, Canada,2004,2:341-344
    [80]Yoo H., Jeong J. Direction-oriented interpolation and its application to de-interlacing. IEEE Trans. on Consumer Electronics,2002,4(48):954-962
    [81]Julie K., James G. Kronecker product and SVD approximations in image restoration. Linear Algebra & its Applications,1998,284:177-192
    [82]Blas T., Ricardo H. C., Domingo R. Kronecker Products-based Regularized Image Interpolation Techniques. HPEC 2009 Proceedings,13th Ann. workshop, Lexington Massachusetts
    [83]Lewis B., Reichel L. Arnoldi-Tikhonov regularization methods. J. Comput. Appl. Math.,2009,226:92-102
    [84]Hochstenbach M. E., Reichel L. An iterative method for Tikhonov regularization with a general linear regularization operator. J. Integral Equations Appl.,2010,22: 463-480
    [85]Kazufumi I., Bangti J., Tomoya T. Multi-Parameter Tikhonov Regularization. Math. N. A.,2011
    [86]Tuukka N., Jari K., Lauri K. Use of Tikhonov Regularization to Improve the Accuracy of Position Estimates in Inertial Navigation. Int. J. of Navigation & Observation,2011,10
    [87]Wikipedia Free encyclopedia. Tikhonov regularization., 2012
    [88]Shin J. H., Paik J. K., et al. Adaptive regularized image interpolation using data fusion and steerable constraints. Proc. SPIE Visual Comm., Image Proc., San Jose, 2001,4310:798-809
    [89]Deng C. Z., Cao H. Q., Wang S. Q. Sparsity constraint based image interpolation via combined transforms. in:Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China,2007:141-145
    [90]Sheppard D. G., Panchapakesan K., et al. Lapped nonlinear interpolative vector quantization and image super-resolution. IEEE Trans. on Image Processing,2000,9: 295-298
    [91]Byung-Ho C., Rae-Hong P. Adaptive Image Interpolation Using Weight CVQ. in: Proceedings of the 8th IEEE Int. Symp. on Multimedia, Korea,2006:3-10
    [92]Arias P., Caselles V., Sappiro G. A variational framework for non-local image inpainting. In:Proc. of EMMCVPR. Springer, Heidelberg,2009
    [93]Gabriele F., Pablo A., et al. Exemplar-Based Interpolation of Sparsely Sampled Images. Springer Lecture Notes in Computer Science,2009,5681:331-344
    [94]Folkmar B., Tom M. Fast Image Inpainting Based on Coherence Transport. Journal of Mathematical Imaging and Vision,2007,28(3):259-278
    [95]Ma L., Ma J., Shen Y. Support Vector Machines Based Image Interpolation Correction Scheme. Springer Lecture Notes in Computer Science,2006,4062: 679-684
    [96]Ma L., Ma J., Shen Y. Local Spatial Properties Based Image Interpolation Using Neural Network. Springer Lecture Notes in Computer Science,2007,4493:877-883
    [97]Numan U., Ma J., Vijayan K. A. Undecimated Wavelet Transform-Based Image Interpolation. Springer Lecture Notes in Computer Science,2010,6455:474-483
    [98]Satoshi M., Masaru K., Renchin-Ochir M. Adaptive image interpolation by cardinal splines in piecewise constant tension. Optimization Letters,2011
    [99]Steven H., Allen T. Optimal Image Interpolation and Optical Flow. Springer Lecture Notes in Control and Information Sciences,2003,289:133-143
    [100]Sung-Kwan J., Kwang-Baek K., et al. Image Magnification Based on the Properties of Human Visual Processing. Springer Lecture Notes in Computer Science,2007, 4493:923-932
    [101]Hiep Q. L., Patrick D. S., Wilfried P. Image Interpolation Using Constrained Adaptive Contrast Enhancement Techniques. In:Proceedings of the IEEE International Conference on Image Processing, Italy,2005:998-1001
    [102]Lu D. S., Chen C. C. Edge detection improvement by ant colony optimization. Pattern Recognition Letters,2008,29:416-425
    [103]Baterina A. V, Oppus C. Image edge detection using ant colony optimization. WSEAS Trans, on Signal Processing,2010,6:58-67
    [104]Rezaee A. Extracting edge of images with ant colony. Journal of Electrical Engineering,2008,59:57-59
    [105]Nezamabadi-pour H., Saryazdi S., Rashedi E. Edge detection using ant algorithms. Soft Computing,2006,10:623-628
    [106]Meshoul S., Batouche M. Robust point correspondence for image registration using a colony of cooperating artificial ants. WSEAS Trans. Syst,2003,2:1102-1110
    [107]Laptik R., Navakauskas D. Application of ant colony optimization for image segmentation. Elektron. Elektrotech,2007,8:13-18
    [108]Zhao D. P., Li P., et al. Novel fast fractal image compression approach based on ant colony algorithm. Journal of Shenyang Jianzhu University,2006,22:653-656
    [109]Xin Z., Myung-Eun L., Soo-Hyung K. Improved Image Thresholding Using Ant Colony Optimization Algorithm, in:Proceedings of the International Conference on Advanced Language Processing and Web Information Technology,2008:23-25
    [110]Marco D., Thomas S. Ant Colony Optimization. MIT Press, Massachusetts, Cambridge, London, England,2004
    [111]Rukundo O., Huang M. H., Cao H. Q. Optimization of Bilinear Interpolation Based on Ant Colony Algorithm, in:Advances in Control and Communication, D. Zeng (Ed.)ICEEE2011. LNEE,137:571-580
