激光等离子体中有质动力驱动磁重联与引力等离子体中磁调制不稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题已成为制约当今社会发展的重要因素。多束高功率激光驱动的惯性约束核聚变是研究解决这一全球性问题的可行方案之一。在多束激光辐照靶面的实验中重复观察到磁重联的快速发生,但现有模型并未给出令人信服的解释。对激光等离子体中的快速磁重联研究,不仅可为推动激光聚变的实现提供理论支持,而且能推广应用到其他等离子体环境中的磁重联及其相关现象,如磁约束装置。另一方面,利用等离子体物理的研究方法,在牛顿引力近似下的引力等离子体研究已经得到了很多重要的结果,如土星环、星系旋臂结构、大尺度Pancake结构的形成和Titius-Bode定则等;在更为精确地后牛顿近似下,考虑粒子流引起的磁性引力场的作用,将得到引力系统更为全面的规律,为引力场理论的完善和发展提供新的思路。
     本论文首先基于激光等离子体中磁重联的研究进展,将有质动力驱动的磁重联模型拓展应用到离子处于多电荷态的激光等离子体中,并首次用来解释两束激光与铝靶相互作用的快速磁重联实验。研究表明有质动力驱动的快速磁重联模型所得到的重联时标和等离子体喷流速度与实验观测结果一致,这意味着两束激光与铝靶作用的快速磁重联可以由有质动力驱动磁重联模型很好的解释。
     其次,在后牛顿和弱场近似下,基于描述波-波、波-粒的非线性相互作用得到自生磁性引力包络场非线性控制方程,我们研究了自引力系统的磁调制不稳定性。研究结果表明,自引力系统是调制不稳定的;而且,纵扰动不稳定性导致的特征尺度大于横扰动的特征尺度,这种不稳定将导致甚大尺度上初始均匀的背景物质处于各向异性状态;同时由于不稳定性导致扰动物质密度、电性引力场以及自生低频磁性引力场的各向异性坍塌;最终将形成旋转的盘状天体。
     最后,我们对本论文的主要工作进行了简要总结,并对后续工作进行了展望。
With the social development, energy problem have become the bottleneck restriction factor for the social progress. The inertial confined fusion driven by multi-beam of high power lasers is a feasible way to solve the global problem. The fast magnetic reconnection phenomenon has been repeatedly observed in laser plasma experiments with multi-beam lasers irradiated target, but the convincing explanations have not been given by the existing models. Identify the mechanism that driven the fast magnetic reconnection can provide theoretical support to promote the realization of the laser fusion, and also can be extended to the studies of the magnetic reconnection and related phenomena in other plasma environment, such as magnetic confinement devices. On the other hand, based on the analogy between the plasma and gravitating media, and the research experience of linear and nonlinear plasma physics, it has obtained a lot of important results in the frame the Newton's gravity approximation, such as the rings of Saturn, the clustering structures, the large-scale pancake structures and the law of Titius-Bode, and so on. Under the more accurately Post-Newton approximation, the gravito-magnetic field effect will be considered, and more actual law for the gravity system will be obtained. It may make perfect to the gravitational field theory and provide some new ideas for development of the gravitational field theory.
     Firstly, we extend the model of fast magnetic reconnection to include plasmas with multiple-charged ions that we then apply to two-beam laser-solid interactions. Properties of the magnetic reconnection process, such as the reconnection time scale and jet velocity, are obtained with classical values of the Spitzer resistivity. The results are consistent with experimental measurements, which indicate that the phenomenon of fast magnetic reconnection can be well described by our model for magnetic reconnection driven by ponderomotive force.
     Secondly, under the approximation of Post-Newtonian as well as the weak-field, the modulational instabilities for longitudinal and transverse gravito-electromagnetic perturbations are investigated on the basis of the self-generated gravitomagnetic field equations in a self-gravitating system. The results indicate that the self-gravitating system is modulational instability. The characteristic scale of longitudinal perturbation is much larger than the transverse one. The anisotropic accumulation of matter and the generation of a gravitomagnetic field are in favor of the formation of a rotationally pancake-like structure.
     Finally, the summary of this paper have been given briefly, and prospects of the future work have been proposed.
引文
[1]Tonks L and Langmuir I. Oscillations in onized Gasses [J]. Phys.Rev.1929,33:195.
    [2]马腾才,胡希伟,陈银华.等离子体物理原理[M].合肥:中国科技大学出版社,1988.
