铜铟硒太阳能电池材料的制备与表征及RTP的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪70年代全世界发生了以石油为代表的“能源危机”,这让人们认识到常规能源的局限性。随着石油、天然气等化石能源的迅速消耗,能源问题正受到人们广泛的关注。太阳能作为一种可再生的清洁能源具有其它能源无法比拟的优势,而利用太阳能光伏技术发电,已成为能源利用不可逆转的潮流。Cu(In,Ga)Se_2(CIGS)薄膜太阳能电池有非常高的理论转化效率(高达30%),高的吸收系数(105量级),稳定性好,对材料缺陷的容忍度高等优点成为了近年来电池研究的热点。
     本论文具体研究的内容和主要结论如下:
     (1)采用电沉积法制备铜铟硒(CuInSe_2)薄膜太阳能电池材料,并研究了镀液中不同元素比例对预制膜成分的影响。
     (2)用管式炉对预制膜进行硒化,研究了不同硒化条件对薄膜的影响,包括温度、预制膜中Cu/In比例和时间等。当预制膜中Cu/In比例接近1:1(稍微富铜),在温度550℃、热处理时间30min的硒化条件下薄膜的结晶质量最好。
     (3)用拉曼光谱探测Cu-In-2Se预制膜在热处理过程中的晶相,由此推断薄膜形成过程。在没有高的饱和Se气氛的保护下,中间相Cu-Se,In-Se,Se和CuAu-CIS相等很容易在预制膜中形成,预制膜内的原子排列结构与CIS晶体相似。二元的硒化物通过与Cu,Se原子或离子之间的扩散转变为CIS。γ-CuSe和CIS的形成温度在170℃左右。
     (4)设计并组装了一个快速升温的设备RTP(Rapid Thermal Processing)。该设备的最高升温速率为25℃/s。
In the 1970s the“Energy Crisis”occurred over the world, which took the petroleum as representative. It made people realize the limitation of“conventional energy”. As the fossil energy sources such as oil and natural gas being consumed rapidly, the problem of energy sources is being paid more and more attention by the world. Solar energy, which is a sort of reproducible clean energy, has a lot of advantages over other energy sources. The conversion of sunlight to electrical power is an irreversible trend in the field of energy utilization. Cu(In,Ga)Se_2(CIGS) has become a hot topic in solar cell field in recent years, which has very high theory conversion efficiency(as high as 30%), very-high-absorption coefficient(105 magnitudes), long-term stability and good tolerance for defects and impurity.
     The main contents and results in this paper are as following:
     (1) Copper Indium Diselenide(CIS) thin films were electrodeposited, and the influence of elements’proportion in the plating bath to the precursor’s composition was studied.
     (2) The precursors were selenized in the tube furnace, and the influence of different selenized factors to film’s quality was studied. The factors contained temperature, selenized time, and Cu/In proportion in the precursors. Good crystalline quality films were obtained under a selenized temperature of 550℃, the Cu/In proportion of 1:1 in the precursor, and the time of 30 minutes.
     (3) Using micro-Raman scattering spectrum to observe the phase formation in the precursor under different temperature during the annealing process. Without protection of a high Se vapor pressure, intermediate In-Se, Cu-Se, CuAu-ordered CIS and many other selenides were easily formed in the CIS film, which have atomic structures arranged in a way close to CIS. The formation temperature ofγ-CuSe is 170℃. Binary selenides(In-Se and Cu-Se) were transformed to the CIS by interdiffusion and reaction of the mobile Cu and Se atoms/ions under high Se vapor pressure.
     (4) Design and assemble a furnace of Rapid Thermal Processing(RTP). The furnace’s highest heating rate is 25℃/s.
引文
[1] Gratzel M. 2001. Photoelectrochemical cells. Nature, 414: 338-344.
    [2] Poortmans J, Arkhipov V. 2006. Thin Film Solar Cells: Fabrication, Characterization and Applications. John Wiley & Sons, Ltd. Preface.
