SnTe高压结构相变与物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碲化锡(SnTe)是一种典型的窄带隙四六族半导体材料,最近理论和实验研究发现它还是一种新型拓扑绝缘体。然而,SnTe高压结构的不确定性严重阻碍了人们对其电子性质的进一步探索。本文我们利用高压同步辐射实验结合第一性原理理论计算方法研究了SnTe的高压结构、相变机制和电子性质随压力的变化行为,得到以下创新性成果:
     1.通过对高压X-ray衍射实验数据、理论计算的热力学稳定性(晶体结构预测)、能垒以及声子模式的系统分析,得出碲化锡在中间相的压力区间是三个正交相Pnma、Cmcm和GeS结构的动态共存,分别建立了低压相,中间相和高压相的相边界,并进一步阐明了相应的相变机制。
     2.通过电子性质的系统研究,发现面心立方相SnTe的带隙随着压强的升高而增大;动量空间的等能面形状发生变化,说明压强还导致了电子拓扑结构相变的产生,这将直接影响SnTe的光学性质和电子输运行为;发现碲化锡的拓扑绝缘态在高压下得以加强;发现压强可以改变SnTe的电子带隙和费米面拓扑行为,进而可以调控一系列物理性质。
     3.高压相(体心立方结构)的电子能带中既存在比较平的能带(提供高局域的电子),又存在陡峭的电子能带(提供快速移动的电子),它们可以促使费米面处电子对的形成和超导转变温度的提高。在相变的边界18GPa,体心立方结构的超导转变温度的计算值为7.16K,与实验上观察到最大值7.5K非常接近。电子能带的计算发现,Pnma和Cmcm结构在存在的压强区间都发生了电子拓扑形貌转变,它们都是弱的金属,在费米面上仅有很小的电子态密度,并且都是超导体,超导转变温度分别是0.010.03K和0.700.37K。
Tin telluride (SnTe) is an exemplary case among IV-VI narrow-gapsemiconductors that exhibit unusual thermodynamic, vibrational, and electronicproperties which find applications in phase-change memory devices, solar cells,thermoelectric generators and infrared detectors. Recent discoveries of novelstructural and electronic states and the latest realization of a new type of topologicalorder in SnTe have reinvigorated strong interest in this fascinating material. It haslong been known that SnTe undergoes pressure-driven phase transitions from theambient-pressure Fm-3m (B1) structure through an intermediate phase to the Pm-3m(B2) structure. However, structural determination of the intermediate phase hasremained an intriguing and longstanding mystery since x-ray diffraction (XRD) isoften insufficient by itself to resolve complex phases, especially those with lowsymmetries. Previous work proposed conflicting structures such as an orthorhombicGeS structure or a pseudo-tetragonal structure. Similar uncertainties exist for otherIV-VI compounds such as SnS, which was proposed to change under pressure fromGeS to monoclinic structure, which is in contradiction to another prediction oftransition to orthorhombic Cmcm structure. Meanwhile, several orthorhombic phaseshave been proposed for the intermediate phases of PbX (X=Te, Se, S) without aconsensus view. These structural uncertainties greatly impede further exploration ofthis important class of materials. Here we unravel the convoluted high-pressure phasetransitions of SnTe using angle-dispersive synchrotron x-ray diffraction combinedwith first-principles structural search. We identify three coexisting intermediate phases of Pnma, Cmcm, and GeS type structure and establish the corresponding phaseboundaries. We further unveil the intricate pressure-driven evolution of the energetics,kinetics and lattice dynamics to elucidate its distinct phase-transition mechanisms.These findings resolve structures of SnTe, which have broad implications for otherIV-VI semiconductors that likely harbor similar novel high-pressure phases.