    [3]克拉尔,特里维尔皮斯.等离子体物理学原理[M].北京:原子能出版社,1983.
    [4]徐家峦,金尚先.等离子体物理[M].北京:原子能出版社,1981.
    [5]胡希伟.等离子体理论基础[M].北京:北京大学出版社,2006.
    [6]李晓卿.等离激元坍塌动力学[M].北京:中国科技出版社,2004
    [7]郑春开.等离子体物理[M].北京:北京大学出版社,2009.
    [8]Boyd T J M and Sanderson J J, The Physics of Plasmas[M]. Cambridge university press, 2003.
    [9]Miyamoto K., Plasmas Physics for Nuclear Fusion[M]. Cambridge:MIT,2004.
    [10]Braginski S I.. Reviews of Plasma Physics[M], New York:Consultants Bureau,1965.
    [11]Maine P, Strickland D, Bado P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics,1988,24:398-403.
    [12]Mourou G A. The ultrahigh-peak-power laser:present and future[J]. Applied Physics B, 1997,65:205-211.
    [13]Perry M D. Crossing the patawatt threshold[J]. Science and Technology Review,1996: 4-11.
    [14]张钧,常铁强.激光核聚变靶物理基础[M].北京:国防工业出版社,2004.
    [15]Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express,2008,16(3):2109-2114.
    [16]Schirber M. For Nuclear Fusion, Could Two Lasers Be Better Than One [J]. Science,2005, 310,1610-1611.
    [17]Dunne M., A high-power laser fusion facility for Europe[J]. Nature Physics,2006,2:2-5.
    [18]Sprangle P, Esarey E., Krall J.. Laser driven electron acceleration in vacuum, gases, and plasmas [J]. Phys.Plasma.,1996,3:2183-2190.
    [19]Umstadter D. et al., Nonlinear optics in relativistic plasmas and laser wake field acceleration of electron [J]. Science,1996,173:472-475.
    [20]Eder D C, et al., Tabletop x-ray lasers [J]. Phys.Plasmas.1994,1:1744-1752.
    [21]Lemoff B E, et al., Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8nm in Xe Ix [J]. Phys. Rev. Lett.,1995,74:1574-1577.
    [22]Zhou J, et al. Enhanced high-harmonic generation using 25fs laser pulses [J]. Phys. Rev. Lett.,1996,76:752-755.
    [23]Sprangle P and Esarey E, Stimulated backscattered harmonic generation from intense laser laser interactions with beams and plasmas [J]. Phys. Rev. Lett.,199167:2021.
    [24]Ren C, Duda B J, Hemker R G, et al., Compressing and focusing a short laser pulse by a thin plasma lens [J]. Phys. Rev. E,2001,63:26411.
    [25]Hubbard R F, Hafuzi B, Ting A, et al., High intensity focusing of laser pulses using a short plasma channel lens [J]. Phys. Plasmas.,2002,9:1431-1442.
    [26]Parpal J.L., Mercure H. P., G.R.Mitchel.A laser-triggered spark gap for 750kv,20ns risetime impulse generator [J]. IEEE,Trans.Electr.Insul.,1989,24(6):1191-1197.
    [27]Jlames A. Maniscalco, Inertial confinement fusion[J], Ann. Rev. Energy.1980,5.33-60.
    [28]常铁强,张钧,张家泰等.激光等离子体相互作用与激光聚变[M].湖南:湖南科学技术出版社,1990.1-2.
    [29]彭惠民,王世绩.x射线激光[M],北京:国防工业出版社,1997.
    [30]Tai K., Hasegawa A., and Tomita A.. Observation of modulational instability in optical fibers [J]. Phys. Rev. Lett.,1986,56(2):135-138.
    [31]Thornhill S. G., ter Haar D.. Langmuir turbulence and modulational instability [J]. Phys. Rep.,1978,43(2):43-99.
    [32]Amiranoff F., Laberge M., Marques J. R., et al. Observation of modulational instability in Nd-laser beat-wave experiments [J]. Phys. Rev. Lett.,1992,68(25):3710-3713.
    [33]Franco P., Fontana F., Cristiani I., Midrio M., and Romagnoli M.. Self-induced modulational-instability laser [J]. Opt. Lett.,1995,20(19):2009-2011
    [34]Yates M. A., van Hulsteyn D. B., Rutkowski H., Kyrala G. and brackbill J. U.. Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets [J]. Phys. Rev. Lett.,1982,49(23):1702-1704.