    [3]郭志球,胡芸菲,沈辉等. 2005.晶体硅太阳电池制备工艺进展.新能源及工艺. 3: 20.
    [4]陈维,沈辉,邓幼俊,舒杰. 2006.光伏发电系统中逆变器技术应用及展望. 40: 4.
    [5]. Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To and Rommel Noufi. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. 2008. Prog. Photovolt: Res. Appl. 16: 235-239.
    [6]郭杏元等. 2008. CIGS薄膜太阳能电池吸收层制备工艺综述,真空与低温, 14: 3.
    [7] Adolf Goetzberger, Christopher Hebling, Hans-Werner Schock. 2003. Photovoltaic materials, history, Status and outlook. Materials Science and Engineering R40: 1-46.
    [9]李健. 2006.预制膜硒化法制备CuInSe<,2>薄膜.北京科技大学硕士学位论文.
    [8]杨德仁.太阳电池材料,第一章太阳能和光电转换,第二章太阳能光电材料及物理基础.北京:化学工业出版社.
    [10]杜晶晶. 2008. CIS(CIGS)太阳能薄膜的电沉积制备.桂林工学院硕士学位论文.
    [12]Billy J. Stanbery. 2002. Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid state and Materials Sciences. 27(2): 73-117.
    [11]闫志巾,白利锋. 2008.电沉积制备CIS太阳能电池吸收层材料。稀有金属快报. 27: 9.
    [13] M.Burgelman, P. Nollet, S. Degrave. 2000. Modelling polycrystalline semiconductor solar cells. 361-362: 527-532.
    [14] A. Rockett. 1991. CuInSe2 for photovoltaic applications. J.Appl.Phys. 70: 7.
    [15] Marianna Kemell, Mikko Ritala, and Markku Leskela. 2005. Thin film Deposition Methods for CuInSe2 solar cells. Critical Reviews in Solid State and Materials Sciences, 30: 1-31,.
    [16] S. Taunier, J. Sicx-Kurdi, P.P. Grand, A. Chomont, O. Ramdani, L. Parissi, P. Panheleux, N. Naghavi, C. Hubert, M. Ben-Farah, J.P. Fauvarque, J. Connolly, O. Roussel, P. Mogensen, E. Mahe, J.F. Guillemoles, D, Lincot, O. Kerrec. 2005 Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition. 480-481: 526-531.
    [17] R. Ugarte, R. Schrebler, R. cordova, E.A. Dalchiele, H. Gomez. 1999. Electrodeposition of CuInSe2 thin films in a glycine acid medium. 340: 117-124.
    [18] P.J. Sebastian, A.M. Fernandez, A. Sanchez. Formation of CuInSe2 thin films by selenization employing CVTG, of electroless deposited Cu-In alloy. 1995. Sol. Energy Mater. Sol. Cells, 39: 55-60.
    [19] J.kois, S. Bereznev, E. Mellikov, A. Opik. 2006. Electrodeposition of CuInSe2 thin films onto Mo-glass substrates. 511-52: 420-424.
    [20] K.T.L. De Silva, W.A.A. Priyantha, J.K.D.S. Jayanetti, B.D. Chithrani, W, Siripala, K. Blake, I.M. Dharmadasa. 2000. Electrodeposition and characterization of CuInSe2 for applications in thin film solar cells. 382: 158-163.
    [21] Takeo N, Takehiro S, Noriyuki O, Shigeru B. 1998. Alloying and electrical properties of evaporated Cu-In bilayer thin films. Thin Solid Films. 334(1-2): 192-195.
    [22] Dzionk C, Metzner H, Hessler S, Mahnke H E. 1997. Phase formation during the reactive annealing of Cu-In films in H2S atmosphere. Thin Solid Films, ,299(1-2): 38-44.
    [23] A. Rockett. 1991. CuInSe2 for photovoltaic applications. J. Appl. Phys. 70: 7.
