全球日冕演化的自适应数据驱动模式和日冕磁场外推
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳日冕是空间天气事件发生的上层区,其中丰富的结构及其演化是空间物理研究的重要内容.数据驱动的日冕模拟,是指在日冕底边界上连续时序地输入观测数据(如磁场)来驱动日冕数值模式,以模拟日冕真实的动力学演化;是研究日冕大尺度结构演变和太阳爆发活动的有力工具.本文侧重于计算技术层面,基于时空守恒数值格式(CESE)和自适应网格方法(AMR),开发了一个新型的日冕–太阳风自适应模式;并联合光球磁流输运模型,建立了首个由时变光球磁图驱动的全球日冕动态演化MHD模式.
     作用一种新型高效的数值格式, CESE方法已成功地应用于多种空间物理问题的模拟研究.基于一般曲线坐标理论,本文通过把物理空间下的主控方程变换到计算空间并保持守恒形式,首先将CESE格式推广到了一般曲线坐标下.然后借助于并行自适应软件包PARAMESH,并克服了CESE格式和自适应网格系统的各种不兼容性(如时空交错问题,库朗数敏感问题等),将一般曲线CESE格式成功实现于块状自适应网格上,建立了一个MHD数值模拟的新方法AMR-CESE-MHD.
     为精确刻画日冕底部球型边界面而不引入两极奇点问题,采用一种基于球坐标的重叠型网格(Yin-Yang网格)以克服其他网格系统的各种弱点,并利用高精度的插值保证重叠边界信息相互无障碍的传递.自适应的日冕–太阳风模型即建立于该网格系统和AMR-CESE-MHD方法上.时变自洽的底面边界条件基于投影特征线方法和一个描述光球磁图演化的模型–表面磁流输运(SFT)模型.SFT模型采用观测的综合磁图作为输入,能够很好的再现长达几个月的日面磁流的变化,而且避免了直接采用观测磁图而导致的不兼容性.通过模拟长达三个太阳自转周的动态演化并与多观测日冕图像进行比较,展示了该日冕动态模式模拟全球日冕基本结构如冕流,冕洞位置和活动区磁场及其演化的能力.
     此外,由于日冕的三维磁场尚不能直接观测.作为一种替代办法,磁场外推(重构)也是研究日冕活动的一种重要方法.通过考察外推磁场的拓扑结构,可以发掘导致太阳爆发活动的不稳定磁场位形.本文针对于重构日冕磁场的松弛法,提出了一种新的实现方式.不同于以往的仅求解无力场模型的办法,我们采用全磁流体模型,并利用简洁而高效的CESE格式来求解.光球(底面)边界条件类似于挤压–松弛(stress-and-relax)方法,使初始的势场分布逐渐逼近于观测的矢量磁图.计算区域的其他人工边界全部采用基于投影特征线方法的无反射边界条件.我们将这个方法外推了无力场的两个经典解析解.结果证明了方法的有效性并且细致的分析发现和目前国际上最好的方法相当.
Solar corona is the upper region for the space-weather events. The diversestructures and evolutions in the corona are fundamental for the space physics. Ina data-driven corona model, the dynamic evolution of the corona is simulated bycontinuously inputting the observed data (e.g., the magnetic fleld) at the coronalbottom to drive the model. It provides a powerful numerical tool for study ofthe large-scale coronal structures and the solar eruptions. In this thesis withthe bias on numerical-technique aspect, we have developed a new adaptive solarcorona-solar wind model basing on the space-time conservation-element/solution-element (CESE) scheme and the adaptive-mesh-reflnement (AMR) technique.Then by combining with a photospheric magnetic-flux transport model, we de-velop the flrst dynamic model for the evolution of the global corona driven bythe time-varying photospheric magnetogram.
     As a novel and high-performance numerical scheme, the CESE method hasalready been successfully applied to the fleld of space-physic simulation. Basingon the theory of general curvilinear coordinates, in this thesis we flrst establish acurvilinear-coordinate version of the CESE method for MHD, by transform thegoverning MHD equations from the physical space (x,y,z) to the computationalspace (ξ,η,ζ) while retaining the form of conservation. Then utilizing a parallel-AMR package PARAMESH and overcoming various incompatibles of the CESEscheme with the AMR grid system (e.g., the problems of space-time staggeringand the Courant number sensitive), we present the flrst implementation of theCESE method on block-AMR grid for MHD (the AMR-CESE-MHD code) inboth Cartesian and curvilinear coordinates.
     To precisely characterize the bottom sphere of the global corona and avoidthe grid-convergence problems at two poles, a new kind of overlapping grid, theso-called Yin-Yang grid, is borrowed here to overcome various weaknesses of othergrid systems. High-accuracy interpolation is used for transparent transferring ofsolution information at the overlapping boundaries. The adaptive model of the solar corona-solar wind is built on the AMR-CESE-MHD code and the Yin-Yanggrid under the framework of PARAMESH.
