摩擦与润滑对镁合金板材快速气压胀形的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速气压胀形工艺可一次成形各种形状复杂、质轻、强度高且近无加工余量的板类零件,近年来开始逐渐应用于汽车工业。摩擦和润滑在成形过程中起着非常重要的作用,采用合适的润滑剂和润滑部位,对于提高板材成形性能和胀形件质量具有重要意义。基于此目的,本文通过在不同润滑条件下分别采用不同模具进行快速气压胀形试验,研究了摩擦对胀形件壁厚分布、成形能力、微观组织及表面质量的影响规律。
     采用Marc有限元软件对盒形件不同摩擦系数下的快速气压胀形过程进行了分析,发现摩擦系数越小,盒形件壁厚分布越均匀,盒形件最后成形部位的等效应力及等效应变也越小。减小板料与模具之间的摩擦系数可改善壁厚分布,提高成形性能,避免最后成形部位破裂的发生。
     通过圆环镦粗试验测得无润滑、氮化硼润滑、石墨润滑、二硫化钼润滑四种条件下的摩擦系数分别为0.56、0.21、0.26、0.5,使用润滑剂后可减小摩擦系数,其中氮化硼效果最明显,石墨次之,二硫化钼最差。
     润滑条件对锥形件胀形高度及壁厚分布影响不明显,无润滑、氮化硼润滑、石墨润滑、二硫化钼润滑四种条件下所成形出的锥形件高度分别为38.40mm、38.84mm、38.64mm、38.62mm,壁厚不均匀度分别为0.67、0.66、0.68、0.69。
     润滑条件对盒形件壁厚分布影响很大,无润滑、氮化硼润滑、石墨润滑、二硫化钼润滑四种条件下底部壁厚不均匀度分别为0.35、0.06、0.13、0.26,侧壁壁厚不均匀度依次为0.27、0.44、0.39、0.23。
     将氮化硼分别喷涂在盒形凹模底部、侧壁及入口圆角时,底部润滑条件下拐角底部成形最充分,成形效果最好;但在入口圆角部位喷涂氮化硼或石墨润滑剂之后,板料会发生大量局部减薄,容易导致破裂的产生。盒形件快速气压胀形过程中,有些部位涂抹润滑剂对成形有利,而有些部位涂抹润滑剂对成形产生不利影响。
     使用润滑剂后可提高杯形件成形能力。在氮化硼润滑条件下,可在300s成功成形出直径80mm、高30mm的杯形件,而无润滑条件下成形过程中底部圆角附近会发生破裂。
     使用润滑剂后,能够避免表面微小刮痕及波浪状流痕的产生,从而提高金属表面质量。氮化硼对金属表面的保护性最好;石墨铺展性较氮化硼差,高温下容易氧化,粘附在金属表面不容易清理;二硫化钼耐高温性差,会与金属表面发生化学反应而牢牢结合在一起,不容易清理,铺展性最差。
     氮化硼润滑条件下,盒形件底部中心部位晶粒尺寸比无润滑条件下要均匀,且晶粒仍保持等轴状态,没有呈现出拉长状态;但底部圆角部位晶粒尺寸不如无润滑条件下均匀。
     在凹模底部喷涂氮化硼润滑剂,并采用阶梯式加载方式,在300s成功成形出了带凸槽盒形件,且盒形件底部壁厚较为均匀,壁厚不均匀度仅为0.06。
The quick plastic forming (QPF) offers significant opportunity for forming complex, lightweight, highstrength sheet metal parts with almost no allowances, and it is increasingly used in automotive industry in recent years. Friction and lubrication play an important role during the forming process, so appropriate lubricant and lubricating area is of great significance to the improving of the performance and forming quality. For this purpose, this paper investigated the effect of tribological issues on the wall thickness distribution, forming ability, microstructure and surface quality by deforming the sheet into different molds under different lubricating conditions.
     The QPF of rectangle part with different friction coefficients were analyzed by using MSC.MARC. It was found that the smaller the friction coefficient was, the more uniform the thickness distribution was and the smaller the equivalent stress and strain for final forming area of the part. Reducing the friction coefficient between the sheet metal and mold can improve the wall thickness distribution, increase the forming ability, and prevent the premature rupture.