    [112]Todd W. Mathematical Techniques for Image Interpolation. Department of Mathematics, University of Minessota,2005
    [113]Lei L., Yuemei R., Xiangpu G. Medical Image Segmentation Based on Modified Ant Colony Algorithm with GVF Snake Model, in:International Seminar on Future BioMedical Information Engineering, Wuhan,2008:11-14
    [114]Zhe Y, Han-ming Gu. Research of the Image Segmentation based on Ant Colony Algorithms, in:10th ACIS International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed Computing, Daegu, 2009:106-109
    [115]Jing T, Weiyu Y., Shengli X. An Ant Colony Optimization Algorithms for Image Edge Detection, in:IEEE Congress on Evolutionary Computation,2008:751-756
    [116]Nobuyuki O. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Systems, Man and Cybernetics,1979, SMC-9:62-66
    [117]Li M., Truong Q. N. Markov random field model based edge-directed image interpolation. IEEE Trans. Image Processing,2008,17:1121-1128
    [118]Rukundo O., Cao H. Q., Wei J. L. Optimization of analog circuits test mode based on ants colony algorithms, in Proc. IEEE 2nd International Conference on Industrial Mechatronics and Automation, Wuhan,2010:578-581
    [119]Mohammed A. A., Minhas R., et al. An Efficient Fingerprint Image Compression Technique Based on Wave Atoms Decomposition and Multistage Vector Quantization. Integrated Computer-Aided Engineering,2010,17(1):29-40
    [120]Martins A. L. D., Mascarenhas N. D. A., Suazo C. A. T. Spatio-Temporal Resolution Enhancement of Vocal Tract MRI Sequences Based on Image Registration. Integrated Computer-Aided Engineering,2011,18(2):143-156
    [121]Rukundo O., Wu K. N., Cao H. Q. Image Interpolation Based On The Pixel Value Corresponding To The Smallest Absolute Difference, in:Proc.4th Int. Workshop, on Advanced Computational Intelligence, Wuhan,2011:434-437
    [122]Wikipedia free encyclopedia. Greatest element Available:http://en. wikipedia. org/wiki/Least_element,2012, Dec.29
    [123]Wikipedia free encyclopedia. Maximal element Available:http://en. wikipedia. org/wiki/Minimal_element,2011, Dec.29
    [124]M. Wodzicki. Notes on Ordered Sets. Available:http://math, berkeley. edu/-wodzicki/H104. F10/OrderedSets. pdf, Sept.2010
    [125]K. Schmidheiny, M. Walti. Introduction into Matlab, Version 6.0.0. Universitat Bern, summer 2002
    [126]R. V. Belavkin. Lecture 1s:Elements of Set Theory. Middlesex University, Available: http://www. eis. mdx. ac. uk/staffpages/rvb/teaching/BIS3226/hand01s. pdf, Oct.2010
    [127]Wikipedia free encyclopedia. Inverse Function Available:http://en. wikipedia. org/wiki/Inversefunction,2011, Dec.29
    [128]Wikipedia free encyclopedia. Nearest neighbor interpolation Availa ble:http://en. wikipedia. org/wiki/Nearest-neighborinterpolation,2011, Dec.10
    [129]Wikipedia free encyclopedia. Pythagorean Theorem Available:http://en. wikipedia. org/wiki/Pythagoreantheorem,2011, Dec.10
    [130]B. Gregory. Mode. In Salkind, Neil. Encyclopedia of research design. Sage,2010: 140-142
    [131]MATLAB Indexing. Mathworks. Subscripted Indexing Available:http://www. mathworks. cn/support/tech-notes/1100/1109. html#referencing, March 24,2012
    [132]Mathworks, R2012a Documentation-MATLAB. Find Available:http://www. mathworks. cn/help/techdoc/ref/find. html, (March 23,2012)
    [133]Wikipedia, the free encyclopaedia:'Image Scaling, Available:http://en. wikipedia. org/wiki/Image_scaling, accessed 25h March 2012
    [134]Andersen, Margaret L., Taylor Howard F. Sociology:The Essentials. Cengage Learning,2010:129
    [135]Wikipedia free encyclopedia, Edge Detection. Available:http://en. wikipedia. org/wiki/Edge_detection, March 14,2012
    [136]K. Abe, F. Mizutani, C. H. Wang. Thinning of gray-scale images with combined sequential and parallel conditions for pixel removal. IEEE Trans, on System, Man, and Cybernetics, Feb.1994,24(2):294-299
    [137]P. S. P. Wang, Y. Y. Zhang. A fast and flexible thinning algorithm. IEEE Trans, on computers, May 1989,38(5):741-744
    [138]R. Wang. A Thinning Algorithm. Available:http://fourier. eng. hmc. edu/e161/ lectures/morphology/node2. html, March14,2012
    [139]L. J. Latecki. Sliding Window Filters and Edge Detection. Computer Graphics and Image Processing, CIS 601-Fall 2004
    [140]O. Rukundo. H.Q. Cao. Nearest neighbor value interpolation. International Journal of Advanced Computer Science and Applications, April 2012,3(4)
    [141]J.D. Sally, P. Sally. Chapter 3:Pythagorean triples. Roots to research:a vertical development of mathematical problems. American Mathematical Society Bookstore, 2007:63
    [142]O. Rukundo, H.Q. Cao. Advances on Image Interpolation Based On Ant Colony Algorithm. Signal, Image and Video Processing, May.2012
    [143]Wikipedia free encyclopedia. Nearest Neighbor Value Interpolation. Available: http://en.wikipedia.org/wiki/Nearest_neighbor_value_interpolation,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700