     The time-varying and self-consistent boundary conditions at the coronalbottom is based on the projected-characteristic method and a surface transport(SFT) model. With observed synoptic map as input, the SFT model can repro-duce well the long-term evolution of the photospheric fleld for several months,and avoid the inconsistency of using directly the global magnetogram from obser-vation. By modeling the dynamic evolution for a long time interval of three Car-ringtion rotation (from CR1913 to CR1915) and comparing with multi-observedcoronal images, we show that the model is able to simulate the general structuresof the global corona, e.g., the coronal streamers, the locations of coronal holes,the magnetic fleld of the active regions and their evolutions.
     Besides, magnetic fleld extrapolation is a common and accurate way to over-come the problem of unavailable direct measurement of the three-dimensionalfleld in the corona. In this thesis, we also present a new implementation ofthe MHD relaxation method for reconstruction of the nearly force-free coronalmagnetic fleld from a photospheric vector magnetogram. Unlike most of the ex-trapolation methods that focus on a nonlinear force-free-fleld model, we solve thefull MHD equations directly by using the CESE method. The bottom boundarycondition is prescribed in a similar way as in the stress-and-relax method, i.e., bychanging the transverse fleld incrementally to match the magnetogram, and otherboundaries of the computational box are set by the nonreflecting boundary con-ditions. Applications to the well-known benchmarks for nonlinear force-free-fleldreconstruction, the Low & Lou force-free equilibria, validate the method and con-flrm its capability for future practical application, with observed magnetogramsas inputs.
引文
Abbett, W.P., Miki′c, Z., Linker, J.A., McTiernan, J.M., Magara, T., Fish-er, G.H.: 2004, The photospheric boundary of Sun-to-Earth coupled mod-els. Journal of Atmospheric and Solar-Terrestrial Physics 66, 1257–1270.doi:10.1016/j.jastp.2004.03.016.
    Amari, T., Boulmezaoud, T.Z., Aly, J.J.: 2006, Well posed reconstruc-tion of the solar coronal magnetic fleld. Astron. Astrophys. 446, 691–705.doi:10.1051/0004-6361:20054076.
    Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996a, Plasmoid formationin a single sheared arcade and application to coronal mass ejections. Astron.Astrophys. 306, 913.
    Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996b, Very Fast Opening of aThree-dimensional Twisted Magnetic Flux Tube. Astrophys. J. Lett. 466, L39.doi:10.1086/310158.
    Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal MassEjection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution. Astrophys. J. 585, 1073–1086. doi:10.1086/345501.
    Anderson, J.D.: 1995, Computational fluid dynamic: The basics with applica-tions 168, McGraw-Hill, New York.
    Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A Model for Solar Coro-nal Mass Ejections. Astrophys. J. 510, 485–493. doi:10.1086/306563.
    Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, PraxisPublishing Ltd, ???.
    Balsara, D.S.: 2009, Divergence-free reconstruction of magnetic flelds andWENO schemes for magnetohydrodynamics. Journal of Computational Physics228, 5040–5056. doi:10.1016/j.jcp.2009.03.038.
    Balsara, D.S., Spicer, D.: 1999a, Maintaining Pressure Positivity inMagnetohydrodynamic Simulations. J. Comput. Phys. 148, 133–148.doi:10.1006/jcph.1998.6108.
    Balsara, D.S., Spicer, D.S.: 1999b, A Staggered Mesh Algorithm Using HighOrder Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohy-drodynamic Simulations. Journal of Computational Physics 149, 270–292.doi:10.1006/jcph.1998.6153.
    Berger, M.J., Colella, P.: 1989, Local adaptive mesh reflnement for shock hy-drodynamics. J. Comput. Phys. 82, 64–84. doi:10.1016/0021-9991(89)90035-1.
    Boden, E., Toro, E.: 1997, A combined Chimera-AMR technique for computinghyperbolic PDEs. In: Proceedings of the Fifth Annual Conference of the CFDSociety of Canada, 5–13.
    Brislawn, K.D., Brown, D.L., Chesshire, G.S., Saltzman, J.S.: 1995, Adaptively-reflned overlapping grids for the numerical solution of systems of hyperbolicconservation laws. In: J. C. South Jr., J. L. Thomas, & J. Vanrosendale (ed.)ICASE/LaRC Workshop on Adaptive Grid Methods, 95–110.
    Chang, S.C.: 2002, Courant number insensitive CE/SE schemes. AIAA Paper2002-3890.
    Chang, S.C.: 2007, The a(3) Scheme Fourth-Order Neutrally Stable CESESolver. AIAA Paper 4321.
    Chang, S., Wang, X., Chow, C.: 1999, The Space-Time Conservation Elementand Solution Element Method: A New High-Resolution and Genuinely Multi-dimensional Paradigm for Solving Conservation Laws. J. Comput. Phys. 156,89–136. doi:10.1006/jcph.1999.6354.
    Chesshire, G., Henshaw, W.D.: 1990, Composite overlapping meshes forthe solution of partial diflerential equations. J. Comput. Phys. 90, 1–64.doi:10.1016/0021-9991(90)90196-8.
    Choe, G.S., Lee, L.C.: 1996, Evolution of Solar Magnetic Arcades. I. Ide-al MHD Evolution under Footpoint Shearing. Astrophys. J. 472, 360.doi:10.1086/178069.