     The friction coefficients of no lubrication, boron nitride, graphite, and molybdenum disulfide were 0.56, 0.21, 0.26, 0.5 as measured under the ring upsetting process. The lubricants can reduce friction coefficients. Boron nitride had the most obvious effect, followed by graphite, and molybdenum disulfide was the worst.
     Lubricating conditions had little influence on the bulging height and wall thickness distribution of conical parts. The heights of the conical parts were 38.40mm, 38.84mm, 38.64mm, 38.62mm, respectively and the wall thickness inhomogeneities were 0.67, 0.66, 0.68, 0.69, respectively under four lubricated conditions (no lubrication, boron nitride, graphite, molybdenum disulfide).
     Lubricating conditions had great influence on the wall thickness distribution of rectangle pieces. The thickness inhomogeneities of bottom area were 0.35, 0.06, 0.13, 0.26 and the inhomogeneities of wall thickness were 0.27, 0.44, 0.39, 0.23 under four lubricating conditions (no lubrication, boron nitride, graphite, molybdenum disulfide).
     When the boron nitride was sprayed on the bottom, side wall and entrance filleting of the rectangle die respectively, the bottom of corner formed best under the lubricated condition of bottom. Spraying boron nitride or graphite on the entrance filleting led to a large number of local thinning and premature rupture. During the QPF process of rectangle parts, lubrication on some areas of the mold was good for forming, but lubrication on other areas of the mold was bad for forming.
     Lubricants could increase the forming ability of cylindrical parts. By using boron nitride, the cylindrical part with the diameter of 80mm and height of 30mm could be formed successfully in 300s, and rupture occurred near the bottom corner during forming process under no lubrication condition.
     The surface scratches and small gallings were avoided as well as the surface quality was improved by using lubricants. Boron nitride offered the best protection to the metal surface. Graphite had poor spreadability than boron nitride and was easily oxidized at high temperature. Molybdenum disulfide reacted with the metal surface and its spreadability was worst. Both graphite and molybdenum disulfide were not easy to be cleaned up from the surface.
     The grain size at the bottom center of rectangle piece under boron nitride lubrication was more uniform than that under no lubrication, but the situation was opposite at the bottom filleting.
     Spraying boron nitride on the bottom of the mold and taking multi-stage loading could form rectangle part with convex slot successfully in 300s. The thickness inhomogeneity of bottom was only 0.06.
引文
[1]左铁镛.我国富有资源镁及镁合金发展战略研究报告书[R].北京:中国工程院,2005
    [2]左铁镛.21世纪的轻质结构材料—镁及镁合金发展[J].新材料产业,2007,12:22-26
    [3]王里进.AZ31B镁合金板材的塑性加工性能研究[D].重庆大学工程硕士学位论文.2006
    [4] Dwain M, Magers. A Global Review of Magnesium Parts in Automobiles[J]. Light Metal Age, 1996, 54(10): 46-52
    [5]黄光杰,曹勇,陈江波,等.高性能镁合金板材轧制技术的研究[J].材料导报, 2009, 23(6):94-103
    [6]丁文江.镁合金科学与技术[M].北京:科学出版社,2007
    [7]陈彬,林栋梁,曾小勤,等.AZ31镁合金大压下率轧制的研究[J].锻压技术,2006,3:1
    [8]黄光胜,徐伟,黄光杰,等.镁合金板材冲压性能与冲压工艺研究进展[J].材料导报,2006, 20(11):73-76
    [9]张坤,徐永超,张士宏,等.镁合金板材温热拉深成形工艺的研究[J].轻合金加工技术,2004,32(8):16
    [10]潘复生,韩恩厚,等.高性能变形镁合金及加工技术[M].北京:科学出版社,2007
    [11]王忠堂,张士宏,徐永超,等.镁合金板材冲压成形工艺及极限拉延比研究[J].沈阳工业学院学报,2004,23(4):1
    [12] Iwanaga K, Tashiro H, Okamoto H, et al. Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy[J]. J Mater Proc Techn, 2004, 155-156: 1313
    [13]张志远,耿军晓,纪莲清.镁合金板材液压梯温拉深成形新工艺[J].热加工工艺技术与材料研究,2009,7:113-115
    [14]张德荣.超塑性力学[M].北京:航空工业出版社,1990
    [15]唐黎明.超塑性气压胀形测控系统的设计与实现[M].南京航空航天大学硕士学位论文,2006.