    [35]Sharma P. and Sharma.R. P. Generation of Langmuir turbulence and stochastic acceleration in laser beat wave process [J]. Laser and Particle Beams,2010,28(2):285-292.
    [36]Tripathi V. K. and Liu C. S.. Self-generated magnetic field in an amplitude modulated laser filament in a plasma [J]. Phys. Plasmas,1994, 1(4):990-992.
    [37]Robinson A. P. L. and Sherlock M.. Magnetic collimation of fast electrons prodeuced by ultraintense laser irradiation by structuring the target compositon [J]. Phys. Plasmas,2007, 14,0831051.
    [38]Graham D. B., Skjaeraasen O., Robinson P. A. and Cairns. I. H. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra and field statistics [J]. Phys. Plasmas, 2011,18,062301.
    [39]Berge L.. Wave collapse in physics:principles and applications to light and plasma waves [J]. Phys. Rep.,1998,330(5-6):259-370
    [40]Robinson P. A.. Nonlinear wave collapse and strong turbulence [J]. Rev. Mod. Phys.,1997, 69(2):507-574
    [41]Shimada Y., Mishimura H., Nakai M., et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams [J]. Appl. Phys. Lett.,2005,86,051501
    [42]Baykai Y., Eyyuboglu H. T., and Cai Y. J., Scintillations of partially coherent multiple Gaussian beams in turbulence [J]. Appl. Opt.,2009,48(10):1943-1954
    [43]Robinson A. P. L., Neely D., McKenna P. and Evans R. G. Spectral control in proton acceleration with multiple laser pulses [J]. Plasma Phys. Control. Fusion,2007, 49(4):373-384.
    [44]Glenzer S. H., MacGowan B. J., Michel P., et al. Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies [J]. Science,2011,327:1228-1231.
    [45]Kirkwood R. K., Moody J. D., Langdon A. B. et al. Observation of saturation of energy transfer between co-propagation beams in a flowing plasmas [J]. Phys. Rev. Lett.,2002,89, 215003.
    [46]Stamper J. A., Papadopoulos K., Sudan R. N., et. al., Spontaneous magnetic fields in laser-produced plasmas [J]. Phys. Rev. Lett.,1971,26,1012.
    [47]Colombant D. G. and Winsor N. K.. Thermal-force terms and self-generated magnetic fields in laser produced plasmas [J]. Phys. Rev. Lett.,1977,38(13):697-701.
    [48]Mackinnon A. J., Patel P. K., Town R. P., et. al., Rroton radiography as an electromagnegtic field and density perturbation diagnostic [J]. Rev. Sci. Instrum.,2004,75(10):3531-3536.
    [49]Li C. K., Seguin F. H., Frenje J. A., et. al., Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography [J]. Phys. Rev. Lett.,2006,97,135003.
    [50]Braginskii S. I., Review of Plasma Physics 1 [M], New York:Consultants Bureau,1965.
    [51]Haines M. G., Saturation mechanisms for the generated magnetic field in nonuniform laser-matter irradiation [J]. Phys. Rev. Lett.,1997,78,254-257.
    [52]Prest E. and Forbes T., Magnetic Reconnection:MHD Theory and Applications[M], Cambridge:Cambridge University Press,2000.
    [53]Yamada M., Kulsrud R. and Ji H., Magnetic reconnection[J], Reviews of Moden Physics, 2010,82,603.
    [54]Parker E., Cosmical Magnetic Fields[M], Oxford:Clarendon,1979.
    [55]Kulsrud R., Magnetic reconnection in a magnetohydrodynamic plasmas [J]. Phys. Plasmas, 1998,5,1599-1606.
    [56]Biskamp D., Magnetic Reconnection in Plasmas[M], Cambridge:Cambridge University Press,2000.
    [57]Sweet P. A., The neutral point theory of solar flares[M], In Electromagnetic Phenomena in Cosmic Physics, ed. B Lehnert, London:Cambridge Univ. Press,1958.123-134.
    [58]Parker E., Sweet's mechanism for merging magnetic fields in conducting fluids[J], J. Geophys. Res.,1957,62,509-520.