    Cohen, O., Sokolov, I.V., Roussev, I.I., Arge, C.N., Manchester, W.B., Gombosi,T.I., Frazin, R.A., Park, H., Butala, M.D., Kamalabadi, F., Velli, M.: 2007, A
    Semiempirical Magnetohydrodynamical Model of the Solar Wind. Astrophys.J. Lett. 654, L163–L166. doi:10.1086/511154.
    Cohen, O., Sokolov, I.V., Roussev, I.I., Gombosi, T.I.: 2008, Validation of asynoptic solar wind model. Journal of Geophysical Research 113(A3), A03104.
    Colella, P., et al.: 2007, Chombo, software package for amr applications. Tech-nical report, Lawrence Berkely National Laboratory. http://seesar.lbl.gov/anag/chombo.
    Collins, D.C., Norman, M.L.: 2004, Devolopment of an AMR MHD module forthe code Enzo. In: Bulletin of the American Astronomical Society, Bulletin ofthe American Astronomical Society 36, 1605.
    Dai, W.: 1998, A Simple Finite Difference Scheme for Multidimensional Magne-tohydrodynamical Equations. Journal of Computational Physics 142, 331–369.doi:10.1006/jcph.1998.5944.
    Dedner, A., Kemm, F., Kr¨oner, D., Munz, C., Schnitzer, T., Wesenberg, M.:2002, Hyperbolic Divergence Cleaning for the MHD Equations. J. Comput.Phys. 175, 645–673. doi:10.1006/jcph.2001.6961.
    Dellar, P.J.: 2001, A Note on Magnetic Monopoles and the One-Dimensional MHD Riemann Problem. J. Comput. Phys. 172, 392–398.doi:10.1006/jcph.2001.6815.
    Devore, C.R., Boris, J.P., Sheeley, N.R. Jr.: 1984, The concentration of thelarge-scale solar magnetic field by a meridional surface flow. Solar Phys. 92,1– 14. doi:10.1007/BF00157230.
    Dezeeuw, D., Powell, K.G.: 1993, An Adaptively Refined CartesianMesh Solver for the Euler Equations. J. Comput. Phys. 104, 56– 68.doi:10.1006/jcph.1993.1007.
    Evans, C.R., Hawley, J.F.: 1988, Simulation of magnetohydrodynamicflows - A constrained transport method. Astrophys. J. 332, 659– 677.doi:10.1086/166684.
    Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the Coronal MassEjection Productivity of Solar Active Regions with Measures of Their GlobalNonpotentiality from Vector Magnetograms: Baseline Results. Astrophys. J.569, 1016– 1025. doi:10.1086/339161.
    Fan, Y., Gibson, S.E.: 2003, The Emergence of a Twisted Magnetic FluxTube into a Preexisting Coronal Arcade. Astrophys. J. Lett. 589, L105– L108.doi:10.1086/375834.
    Feng, X., Hu, Y., Wei, F.: 2006, Modeling the Resistive MHD by the CeseMethod. Solar Phys. 235, 235– 257. doi:10.1007/s11207-006-0040-6.
    Feng, X., Zhou, Y., Wu, S.T.: 2007, A Novel Numerical Implementation forSolar Wind Modeling by the Modified Conservation Element/Soluti on ElementMethod. Astrophys. J. 655, 1110– 1126. doi:10.1086/510121.
    Feng, X.S., Xiang, C.Q., Zhong, D.K.: 2011, The state-of-art of threedimensionalnumerical study for corona-interplanetary process of solar storms(in Chinese). Sci Sin-Terrae 41, 1– 28.
    Feng, X.S., Zhang, Y., Yang, L.P., Wu, S.T., Dryer, M.: 2009, An operationalmethod for shock arrival time prediction by one-dimensional CESE-HD solarwind model. J. Geophys. Res. 114(A13), 10103. doi:10.1029/2009JA014385.
    Feng, X.S., Yang, L.P., Xiang, C.Q., Wu, S.T., Zhou, Y.F., Zhong, D.K.: 2010,THREE-DIMENSIONAL SOLAR WIND MODELING FROM THE SUN TOEARTH BY A SIP-CESE MHD MODEL WITH A SIX-COMPONENT GRID.Astrophys. J. 723, 300–319.
    Garaizar, X., Hornung, R., Kohn, S.: 1999, Structured adaptive mesh re?ne-ment applications infracture. Technical report, Lawrence Livermore NationalLaboratory. http://www.llnl.gov/casc/SAMRAI.
    Gardiner, T.A., Stone, J.M.: 2005, An unsplit Godunov method for ideal MHDvia constrained transport. Journal of Computational Physics 205, 509–539.doi:10.1016/j.jcp.2004.11.016.
    Gardiner, T.A., Stone, J.M.: 2008, An unsplit Godunov method for ideal MHDvia constrained transport in three dimensions. Journal of Computational Physics227, 4123–4141. doi:10.1016/j.jcp.2007.12.017.
    Gombosi, T.I.: 2004, Physics of the Space Environment.Gombosi, T.I., de Zeeuw, D.L., Powell, K.G., et al.: 2003, Adaptive MeshRe?nement for Global Magnetohydrodynamic Simulation. In: J. Bu¨chner, C.Dum, & M. Scholer (ed.) Space Plasma Simulation, Lecture Notes in Physics,Berlin Springer Verlag 615, 247–274.