    [16] Quanlin Jin, Huiying Wu. Superplastic Forming Behaviors and Microstructure Characters of Magnesium Alloy Sheet AZ31B[J]. Materials Processing and Design: Modeling, Simulation and Applications, 2004, 712: 1682-1686
    [17] Donato Sorgente, Leonardo Daniele Scintilla, Gianfranco Palumbo, et al. Blow forming of AZ31 magnesium alloy at elevated temperatures[J]. Int J Mater Form, 2010, 3: 13-19
    [18]张凌云.改善超塑性气压胀形零件壁厚分布的工艺方法[J].金属成形工艺,2002,20(4):40-42
    [19]王卫英,张中元,李靖谊.超塑成形薄壁构件壁厚分布的预测[J].锻压技术,1998,6:35-38
    [20]丁桦,张凯锋.材料超塑性研究的现状与发展[J].中国有色金属学报,2004,14(9):1059-1067
    [21] R.Todd. Superplasticity in Advanced Materials ICSAM 2003[J]. Materials Science Forum, 2004, 447-448: 3-7
    [22]李梁,孙建科,孟祥军.钛合金超塑性研究及应用现状[J].材料开发与应用.2004,19(6):34-38
    [23] K.Osada. Commercial Application of Superplastic Forming[J]. Journal of Materials Processing Technology. 1997, 68: 241-245
    [24]袁清华,黄重国,吴昕.轻质高强度汽车结构件热态金属气压成形工艺[J].热加工工艺技术与装备.2007,8:52-55
    [25] Surampudi Venkata Satya Prashanth. Experimental Study On Tensile Plasticity Of Light Metal Engineering Alloys For Automotive Application[D]. the degree of Master of Science, Wayne State University, 2006
    [26] Wei Luo. A Study on tube creep behavior dominated by hoop deformation in HMGF process[M]. the degree of Master of Science, Wayne State University, 2004
    [27] Paul E.Krajewski, James G.Schroth. Overview of quick plastic forming technology[J]. Mater. Sci. 2007, Forum 551-552, 3-12
    [28] R.Boissiere, S.Terzi, J.J.Blandin, et al. Quick-Plastic forming: similarities and differences with Super-Plastic forming[C]. 6th EUROSPF Conference, 2008
    [29] Mary-Anne Kulas, Paul E.Krajewski, John R.Bradley, Eric M.Taleff. Forming Limit Diagrams for AA5083 under SPF and QPF Conditions[J]. Mater. Sci. 2007, Forum 551-552, 129-134
    [30] Jung-Kuei Chang. The Effect of Microstructure on Cavitation during Hot Deformation in Fine-grained AA5083 Aluminum Alloy Sheet Material[D]. the Degree of Doctor of Philosophy, The University of Texas at Austin, 2008
    [31]张书省.超塑性铝合金5083快速成形研究[D].台湾大学硕士论文,2000
    [32]刘亚伦.超塑性铝合金5083快速成形之空孔与金相组织研究[D].台湾大学硕士论文,2001
    [33] Jon T.Carter, Paul E.Krajewski, Ravi Verma. The Hot Blow Forming of AZ31 Mg Sheet: Formability Assessment and Application Development. Magnesium for Automotive Applications[J]. 2008, 60(11): 77-81
    [34] Wu H.Y, Hsu, W.C. Tensile ?ow behavior of fine-grained AZ31B magnesium alloy thin sheet at elevated temperatures. J. Alloys Compd. 2010, Forum 493, 590-594
    [35] Chung S.W, Higashi K, Kim W.J. Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet[J]. Mater. Sci. Eng. 2004, A 372, 15-20
    [36] Pin-Hou Sun, Horng-YuWu, Hsin-Han Tsai, et al. Effect of pressurization profile on the deformation characteristics of fine-grained AZ31B Mg alloy sheet during gas blow forming [J]. Journal of Materials Processing Technology. 2010, 1673-1679