    [59]Askar'yan G. A., Bulanov S. V., Pegoraro F., et. al., Magnetic interaction of self-focused channels and magnetic wake excitation in high intensity laser pulses [J]. Comm. Plasma Phys. Contr. Fusion,1995,17,35.
    [60]Nilson P. M., Willingale L., Kaluza,M. C. et al. Magnetic reconnection and plasma dynamics in two-beam laser-solid interaction [J]. Phys. Rev. Lett.,2006,97(25),255001.
    [61]Nilson P. M., Willingale L., Kaluza M. C., et. al., Bidirectional jet formation during driven magnetic reconnection in two-beam laser-plasma interactions [J]. Phys. Plasmas,2008,15, 092701.
    [62]Li C. K., Seguin F. H., Frenje J. A. et al. Observation of magaguass-field topology changes due to magnetic reconnection in laser-produced plasmas [J]. Phys. Rev. Lett.,2007,99(5), 055001.
    [63]Li X. Q., Zhang Z. D. and Smartt R. N., Magnetic reconnection theory for coronal loop interaction [J], Astron. Astrophys.,1994,290:963-971.
    [64]Li X. Q. and Zhang Z. D., Magnetic reconnection by Langmuir solitons[J], The Astrophysical Journal,1997,479:1028-1034.
    [65]Remington B, Arnett D, Drake P, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science,1999,248:1488-1493.
    [66]Chen P. Laboratory Investigations of the Extreme Universe[J]. Association of Asia Pacific Physical Societies bulletin,2003,13:3-10.
    [67]Woolsey N C, Courtois C, Dendy R O. Laboratory plasma astrophysics simulation experiments using lasers[J]. Plasma Physics and Controlled Fusion,2004,46:B397-B405.
    [68]Remington B, Drake R, Ryutov D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of modern physics,2006,78:755-807.
    [69]Levinson A, Blandford R. Raman scattering in high-radio-brightness astrophysical systems: application to active galactic nuclei[J]. Monthly Notices of the Royal Astronomical Society, 1995,274:717-729.
    [70]Bell A R, Choi P, Dangor A E, et al. Collisionless shock in a laser-produced ablating plasma[J]. Physical review A,1988,38:1363-1369.
    [71]Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers[J]. Phys Plasmas,2000,7:1641-1652.
    [72]Woolsey N, Alil Y A, Evans R G, et al. Collisionless shock and supernova remnant simulations on VULCAN[J]. Physics of Plasmas,2001,8:2439-2435.
    [73]Perry T S, Klein R I, Bach D R, et al. Temperature and Density Measurements of the Collision of Two Plasmas[J]. The Astrophysical Journal Supplement Series,2000,127: 437-443.
    [74]Farley D R, Estabrook K G, Glendinning S G, et al. Radiative jet experiments of astrophysical interest using intense lasers[J]. Physical Review Letters,1999,83:1982-1985.
    [75]Takabe H Nagatomo, H, Sunahara A, et al. Recent studies of laser produced plasmas[J]. Plasma Physics and Controlled Fusion,1999,41:A75-A97.
    [76]Ambartsumain V. A.. On the Evolution of Stellar Systems (George Darwin Lecture).The Scientific Papers, V. 1, Ereavan,1960.
    [77]Antonov V. A., Remarks on the problem of stability in stellar dynamics. Astron. Zh.,1960, 37,918.
    [78]Lynden-Bell D., The stability and vibrations of a gas of stars [J]. Monthly Notices Roy-Astron. Soc.,1962,124,279-296.
    [79]Sweet P., Co-operative phenomena in stellar dynamics [J]. Monthly Notices Roy-Astron. Soc.,1963,125,285-306.
    [80]Li X. Q., Nonlinear structures of self-gravitating system[J], Astron. Astrophys.,1990,227: 317-323.
    [81]Weinberg S., Gravitation and Cosmology[M], New York London Sydney Toronto:John Wliey & Sons Inc.,1972.
    [82]Li X. Q., Liu S. Q. and Tao X. Y., Gravitoelectromagnetic cavitons in the kinetic regime[J], Ann. Phys. (Berlin),2009,18(6),436-453.
    [83]Peng H., On Calculation of Magnetic-Type Gravitation and Experiments [J]. Gen. Rel. Grav.,1983,15,725-735.
    [84]Fridman A. M. and Polyachenk V. L., Physics of Gravitating System Ⅱ[M], Translated by A. B. Aries and N. Poliakoff Igor, Berlin:Springer-Verlag,1984.