    Goodrich, C.C., Sussman, A.L., Lyon, J.G., Shay, M.A., Cassak, P.A.: 2004,The CISM code coupling strategy. Journal of Atmospheric and Solar-TerrestrialPhysics 66, 1469–1479. doi:10.1016/j.jastp.2004.04.010.
    Groth, C.P.T., Northrup, S.A.: 2005, Parallel implicit adaptive mesh refinementscheme for body-fitted multi-block mesh.
    Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: 2000, Globalthree-dimensional MHD simulation of a space weather event: CME formation,interplanetary propagation, and interaction with the magnetosphere. J. Geo-phys. Res. 105, 25053–25078. doi:10.1029/2000JA900093.
    Hayashi, K.: 2005, Magnetohydrodynamic Simulations of the Solar Corona andSolar Wind Using a Boundary Treatment to Limit Solar Wind Mass Flux. As-trophys. J. Suppl. Ser. 161, 480–494. doi:10.1086/491791.
    Hayashi, K., Zhao, X.P., Liu, Y.: 2008, MHD simulations of the global solarcorona around the Halloween event in 2003 using the synchronic frame formatof the solar photospheric magnetic (?)eld. J. Geophys. Res. 113(A12), 7104.doi:10.1029/2007JA012814.
    Hayashi, K., Benevolenskaya, E., Hoeksema, T., Liu, Y., Zhao, X.P.: 2006,Three-Dimensional Magnetohydrodynamic Simulation of a Global Solar Coron-a Using a Temperature Distribution Map Obtained from SOHO EIT Measure-ments. Astrophys. J. Lett. 636, L165–L168. doi:10.1086/500127.
    He, H., Wang, H.: 2008, Nonlinear force-free coronal magnetic (?)eld extrapo-lation scheme based on the direct boundary integral formulation. J. Geophys.Res. 113, 5. doi:10.1029/2007JA012441.
    Hedstrom, G.W.: 1979, Nonre(?)ecting Boundary Conditions for Nonlinear Hy-perbolic Systems. J. Comput. Phys. 30, 222. doi:10.1016/0021-9991(79)90100-1.
    Henshaw, W.D., Schwendeman, D.W.: 2003, An adaptive numerical scheme forhigh-speed reactive (?)ow on overlapping grids. J. Comput. Phys. 191, 420–447.doi:10.1016/S0021-9991(03)00323-1.
    Henshaw, W.D., Schwendeman, D.W.: 2008, Parallel computation of three-dimensional (?)ows using overlapping grids with adaptive mesh re(?)nement. J.Comput. Phys. 227, 7469–7502. doi:10.1016/j.jcp.2008.04.033.
    Hirayama, T.: 1974, Theoretical Model of Flares and Prominences. I: Evapo-rating Flare Model. Solar Phys. 34, 323–338. doi:10.1007/BF00153671.
    Ho(?)man, K.A., Chiang, S.T.: 2000, Computational (?)uid dynamic II, 4th edn.Engineering Education System, Wichita.
    Hu, Y., Feng, X.: 2006, Numerical Study for the Bursty Nature of SpontaneousFast Reconnection. Solar Phys. 238, 329–345. doi:10.1007/s11207-006-0212-4.
    Hu, Y.Q., Feng, X.S., Wu, S.T., Song, W.B.: 2008, Three-dimensional MHDmodeling of the global corona throughout solar cycle 23. J. Geophys. Res.113(A12), 3106. doi:10.1029/2007JA012750.
    Janhunen, P.: 2000, A Positive Conservative Method for Magnetohydrodynam-ics Based on HLL and Roe Methods. Journal of Computational Physics 160,649–661. doi:10.1006/jcph.2000.6479.
    Jiang, G., Wu, C.: 1999, A High-Order WENO Finite Di(?)erence Scheme for theEquations of Ideal Magnetohydrodynamics. Journal of Computational Physics150, 561–594. doi:10.1006/jcph.1999.6207.
    Jokipii, J.R., Thomas, B.: 1981, E(?)ects of drift on the transport of cosmic rays.IV - Modulation by a wavy interplanetary current sheet. Astrophys. J. 243,1115–1122. doi:10.1086/158675.
    Kageyama, A., Sato, T.: 2004,“Yin-Yang grid”: An overset gridin spherical geometry. Geochemistry, Geophysics, Geosystems 5, 9005.doi:10.1029/2004GC000734.
    Klimchuk, J.A.: 2001, Theory of Coronal Mass Ejections. Space Weather (Geo-physical Monograph 125), ed. P. Song, H. Singer, G. Siscoe (Washington: Am.
    Geophys. Un.), 143 (2001) 125, 143.Lai, M., Li, Z., Lin, X.: 2006, Fast solvers for 3D Poisson equations involv-ing interfaces in a (?)nite or the in(?)nite domain. Journal of Computational and
    Applied Mathematics 191, 106–125.Leighton, R.B.: 1964, Transport of Magnetic Fields on the Sun. Astrophys. J.140, 1547. doi:10.1086/148058.
    Linde, T.: 2002, MHD simulations with the FLASH code. APS Meeting Ab-stracts, F3005.