    [24] NeelKanth G. Dhere, Kevin W. Lynn. 1996. CuIn1-xGaxSe2 thin film solar cells by two-selenizations process using Se vapor. 41/42: 271-279.
    [25] A. Joswig, M. Gossla, H. Metzner, U. Reislohner, Th. Hahn, W. Witthuhn. 2007. Sulphurization of single-phase Cu11In9 precursor for CuInSe2 solar cells. 515: 5921-5924.
    [26]Neelkanth G. Dhere. 2006. Present Status and future prospects of CIGSS thin film solar cells. 90: 2181-2190.
    [27]李伟. 2006.溅射预制层固态硒化法制备CIGS(铜铟镓硒)薄膜太阳能电池.南开大学博士学位论文.
    [28] Mikihiko Nakamura, Takayuki Negami, et al. 1992. Preparation and Characterization of CuInSe2 Thin Films by Molecular-Beam Deposition Method. Jpn. J. Appl. Phys. 31:192-196.
    [29] K. Shigemi, N. MiKihiko, N. Takayuki, et al. 1994. UV photoelectron yield spectroscopy of chalcopyrite structure Cu-In-Se thin films. Thin Solid Films. 2:195-198.
    [30]李文漪,蔡珣,陈秋龙. 2003. CIS光伏材料的发展机械工程材料. 06:1-4.
    [31] D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J.P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P.P. Grand, M.benfarah, P.Mogensen, O. Kerrec. 2004. Chalcopyrite thin film solar cells by electrodeposition. Solar Energy. 77: 725-737.
    [32] O. Roussel, M. Lamirand, N. Naghavi, etc. 2007. Interfacial chemistry control in thin film solar cells based on electrodeposited CuIn(S,Se)2. Thin solid films. 515:6123-6126.
    [33] R. Noufi, R. Axton, C. Herrington, and S.K. Deb. 1984. Electronic properties versus composition of thin films of CuInSe2. Appl. Phys. Lett. 45: 668.
    [34] J.F. guillemoles, P. Cowache, A. Lusson, K, Fezzaa, F. Boisivon, J. Vedel, and Lincot. 1996. One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J. Appl. Phys. 79:7293.
    [35] A. Parretta, M.L. Addonizio, S. Loreti, L. Quercia, and M.K. Jayaraj. 1998..An investigation on the growth of thin chalcopyrite CuInSe2 films by selenization of Cu-In alloys in a box. J. Crys. Growth 183: 196.
    [36] T.J. Anderson, O.D. Crisalle, S.S. Li, and P.H. Holloway. 2003. Future CIS manufacturing technology development. NREL Report No. SR-520-33997.
    [37] F. Hergert, S. Jost, R. Hock, and M. Purwins. 2006. A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2. J. Solid State Chem. 179: 2394.
    [38] D. Wang, L. Wan, Z. Bai, and Y. Cao. 2008. Mixed phases in p-type CuInSe2 thin films detected by using micro-Raman scattering spectroscopy. Appl. Phys. Lett. 92:211912.
    [39] D. Wang, J. zhao, B. Chen, and C. Zhu. 2008. Lattice vibration fundamentals in nanocrystalline anatase investigated with Raman scattering. J. Phys.: Condens. Matter. 20: 085212.
    [40] F. Hergert, S. Jost, R. Hock, and M. Purwins. 2006. A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2. J. Solid State Chem. 179: 2394.
    [41] Nicolas D. Boscher, Claire J. Carmalt, Robert G. Palgrave, Ivan P. Parkin. 2008. Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. 516:4750-4757.
    [42] A. Kampmann, A. Abken, G. Leimkuhler, J. Rechid, V. Sittinger, T. Wietler and R. Reineke-Koch. 1999. A cadmium-free CuInSe2 superstrate solar cell Fabricated by electrodeposition using a ITO/In2Se3/CuInSe2/Au structure. Prog. Photovolt: Res. Appl. 7: 129-135.