    [37]赵振铎,邵明志,张召铎,等.金属塑性成形中的摩擦与润滑[M].北京:化学工业出版社,2004
    [38]赵振铎,张召铎,王家安.金属塑性成形中的润滑材料[M].北京:化学工业出版社,2005
    [39]张宗耀,李延祥,杨永顺,等.利用圆环镦粗法测定工模具钢超塑成形条件下的摩擦系数[J].洛阳工学院学报. 1989, 10(4): 25-32
    [40]许勇顺,徐洪烈,黄学玲.圆环镦粗法测定摩擦系数的探讨[J].太原机械学院学报.1990,11(4):53-60
    [41]许树勤,赵健.圆环镦粗法测摩擦因子用标定曲线的公式表达[J].塑性工程学报.2002,9(3):25-27
    [42]蒋少松.TC钛合金超塑成形精度控制[D].哈尔滨工业大学博士学位论文,2009
    [43] M.David Hanna. Tribological evaluation of aluminum and magnesium sheet forming at high temperatures[J]. Wear, 267(5-8): 1046-1050
    [44] Horng-Yu Wu, Chui-Hung Chiu, Jiann-Yih Wang, et al. Effect of lubrication on deformation characteristics of a superplastic 5083 Al alloy during bi-axial deformation [J]. Materials Science and Engineering, 2006, 427: 268-273.
    [45] Pin-hou Sun, Horng-yu Wu, Wei-song Lee, et al. Cavitation behavior in superplastic 5083 Al alloy during multiaxial gas blow forming with lubrication[J]. International Journal of Machine Tools & Manufacture, 2009, 49: 13-19.
    [46] M.David Hanna. The effect of boron nitride lubricant thickness and steel surface condition on tribological behavior of P20 steel/5083 aluminum sliding pairs at high temperature[C]. 2008 Proceedings of the STLE/ASME International Joint Tribology Conference, 2008: 717-718
    [47] Morales, Arianna T. Coating for superplastic and quick plastic forming tool and process of using [P]. US Patent 6655181, 2003
    [48] Coleman Sydney, Goodreau Bruce. Lubricant for Quick Plastic Forming of Aluminum Sheet [P]. US Patent Application 20070262120, 2007
    [49] Wood Paul, Qarni Muhammad Jawad, Rosochowski Andrzej. Effect of friction and back pressure on the formability of superplastically formed aluminium alloy sheet[J]. Key Engineering Marerials, 2011, 473: 532-539
    [50] SimonC Tung, Michael Wenner, GuoZheng Hua, et al. An in-situ tribotest method designed for predicting wear life and frictional performance during the aluminum forming process[J]. Tribology and Interface Engineering Series, 2005, 48: 187-205
    [51]阎峰云,张玉海.镁合金的发展及其应用[J].现代制造技术与装备,2007,179(4):13-15
    [52]陈振华,刘俊伟,陈鼎.镁合金超塑性的变形机理、研究现状和发展趋势[J].中国有色金属学报,2008,18(2):1-2
    [53]宋玉泉,马品奎,任明文,等.高温超塑胀形试验装置[J].中国机械工程,2006,17(19):2042-2045
    [54]陈火红,杨剑,薛小香,等.新编Marc有限元实例教程[M].北京:机械工业出版社,2007
    [55]张拓达.AZ31镁合金航空仪表盘快速塑性成形工艺研究[D].哈尔滨工业大学硕士论文,2010
    [56]蔡云,童国权,葛永成.铝合金超塑性气胀成形壁厚分布工艺研究[J].模具工业,2009,35(3):23-26
    [57] Paul E. Krajewski, Arianna T. Morales. Tribological Issues During Quick Plastic Forming[J]. Journal of Materials Engineering and Performance, 2004, 13(6): 700-709
    [58]苑世剑,汤泽军,王小松,等.AZ31B镁合金管材热态内压成形性能的研究[J].材料科学与工艺,2009,17(5):657-661
    [59]张娅,马春江,卢晨.变形镁合金的塑性变形机制与动态再结晶[J].轻合金加工技术,2003,31(7):35-39
    [60]杨益郎.摩擦及润滑对超塑性5083铝合金快速成形之影响[D].台湾大学硕士论文,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700