    Linker, J.A., Miki′c, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus,A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydro-dynamic modeling of the solar corona during Whole Sun Month. J. Geophys.Res. 104, 9809–9830. doi:10.1029/1998JA900159.
    Lionello, R., Miki′c, Z., Linker, J.A., Amari, T.: 2002, Magnetic Field Topologyin Prominences. Astrophys. J. 581, 718–725. doi:10.1086/344222.
    Low, B.C.: 1996, Solar Activity and the Corona. Solar Phys. 167, 217–265.doi:10.1007/BF00146338.
    Low, B.C., Lou, Y.Q.: 1990, Modeling solar force-free magnetic (?)elds. Astro-phys. J. 352, 343–352. doi:10.1086/168541.
    Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical Simulation ofthe Interaction of Two Coronal Mass Ejections from Sun to Earth. Astrophys.J. 634, 651–662. doi:10.1086/491782.
    Lugaz, N., Manchester, W.B. IV, Roussev, I.I., T′oth, G., Gombosi, T.I.: 2007,Numerical Investigation of the Homologous Coronal Mass Ejection Events fromActive Region 9236. Astrophys. J. 659, 788–800. doi:10.1086/512005.
    Mackay, D.H., van Ballegooijen, A.A.: 2001, A Possible Solar Cycle Dependenceto the Hemispheric Pattern of Filament Magnetic Fields(?) Astrophys. J. 560,445–455. doi:10.1086/322385.
    MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: 2000,PARAMESH: A parallel adaptive mesh re(?)nement community toolkit. Comput-er Physics Communications 126, 330–354. doi:10.1016/S0010-4655(99)00501-9.
    Manchester, W.B. IV, Vourlidas, A., T′oth, G., Lugaz, N., Roussev, I.I., Sokolov,I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Three-dimensional
    MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Compari-son with LASCO Coronagraph Observations. Astrophys. J. 684, 1448–1460.doi:10.1086/590231.
    Manchester, W.B., Gombosi, T.I., Roussev, I., Ridley, A., De Zeeuw, D.L.,Sokolov, I.V., Powell, K.G., T′oth, G.: 2004a, Modeling a space weather eventfrom the Sun to the Earth: CME generation and interplanetary propagation.J. Geophys. Res. 109(A18), 2107. doi:10.1029/2003JA010150.
    Manchester, W.B., Gombosi, T.I., Roussev, I., De Zeeuw, D.L., Sokolov,I.V., Powell, K.G., T′oth, G., Opher, M.: 2004b, Three-dimensional MHDsimulation of a (?)ux rope driven CME. J. Geophys. Res. 109(A18), 1102.doi:10.1029/2002JA009672.
    Marder, B.: 1987, A Method for Incorporating Gauss’Law into ElectromagneticPIC Codes. J. Comput. Phys. 68, 48. doi:10.1016/0021-9991(87)90043-X.
    McClymont, A.N., Mikic, Z.: 1994, Thickness variations along coronal loop-s inferred from vector magnetograph data. Astrophys. J. 422, 899–905.doi:10.1086/173781.
    McClymont, A.N., Jiao, L., Mikic, Z.: 1997, Problems and Progress in Comput-ing Three-Dimensional Coronal Active Region Magnetic Fields from BoundaryData. Solar Phys. 174, 191–218.
    Meakin, R.: 2000, Adaptive spatial partitioning and re(?)nement for overset struc-tured grids. Computer Methods in Applied Mechanics and Engineering 189(4),1077–1117.
    Metcalf, T.R., Jiao, L., McClymont, A.N., Can(?)eld, R.C., Uitenbroek, H.: 1995,Is the solar chromospheric magnetic (?)eld force-free(?) Astrophys. J. 439, 474–481. doi:10.1086/175188.
    Mikic, Z., Linker, J.A.: 1994, Disruption of coronal magnetic (?)eld arcades.Astrophys. J. 430, 898–912. doi:10.1086/174460.
    Mikic, Z., McClymont, A.N.: 1994, Deducing Coronal Magnetic Fields fromVector Magnetograms. In: K. S. Balasubramaniam & G. W. Simon (ed.) SolarActive Region Evolution: Comparing Models with Observations, AstronomicalSociety of the Pacific Conference Series 68, 225.
    Mikic, Z., Barnes, D.C., Schnack, D.D.: 1988, Dynamical evolutionof a solar coronal magnetic (?)eld arcade. Astrophys. J. 328, 830–847.doi:10.1086/166341.
    Miki′c, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Mag-netohydrodynamic modeling of the global solar corona. Physics of Plasmas 6,2217–2224. doi:10.1063/1.873474.
    Nakagawa, Y.: 1981, Evolution of magnetic (?)eld and atmospheric response.I - Three-dimensional formulation by the method of projected characteristics.II - Formulation of proper boundary equations. Astrophys. J. 247, 707–733.doi:10.1086/159082.
    Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa,H.: 2009, Development of the 3-D MHD model of the solar corona-solar windcombining system. Journal of Geophysical Research (Space Physics) 114(A13),A07109. doi:10.1029/2008JA013844.