    [43] A. Kampmann, V. Sittinger, J. Rechid, R. Reineke-Koch. 2000. Large area electrodeposition of Cu(In,Ga)Se2. Thin Solid Films. 361: 309-313.
    [44]花聚团. 2006.快速热处理在太阳能电池中的应用.浙江大学硕士学位论文.
    [45] A.T. Fiory. 2002. Recent developments in rapid thermal processing. Journal of Electronic Materials. 31:10.
    [46]R.L. Cohen, J.S. Williams, L.C. Feleman, and K.W. West. 1978. Thermally assisted flash annealing of silicon and germanium. Appl. Phys. Lett. 33: 751.
    [47]J.M. Poate, J.C. Bean, W.L. brown, R.L. cohen, L.C. Feleman, H.J. Leamy, J.W. Rodgers, D. Rousseau, G.A. Rozgonyi, J.A. Shelnutt, T.T. Shentg, K.W. West, J.S. Williams, and G.K. Celller. 1980. Liquid and solid phase regrowth of si by laser irradiation and thermally assisted flash annealing. Radiation Effects and Defects in Solids. 48: 167.
    [48]J.T. Lue. 1981. Arc annealing of BF2+ implanted silicon by a short pulse flash lamp. Appl. Phys. Lett. 36:73.
    [49]L. Correra and L. Pedulli. 1980. Incoherent-light-flash annealing of phosphorus-implanted silicon. Appl. Phys. Lett. 37: 55.
    [50]K. Nishiyama, M. Arai, and N. Watanabe. 1980. Radiation annealing of boron-implanted silicon with a halogen lamp. J. Appl. Phys. 19: L563.
    [51]R.A. Powell, T.O. Yep, and R.T. Fulks. 1981. Activation of arsenic-implanted silicon using an incoherent light source. Appl. Phys. Lett. 39: 150.
    [52]R. Singh. Rapid isothermal processing. J. Appl. Phys. 1988, 63:R59.
    [53]P.J. Timans. Temperature measurement in rapid thermal processing. Solid-State Technology 1997, 40:63.
    [54]Jorg Palm, Volker Probst, Franz H. Karg. 2004. Second generation CIS solar modules. Solar Energy 77: 757-765.
    [55]O. ka, H.Alves, I. Dirnstorfer, T. Christmann, B.K. Meyer. 2000. Investigation of post-growth Cu-diffusion in In-rich CuInSe2 films. Thin Solid Films 361-362: 263-267.
    [56]M. Purwins, A. Weber, P. Berwian, G. Muller, F. Hergert, S. Jost, R. Hock. 2006. Kinetics of the reactive crystallization of CuInSe2 and CuGaSe2 chalcopyrite films for solar cell applications. Journal of Crystal Growth 287: 408-413.
    [57]N.G. Dhere. 2001. CIGSS Thin Film Solar Cells. Final Subcontract Report(NDJ-2-30630-03).
    [58]S.N. Kundu, D. Bhattacharyya, S. Chaudhuri, A.K. Pal. 1999. Synthesis of CuInSe2 films by rapid thermal processing of stacked elemental layers. Materials Chemistry and Physics 57: 207-213.
    [59]G.D. Mooney and A.M. Hermann. 1991. Formation of CuInSe2 thin films by rapid thermal recrystallization. Appl. Phys. Lett. 58: 23.
    [60]Xuege Wang, Sheng. S. Li, V. Craciun, S. Yoon, J,M. Howard, S. Easwaran, O. Manasreh, O.D. Crisalle and T.J. Anderson. 2005. Rapid Thermal Annealing on Cu(In,Ga)Se2 Films and Solar Cells. FMater. Res. Soc. Symp. Proc. 865.
    [61]查超麟. 2003.快速热扩散炉及快速扩散的研究.云南师范大学硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700