    [85]Zhang H., Li X. Q. and Ma Y. H., N-soliton pattern in a self-gravitating fluid disk[J]. Phys. Rev. E.,1998,57(1):1114-1117.
    [86]Li X. Q. and Zhang H., Nonlinear structures in self-gravitating disks[J], Astron. Astrophys., 1995,294:339-344.
    [87]Li X. Q., Zhang H. and Li Q. B., Self-similar collapse in nebular disk and the Titius-Bode law [J], Astron. Astrophys.,1995,304:617-621.
    [88]Li X. Q. and Zhang H., Acceleration of flare protons by Langmuir plasmons[J], Chinese Phys. Lett.2002,19(2):283-285.
    [89]Zhang T X and Li X Q. Nonlinear structures of self-gravitating system in stable modes[J], Astron. Astrophys.,1995,294:339-344.
    [90]Li X. Q. and Li L. H., Large-scale pancake structures in the universe[J], Chinese Phys. Lett.,1992,9(5):277-280.
    [91]Weber J., Gravitational Waves, in:Gravitation and Relativity[M], New York:W. A. Benjamin,1964. Chapter 5,90-105.
    [92]Thorne K. S., Price R. H. and MacDonald D. A., Black Holes:The Membrane Paradigm [M], New Haven, CT:Yale University Press,1986.
    [93]Vlasov M. A., Instability of an Inhomogeneous Plasma[J], JETP,1965,2:174-177.
    [94]Li X. Q. and Zhang H., Cosmological primeval perturbation spectra in mldly nonlinear regime [J], Astrophys. Space Sci.,1997,250:175-188.
    [95]王水,李罗权.磁场重联[M].合肥:安徽教育出版社,1999
    [96]Tsuneta S, Hara H, Shimizu T, et al., Observation of a solar flare at the limb with the Yohkoh Soft X-ray Telescope[J]. Publ Astron Soc Jpn,1992,44:L63-L69
    [97]Cargill P A, Klimchuk J A., A nanoflare explanation for the heating of coronal loops observed by Yohkoh[J], Astrophys J,1997,478:799.
    [98]Nishida A. Geomagnetic Diagnostics of the Magnetosphere[M]. New York:Springer,1978.
    [99]Ge Y S, Russell C T. Polar survey of magnetic field in near tail:Reconnection rare inside 9 RE[J]. Geophys Res Lett,2006,33:L02101
    [100]Wesson J. Tokomaks[M]. New York:Oxford University Press,1997
    [101]McPherron R L. Physical processe producing magnetospheric substorms[M], In: Jacobs J, eds. Geomagnetism, London:Academic Press,1991.593-739
    [102]NASA Office of Space Science. Sun-Earth Connection Roadmap:Strategic Planning for the Years 2000-2020[M], Washington, DC:NASA,1997
    [103]Giovanelli R G. A theory of chromospheric flares[J]. Nature,1946,158:81-82.
    [104]Hoyle F., Some recent researches in solar physics[M], Cambridge:Cambridge Univ. Press,1949.
    [105]Lyons L. R. and Williams D. J., Quantitative aspects of magnetosperic physics[M], Reidel:Dordrecht,1984.
    [106]Tandberg-Hanssen E. and Emsile A. G., The physics of solar flares[M], Cambridge: Cambridge Univ. Press,1988.
    [107]Cowling T. G., Solar electrodynamics[M], in The Sun, ed. G. P. Kuiper, Chicago:Univ. Chicago Press,1953,532-591.
    [108]Dungey J. W., Conditions for the occurrence of electrical discharges in astrophysical systems[J], Phil. Mag.1953.44:725-738.
    [109]Parker E. N., The solar flare phenomenon and theory of reconnection and annihilation of magnetic fields[J], Astrophys. J. Supp.1963.8:177-211.
    [110]Petschek H. E., Magnetic field annihilation[M], in Physics of Solar Flares, ed. W. N. Hess, NASA SP-50, Washington, DC,1964,425-439.
    [111]Furth H. P., Killeen J. and Rosenbluth M. N., Finite-resistivity instabilities of a sheet pinch[J], Phys. Fluids,1963,6,459-484.
    [112]Wang Z. X., Wang X. G., Dong J. Q., et al. Fast resistive reconnection regime in the nonlinear evolution of double tearing modes[J], Physics Review Letters,2007,99:185004.