    Olson, K.: 2006, Paramesh: A parallel adaptive grid tool. In: Parallel Compu-tational Fluid Dynamics, Elsevier, Netherlands.
    Olson, K., MacNeice, P.: 2005, An over of the paramesh amr software and someof its applications. In: Adaptive Mesh Refinement-Theory and Applications,Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods,Springer, Berlin.
    Orszag, S.A., Tang, C.: 1979, Small-scale structure of two-dimensionalmagnetohydrodynamic turbulence. Journal of Fluid Mechanics 90, 129–143.doi:10.1017/S002211207900210X.
    Parashar, M.: 2007, Grace grid adaptive computational engine. Technical re-port, Rutgers University. http://www.caip.rutgers.edu/tassl/projects/grace/.
    Mikic, Z., Barnes, D.C., Schnack, D.D.: 1988, Dynamical evolutionof a solar coronal magnetic (?)eld arcade. Astrophys. J. 328, 830–847.doi:10.1086/166341.
    Miki′c, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Mag-netohydrodynamic modeling of the global solar corona. Physics of Plasmas 6,2217–2224. doi:10.1063/1.873474.
    Nakagawa, Y.: 1981, Evolution of magnetic (?)eld and atmospheric response.I - Three-dimensional formulation by the method of projected characteristics.II - Formulation of proper boundary equations. Astrophys. J. 247, 707–733.doi:10.1086/159082.
    Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa,H.: 2009, Development of the 3-D MHD model of the solar corona-solar windcombining system. Journal of Geophysical Research (Space Physics) 114(A13),A07109. doi:10.1029/2008JA013844.
    Olson, K.: 2006, Paramesh: A parallel adaptive grid tool. In: Parallel Compu-tational Fluid Dynamics, Elsevier, Netherlands.
    Olson, K., MacNeice, P.: 2005, An over of the paramesh amr software and someof its applications. In: Adaptive Mesh Refinement-Theory and Applications,Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods,Springer, Berlin.
    Orszag, S.A., Tang, C.: 1979, Small-scale structure of two-dimensionalmagnetohydrodynamic turbulence. Journal of Fluid Mechanics 90, 129–143.doi:10.1017/S002211207900210X.
    Parashar, M.: 2007, Grace grid adaptive computational engine. Technical re-port, Rutgers University. http://www.caip.rutgers.edu/tassl/projects/grace/.region NOAA 8151. Astron. Astrophys. 392, 1119–1127. doi:10.1051/0004-6361:20020993.
    Rendleman, C., Beckner, V., Lijewski, M., Crutch(?)eld, W., Bell, J.: 2000,Parallelization of structured hierarchical adaptive mesh re(?)nement algorithms.Comput. Visual. Sci. 3, 147–157.
    Roumeliotis, G.: 1996, The“Stress-and-Relax”Method for Reconstructing theCoronal Magnetic Field from Vector Magnetograph Data. Astrophys. J. 473,1095. doi:10.1086/178219.
    Roussev, I.I., Forbes, T.G., Gombosi, T.I., Sokolov, I.V., DeZeeuw, D.L., Birn,J.: 2003a, A Three-dimensional Flux Rope Model for Coronal Mass Ejec-tions Based on a Loss of Equilibrium. Astrophys. J. Lett. 588, L45–L48.doi:10.1086/375442.
    Roussev, I.I., Gombosi, T.I., Sokolov, I.V., Velli, M., Manchester, W. IV,DeZeeuw, D.L., Liewer, P., T′oth, G., Luhmann, J.: 2003b, A Three-dimensional
    Model of the Solar Wind Incorporating Solar Magnetogram Observations. As-trophys. J. Lett. 595, L57–L61. doi:10.1086/378878.
    Roussev, I.I., Sokolov, I.V., Forbes, T.G., Gombosi, T.I., Lee, M.A., Sakai, J.I.:2004, A Numerical Model of a Coronal Mass Ejection: Shock Development withImplications for the Acceleration of GeV Protons. Astrophys. J. Lett. 605,L73–L76. doi:10.1086/392504.
    Sakurai, T.: 1981, Calculation of force-free magnetic (?)eld with non-constantα.Solar Phys. 69, 343–359. doi:10.1007/BF00149999.
    Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2002, What Is Missing from OurUnderstanding of Long-Term Solar and Heliospheric Activity(?) Astrophys. J.577, 1006–1012. doi:10.1086/342247.
    Schrijver, C.J., De Rosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., R′egnier,S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear Force-Free
    Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison ofMethods. Solar Phys. 235, 161–190. doi:10.1007/s11207-006-0068-7.Seehafer, N.: 1978, Determination of constant alpha force-free so-lar magnetic (?)elds from magnetograph data. Solar Phys. 58, 215–223.doi:10.1007/BF00157267.
    Shibata, K.: 1999, Evidence of Magnetic Reconnection in Solar Flares and aUni(?)ed Model of Flares. Astrophys. Spa. Sci. 264, 129–144.
    Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Ko-sugi, T., Ogawara, Y.: 1995, Hot-Plasma Ejections Associated with Compact-Loop Solar Flares. Astrophys. J. Lett. 451, L83. doi:10.1086/309688.
    Skinner, M.A., Ostriker, E.C.: 2010, The athena astrophysical magnetohydro-dynamics code in cylindrical geometry. The Astrophysical Journal SupplementSeries 188(1), 290. http://stacks.iop.org/0067-0049/188/i=1/a=290.
    Smith, E.J.: 2001, The heliospheric current sheet. J. Geophys. Res. 106, 15819–15832. doi:10.1029/2000JA000120.
    Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys.J. 270, 288–299. doi:10.1086/161121.
    Stone, J.M., Norman, M.L.: 1992, ZEUS-2D: A Radiation Magnetohydrody-namics Code for Astrophysical Flows in Two Space Dimensions. II. The Mag-netohydrodynamic Algorithms and Tests. Astrophys. J. Suppl. Ser. 80, 791.doi:10.1086/191681.
    Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: 2008,Athena: A New Code for Astrophysical MHD. The Astrophysical Journal Sup-plement Series 178, 137–177. doi:10.1086/588755.
    Suess, S.T., Phillips, J.L., McComas, D.J., Goldstein, B.E., Neugebauer, M.,Nerney, S.: 1998, The Solar Wind - Inner Heliosphere. Space Sci. Rev. 83,75–86.
    Tang, H., Casey Jones, S., Sotiropoulos, F.: 2003, An overset-grid method for3D unsteady incompressible (?)ows. J. Comput. Phys. 191(2), 567–600.
    Thompson, K.W.: 1987, Time dependent boundary conditions for hyperbolicsystems. J. Comput. Phys. 68, 1–24. doi:10.1016/0021-9991(87)90041-6.
    Titov, V.S., D′emoulin, P.: 1999, Basic topology of twisted magnetic con(?)gura-tions in solar (?)ares. Astron. Astrophys. 351, 707–720.
    Toro, E.F., Titarev, V.A.: 2005, ADER schemes for scalar non-linear hyper-bolic conservation laws with source terms in three-space dimensions. Journal ofComputational Physics 202, 196–215. doi:10.1016/j.jcp.2004.06.014.
    Toth, G.: 1996, A General Code for Modeling MHD Flows on Parallel Com-puters: VersatileAdvection Code. In: Y. Uchida, T. Kosugi, & H. S. Hudson(ed.) IAU Colloq. 153: Magnetodynamic Phenomena in the Solar Atmosphere -Prototypes of Stellar Magnetic Activity, 471.
    T′oth, G.: 2000, The (?)·B = 0 Constraint in Shock-Capturing Magnetohydro-dynamics Codes. J. Comput. Phys. 161, 605–652. doi:10.1006/jcph.2000.6519.
    
    T′oth, G., Sokolov, I.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., De Zeeuw,D.L., Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell,K.G., Ridley, A.J., Roussev, I.I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin,S., Chan, A., Yu, B., K′ota, J.: 2005, Space Weather Modeling Framework:A new tool for the space science community. Journal of Geophysical Research(Space Physics) 110(A9), 12226. doi:10.1029/2005JA011126.
    T′oth, G., de Zeeuw, D.L., Gombosi, T.I., Powell, K.G.: 2006, A parallel ex-plicit/implicit time stepping scheme on block-adaptive grids. J. Comput. Phys.217, 722–758. doi:10.1016/j.jcp.2006.01.029.
    Ugai, M.: 1999, Computer studies on the spontaneous fast reconnec-tion model as a nonlinear instability. Physics of Plasmas 6, 1522–1531.doi:10.1063/1.873405.
    Usmanov, A.V.: 1996, A global 3-D MHD solar wind model with Alfv′en waves.In: D. Winterhalter, J. T. Gosling, S. R. Habbal, W. S. Kurth, & M. Neugebauer(ed.) American Institute of Physics Conference Series, American Institute ofPhysics Conference Series 382, 141–144. doi:10.1063/1.51468.
    Valori, G., Kliem, B., Fuhrmann, M.: 2007, Magnetofrictional Extrapola-tions of Low and Lou’s Force-Free Equilibria. Solar Phys. 245, 263–285.doi:10.1007/s11207-007-9046-y.
    Valori, G., Kliem, B., Keppens, R.: 2005, Extrapolation of a nonlinear force-free (?)eld containing a highly twisted magnetic loop. Astron. Astrophys. 433,335–347. doi:10.1051/0004-6361:20042008.
    Vinokur, M.: 1974, Conservation Equations of Gasdynamics in Curvilinear Co-ordinate Systems. Journal of Computational Physics 14, 105. doi:10.1016/0021-9991(74)90008-4.
    Viviand, H.: 1975, Conservation forms of gas dynamic equations. In: itsAerospace Research, Bi-monthly Bull. No. 1974-1 (ESRO-TT-144) p 153-159
    (SEE N75-29988 20-99) Transl. into ENGLISH from La Rech. Aerospatiale,Bull. Bimestriel (Paris), no. 1974-1, Jan.-Feb. 1974 p 65-66, 153–159.
    Wang, Y., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal (?)ux-tubeexpansion. Astrophys. J. 355, 726–732. doi:10.1086/168805.
    Wang, Y., Nash, A.G., Sheeley, N.R. Jr.: 1989, Magnetic (?)ux transport on thesun. Science 245, 712–718. doi:10.1126/science.245.4919.712.