    [113]Shay M A, Drake J F, Rogers B N, et al. Alfvenic collisionless magnetic reconnection and the Hall term[J]. J Geophy Res,2001,106:3759-3772
    [114]Ma Z W, Bhattacharjee B. Hall magnetohydrodynamic reconnection:The geospace environment modeling challenge[J]. J Geophys Res,2001,106:3773-3782
    [115]Wesson J. A., Sawtooth Reconnection[J], Nucl. Fusion,1990,30,2545.
    [116]Zakharov L. E. and Rogers B. N., Two-fluid magnetohydrodynamic description of the kink mode in tokamak [J]. Phys. Fluids B,1992,4:3285-3301.
    [117]Wang X. and Bhattacharjee A., Nonlinear dynamics of the m=1 kink-tearing instability in a modified magnetohydrodynamic model [J]. Phys. Plasmas,1995,2,171-182.
    [118]Aydemir A. Y., Magnetohydrodynamic modes driven by anomalous electron viscosity and their role in fast sawtooth crashes [J]. Phys. Fluids B,1990,2,2135.
    [119]Yu Qingquan, A new theoretical model for fast sawtooth collapse [J]. Nucl. Fusion, 1995,35,1012-1014.
    [120]Priest E. R., Magnetic reconnection on the sun[J], Mit. Astron. Ges.1986,65,41-51.
    [121]Biskamp D., Magnetic reconnection via current sheets[J], Phys. Fluids, 1986, 29, 1520- 1531.
    [122]Uzdensky D. A. and Kulsurd R. M., On the viscous boundary layer near the center of the resistive reconnection region[J], Phys. Plasmas, 1998, 5, 3249-3256.
    [123]Rechester A. B. and Stix T. H., Magnetic braiding due to weak asymmetry[J], Phys. Rev. Lett., 1976,36,587-591.
    [124]Schnack D. and Killeen J., Linear and nonlinear calculations of the tearing mode[M], in Theoretical and Computational Plasma Physiacs(IAEA, Vienna), 1978, 337-369.
    [125]Matthaeus W. H. and Montgomery D., Nonlinear evolution of the sheet pinch[J], J. Plasma Phys., 1981,25, 11-41.
    [126]Lu Q M, Huang C, Xie J L, et al. Features of separatrix regions in magnetic reconnection: Comparison of 2D particle-in-cell simulations and Cluster observations[J]. J Geophys Res, 2010, 115: A11208
    [127]Sakai J. -I., Forced reconnection by fast magnetosonic waves in a current sheet with stagnation-point flows[J], J. Plasma Phys., 1983, 30, 109-124.
    [128]Biskamp D. and Welter H., Dynamics of decaying 2D MHD turbulence[J], Phys. Fluids B, 1989, 1, 1964-1979.
    [129]Pouquet A., On two-dimensional MHD turbulence[J], J. Fluid Mech., 1978, 88, 1-16.
    [130]Li X. Q. and Ma Y. H., Self-generated magnetic field by transverse plasmons in celestial bodie[J]s, Astron. Astrophys., 1993, 270, 534-542.
    [131]Korobkin V V, Serov R V. Investigation of the magnetic field of a spark produced by focusing laser radiation[J]. Journal of Experimental and Theoretical Physics Letters, 1966, 4: 70-72
    [132]Stamper J A, Papadopoulos K, Sudan R N, et al. Spontaneous magnetic fields in laser-produced plasmas[J]. Physical Review Letters, 1971, 26: 1012~1015.
    [133]Yates M A, van Hulsteyn D B, Rutkowski H, et al. Experimental evidence for self-generated magnetic fields and remote energy deposition in Laser-irradiated targets[J]. Physical Review Letters, 1982,49: 1702-1704.
    [134]Borghesi M, MacKinnon A J, Bell A R, et al. Megagauss Magnetic Field Generation and Plasma Jet Formation on Solid Targets Irradiated by an Ultraintense Picosecond Laser Pulse[J]. Physical Review Letters 1998, 81:112—115
    [135]Najmudin Z, Tatarakis M, Pukhov A, et al. Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma[J]. Physical Review Letters, 2001,87:215004.
    [136]Wagner U, Tatarakis M, Gopal A, et al. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas[J]. Physical review E, 2004, 70: 026401.