    Wang, Y., Sheeley, N.R. Jr., Lean, J.: 2002, Meridional Flow and the SolarCycle Variation of the Sun’s Open Magnetic Flux. Astrophys. J. 580, 1188–1196. doi:10.1086/343845.
    Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, ILCT: Recover-ing Photospheric Velocities from Magnetograms by Combining the InductionEquation with Local Correlation Tracking. Astrophys. J. 610, 1148–1156.doi:10.1086/421767.
    Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An Optimization Ap-proach to Reconstructing Force-free Fields. Astrophys. J. 540, 1150–1155.doi:10.1086/309355.
    Wiegelmann, T.: 2004, Optimization code with weighting function forthe reconstruction of coronal magnetic (?)elds. Solar Phys. 219, 87–108.doi:10.1023/B:SOLA.0000021799.39465.36.
    Wiegelmann, T.: 2008, Nonlinear force-free modeling of the solar coronal mag-netic (?)eld. J. Geophys. Res. 113, 3. doi:10.1029/2007JA012432.
    Wissink, A., Meakin, R.: 1997, On parallel implementations of dynamic oversetgrid methods. In: ACM/IEEE 1997 Conference Supercomputing, 15–15.
    Wu, S.T., Wang, J.F.: 1987, Numerical tests of a modi(?)ed full implicit contin-uous Eulerian (FICE) scheme with projected normal characteristic boundaryconditions for MHD (?)ows. Computer Methods in Applied Mechanics and Engi-neering 64(1-3), 267–282.
    Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P.,Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves ob-served by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106,25089–25102. doi:10.1029/2000JA000447.
    Wu, S.T., Wang, A.H., Liu, Y., Hoeksema, J.T.: 2006, Data-driven Magnetohy-drodynamic Model for Active Region Evolution. Astrophys. J. 652, 800–811.doi:10.1086/507864.
    Wu, S.T., Wang, A.H., Gary, G.A., Kucera, A., Rybak, J., Liu, Y., Vr′snak, B.,Yurchyshyn, V.: 2009, Analyses of magnetic (?)eld structures for active region10720 using a data-driven 3D MHD model. Advances in Space Research 44,46–53. doi:10.1016/j.asr.2009.03.020.
    Yang, W.H., Sturrock, P.A., Antiochos, S.K.: 1986, Force-free magnet-ic (?)elds - The magneto-frictional method. Astrophys. J. 309, 383–391.doi:10.1086/164610.
    Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2007, Modelling the GlobalSolar Corona: Filament Chirality Observations and Surface Simulations. SolarPhys. 245, 87–107. doi:10.1007/s11207-007-9013-7.
    Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Modelling the GlobalSolar Corona II: Coronal Evolution and Filament Chirality Comparison. SolarPhys. 247, 103–121. doi:10.1007/s11207-007-9097-0.
    Yeh, T., Dryer, M.: 1985, A constraint on boundary data for magnet-ic solenoidality in MHD calculations. Astrophys. Spa. Sci. 117, 165–171.doi:10.1007/BF00660919.
    Zachary, A.L., Malagoli, A., Colella, P.: 1994, A higher-order godunov methodfor multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput.15(2), 263–284. doi:http://dx.doi.org/10.1137/0915019.
    Zhang, M.J., Yu, S.T.J., Chang, S.C.: 2004, Solving the Navier-Stokes Equa-tions by the CESE Method. AIAA Paper 75.
    Zhang, M., John Yu, S., Henry Lin, S., Chang, S., Blankson, I.: 2006, Solvingthe MHD equations by the space time conservation element and solution elementmethod. J. Comput. Phys. 214, 599–617. doi:10.1016/j.jcp.2005.10.006.
    Zhang, Z., Yu, S.T.J., Chang, S.: 2002, A Space-Time Conservation Elementand Solution Element Method for Solving the Two- and Three-DimensionalUnsteady Euler Equations Using Quadrilateral and Hexahedral Meshes. Journalof Computational Physics 175, 168–199. doi:10.1006/jcph.2001.6934.
    Zhou, Y.F., Feng, X.S.: 2008, Numerical study of successive CMEs duringNovember 4–5, 1998. Science in China Series E: Technological Sciences 51(10),1600–1610.
    Zhou, Y.F., Feng, X.S., Wu, S.T.: 2008, Numerical Simulation of the 12 May1997 CME Event. Chinese Physics Letters 25, 790.
    Ziegler, U.: 1998, NIRVANA + : An adaptive mesh re(?)nement code forgas dynamics and MHD. Computer Physics Communications 109, 111–134.doi:10.1016/S0010-4655(98)00022-8.
    Ziegler, U.: 2003, Adaptive Mesh Re(?)nement in MHD Modeling. Realization,Tests and Application. In: E. Falgarone & T. Passot (ed.) Turbulence and Mag-netic Fields in Astrophysics, Lecture Notes in Physics, Berlin Springer Verlag614, 127–151.
    Ziegler, U.: 2008, The NIRVANA code: Parallel computational MHD withadaptive mesh re(?)nement. Computer Physics Communications 179, 227–244.doi:10.1016/j.cpc.2008.02.017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700