    [137]Stambulchik E, Tsigutkin K, Maron Y. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude[J]. Physical Review Letters,2007,98:225001.
    [138]Tatarakis M, Watts I, Beg F N, et al. Measuring huge magnetic fields[J]. Nature,2002, 415:280-280.
    [139]Bell A R. Magnetohydrodynamic jets[J].Physics of plasmas,1994,1:1643-1652
    [140]Gorbunov L M, Mora P, Jr Antonsen T M. Magnetic field of a plasma wake driven by a laser pulse[J]. Physical Review Letters,1996,76,2495-2498.
    [141]Khachatryan A G. Magnetic field of a relativistic nonlinear plasma wave[J]. Physics of plasmas,2000,7:5252-5254.
    [142]Shukla P K, Rao N N, Yu M Yet al. Relativistic nonlinear effects in plasmas. Physics Reports,1986,138:1-149.
    [143]Bychenkov V Yu, Silin V P, Tikhonchuk V T. Excitation of electromagnetic fields in an inhomogeneous plasma by an anisotropic ionization pulse. Journal of Experimental and Theoretical Physics,1991,73:241-248.
    [144]Sudan R N. Mechanism for the generation of 109G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target[J]. Physical Review Letters, 1993,70:3075-3078.
    [145]Steiger A D, Woods C H. Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma[J].Physical review A,1972, 5:1467-1474.
    [146]Berezhiani V I, Mahajan S M, Shatashvili N L. Theory of magnetic field generation by relativistically strong laser radiation[J]. Physical review E,1997,55:995-1001.
    [147]Gorbunov L M, Ramazashvili R R. Magnetic field generated in a plasma by a short, circularly polarized laser pulse[J]. Journal of Experimental and Theoretical Physics,1998, 87:461-467.
    [148]Biermann L. Uber den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum[J]. Zeitschrift fur Naturforschung A,1950,5:65.
    [149]Prasad Y. B. S. R., Barnwal S., Bolkhovitinov E. A., et. al., Study of self-generated magnetic fields in laser produced plasmas using a three-channel polaro-interferometer[J], Rev. Sci. Instrum.2011,82:123506-123511.
    [150]Sakagami Y, Kawakami H, Nagao S, et al. Two-dimensional distribution of self-generated magnetic fields near the laser-plasma resonant-interaction region[J]. Physical Review Letters,1979,42:839-842.
    [151]Bell A R, Davies J R, Guerin S M. Magnetic field in short-pulse high-intensity laser-solid experiments [J]. Physical Review E,1998,58:2471-2473.
    [152]Davies J R, Bell A R, Haines M G, et al. Short-pulse high-intensity laser-generated fast electron transport into thick solid targets[J]. Physical review E,1997,56:7193-7203.
    [153]Bell A R, Davies J R, Guerin S M, et al. Fast-electron transport in high-intensity short-pulse laser-solid experiments[J]. Plasma Physics and Controlled Fusion,1997,39:653-659.
    [154]Weibel E S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution[J]. Physical Review Letters,1959,2:83-84.
    [155]Gruzinov A. Gamma-Ray Burst Phenomenology, Shock Dynamo, and the First Magnetic Fields[J]. The Astrophysical Journal Letters,2001,563,15-18
    [156]Frederiksen J T, Hededal C B, Haugb(?)lle T, et al. Magnetic field generation in collisionless shocks:pattern growth and transport[J]. The Astrophysical Journal Letters, 2004,608:13-16.
    [157]Okada T, Ogawa K. Saturated magnetic fields of Weibel instabilities in ultraintense laser-plasma interactions[J]. Physics of Plasmas,2007,14,072702
    [158]Ramani A, Laval G. Heat flux reduction by electromagnetic instabilities [J]. Physics of Fluids,1978,21:980-991.
    [159]Haines M G. Generation of an axial magnetic field from photon spin[J]. Physical Review Letters,2001,87,135005.
    [160]Shvets G, Fisch N J, Rax J M. Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles[J]. Physical review E, 2002,65,046403.
    [161]Lehner T. Intense magnetic field generation by relativistic ponderomotive force in an underdense plasma[J]. Physica Scripta,1994,49:704-711.
    [162]Chakraborty B, Sarkar S, Das C, et al. Theory of resonant and stimulated excitation of magnetic-moment fields in wave-plasma interactions[J]. Physical review E,1993,47: 2736-2747.
    [163]Deschamps J, Fitaire M, Lagoutte M. Inverse Faraday effect in a plasma[J]. Physical Review Letters,1970,25,1330-1332.
    [164]Horovitz Y, Eliezer S, Ludmirsky A, et al. Measurements of inverse Faraday effect and absorption of circularly polarized laser light in plasmas[J]. Physical Review Letters,1997, 78,1707-1719.
    [165]Horovitz Y, Eliezer S, Henis Z, et al. The inverse Faraday effect in plasma produced by circularly polarized laser light in the range of intensities 109-1014 W/cm2[J]. Physics Letters A,1998,246:329-334.
    [166]Lehner T. Intense magnetic field generation by relativistic ponderomotive force in an underdense plasma[J]. Physica Scripta,1994,49:704-711.
    [167]Liu S Q and Li X Q. Self-generated magnetic field by transverse plasmons in laser-produced plasma[J]. Physics of Plasma,2000,7(8):3405-3412.
    [168]Drake,J. Magnetic explosions in space[J], Nature,2001,410,525.
    [169]Pikel'ner S. B. and Kaplan S. A., Radiophys., Problems of solar flare theory[J], Qu. Electron.,1978,20,904.
    [170]Li X. Q., Song M. T., Hu F. M. and Fang C., Magnetic reconnection mechanism for Type Ⅱ white-light flares[J], Astron. Astrophys.,1997,320,300.
    [171]Krall N. A. and Trivelpiece A. W., Principles of Plasma Physics[M], New York: McGraw-Hill,1973.
    [172]Li X. Q., Liu S. Q., and Tao X. Y., Kinetic Modeling of Self-Generated Magnetic Fields by Transverse Plasmons in the Relativistic Regime, Contrib. Plasma Phys.2008,48, 361.
    [173]Dobrott D., Prager S. C. and Taylor J. B., Influence of diffusion on the resistive tearing mode [J]. Phys. Fluids,1977,20:1850.
    [174]Collins H., Gravity's Shadow:The Search for Gravitational Waves[M], Chicago: University of Chicago Press,2004.
    [175]Weber J., Detection and generation of gravitational waves [J]. Phys. Rev.1960,117, 306.
    [176]Braginsky V. B. and Rudenko V. N., Gravitational waves and the detection of gravitational radiation[J]. Phys. Rep.1978,46 (5):165.
    [177]Hough J., Brown S., and Sathyaprakash B. S., The search for gravitational waves [J].J. Phys. B,2005,38:S497.
    [178]Dimmelmeier H., PhD thesis (Technische Universitat Munchen, Max-Planck-Institut fur Astrophysik, September 14,2001).
    [179]Lee S. M. and Hong S. S., Parker instability in a self-gravitating magnetized gas disk Ⅲ. Nonlinear development of the parker instability [J]. Astrophys. J.,2011,734:101.
    [180]Chang R. X., Hou J. L., Shen S. Y. and Shu C. G., The mass-dependent star formation histories of disk galaxies infall model versus observation [J]. Astrophys. J.,2010,722:380.
    [181]Binney J. and Tremaine S., Galactic Dynamic[M], New Jersey:Princeton University Press,1987.
    [182]Zakharov V. E., in Basic Plasma Physics Ⅱ[M], North-Holland Physics Publishing, 1984,96-120.
    [183]李晓卿.湍动等离子体物理[M].北京:北京师范大学出版社,1987.
    [184]Yang X. S., Liu S. Q. and Li X. Q., Gravito-Magneto-Modulational Instability of a Self-Gravitating System[J], Gravitation and Cosmology,2010,16(4):316-322.
    [185]Landau L. and Lifshitz E. M.,The classical theory of fields[M], Reading Mass. Addison-Wesley,1962.
    [186]Misner C.W., Thorne Kip S. and Wheeler J. A., Gravitation[M], San Francisco:W. H. Freeman and Company,1973.
    [187]Lang K. R., Astrophysical Formulae[M], Springer-Verlag,1974.
    [188]Ostricker J. P. and Gunn J. E., On the Nature of Pulsars I. Theory [J]. Astrophys. J. 1969,157:1395-1418.
    [189]Yang X. S., Liu S. Q. and Li X. Q., Modulational Instability for Gravitoelectro-magnetic Perturbations with Longitudinal and Transverse Modes[J], CHIN. PHYS. LETT., 2011,28(10):100402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700