     Topological insulators are intriguing states of quantum matter characterized byan insulating gap in the bulk and conducting gapless edges or surface states in theboundaries. Their discovery has generated great interest because of the scientificimportance of the observed phenomena and promising potential of these materials forhigh-temperature spintronics applications. Search for additional members of this classof materials has been continuing. Recent theoretical work identified tin telluride(SnTe) as a distinct type of topological crystalline insulator, in which the metallicsurface states are protected by the mirror symmetry of the crystal, in contrast to thetime-reversal symmetry protection in the earlier identified Z2topological insulators.Subsequently, angle-resolved photoemission spectra (ARPES) detected surfaceelectronic states consisting of four Dirac cones (even number of so-calledband-inversion points) in the first surface Brillouin zone, providing experimentalevidence for the topological crystalline insulator phase in SnTe. Most recently, thetopological crystalline insulator phase and topological phase transition have also beenobserved in Pb1-xSnxTe by ARPES measurements. Following these excitingdiscoveries, a pressing task is to explore the behavior the recently identifiedtopological insulating state and characterize its response to external physicalconditions that may alter the underlying fundamental physics. Of particular interestare the possible changes in the stability of its cubic crystalline phase and the natureand size of its electronic band gap, which are essential ingredients for maintaining thetopological insulating state in SnTe. Tin telluride is a direct narrow band gapsemiconductor with a gap of0.18eV (0.30eV) at room (4.2K) temperature. It has been extensively studied over the past several decades, and it has remained a topic ofgreat interest because of its fundamental physics and potential applications inelectronic devices. An unusual feature of the electronic structure of SnTe is that theordering of its conduction and valence band near the Fermi energy is inverted relativeto a normal semiconductor like PbTe whose electronic band structure connects to theatomic limit smoothly. The so-called “negative band gap”(or band inversion) in SnTeoccurs between a valence band maximum near the L points in the Brillouin zone withL6-symmetry and the conduction band minimum with L6+symmetry, which areopposite to those in PbTe. A transition from the normal band structure in PbTe to thatof SnTe with the non-trivial inverted band gap has been illustrated by examining theband gap evolution in Pb1-xSnxTe as a function of alloy composition, which shows thatthe band gap of the alloy initially decreases with increasing value of x, leading to itsfull closure, and then reopens and increases in the inverted direction with furtherrising x. Moreover, ARPES and ab initio calculations revealed complex Fermi surfacestructure near the L points, showing topological changes in the constant-energysurface from disconnected pockets, to open tubes, and then to cuboids as the bindingenergy (or hole-doping) increases. The narrow band gap of SnTe is very sensitive tochanges of external conditions such as pressure, doping, or temperature. Given theessential role of the inverted band gap in the topological insulating state of SnTe, it iscrucial that we establish an understanding of its behavior under changing externalconditions. While the response of the electronic properties of SnTe to changingtemperature and hole-doping has been extensively studied, the effect of pressure onthe structural stability of the cubic phase of SnTe and its electronic properties remainslargely unexplored. In this paper, we present a systematic first-principles study of theinfluence of applied pressure on the structural and electronic properties of thetopological insulating state that exists in the cubic phase of SnTe. We have calculatedthe phonon dispersion curve to examine the dynamic stability of the cubic SnTestructure under pressure, and our results indicate that pressure suppresses a soft optical phonon associated with a structural instability, thus strengthening the cubicphase. Our electronic band structure calculations reveal significant pressure effect onthe topological structure of the Fermi surface and its impact on the chargeredistribution which, in turn, strengthens the bonding and structural stability of thecubic phase. The band structure calculations also show that the electronic band gap ofSnTe increases in size considerably with applied pressure, making the topologicalinsulating state more robust under pressure. These results show that pressure stabilizesand enhances the topological crystalline insulator state of SnTe and effectively tunesits electronic structure and Fermi surface, which are expected to have significantimpact on the transport and optical properties crucial for its applications.
     The fundamental physics and potential application as thermoelectric energyconverters and electronic devices have made SnTe a subject of intense investigation.At ambient conditions, SnTe crystallizes in the face-centered cubic (B1, Fm-3m)structure, and it undergoes a rich variety of structural, electronic, and topologicalphase transitions under changing temperature and pressure conditions. At atmosphericpressure, a phase transition in the temperature range of30-100K is accompanied by acrystal symmetry change from cubic (B1, Fm-3m) to rhombohedral (R3m) driven by asmall dimerization in the unit cell, causing changes in the temperature dependence ofvarious physical properties, e.g., M ssbauer spectroscopy, Raman scattering, electricresistivity, and thermal expansion coefficient. At high pressure, SnTe transforms to abody-centered cubic (B2, Pm-3m) structure that is superconducting with a criticaltemperature (TC) that peaks at~7.5K and then decreases with further increase ofpressure. This result raises several fundamental questions concerning the underlyingmechanism, especially the relation between the pressure induced structural phasetransition and the evolution of the electronic structure and electron-phonon couplingthat is responsible for the observed superconductivity. The electronic band structure ofSnTe exhibits a peculiar behavior in that the ordering of its conduction and valence band near the Fermi energy is inverted relative to those in a normal semiconductor(e.g., PbTe). Recent theoretical predication and experimental angle-resolvedphotoemission spectra demonstrate that the narrow band gap semiconductor SnTe is atopological crystalline insulator, in which the topological nature of the electronicstructures arises from the crystal symmetry rather than the time reversal symmetry.Subsequent calculations show that high pressure can make the topological insulatingstate in SnTe more stable and robust, as evidenced by the hardening of all the phononbranches and the increase of the inverted (negative) band gap under pressure.Furthermore, pressure and doping induced electronic topological changes in theconstant-energy surface in the face-centered cubic structure of SnTe have beenuncovered by ARPES and first-principles calculations. These studies show thatpressure has a strong influence in tuning the electronic properties of SnTe. Thepressure induced B1-B2phase transition of SnTe goes through an intermediatepressure range where some lower-symmetry structures appear. However, an accuratedetermination of the intermediate phase(s) and the phase boundaries has been plaguedby uncertainties in structural identification and refinement. Recently, the highlyconvoluted structural transitions in SnTe at high pressure have been unraveled by anintegrated approach of synchrotron X-ray diffraction measurement combined with thelatest first-principles structural search technique. Among the structures identified inthe intermediate pressure range, two phases with Pnma and Cmcm symmetry aredynamically stable and exhibit interesting and different electronic properties,especially in terms of their band gap and Fermi surface topology. In this paper, wepresent a systematic study of the pressure effect on the electronic properties andelectron-phonon coupling (EPC) in SnTe using first-principles calculations. Our studyreveals a series of pressure-induced transitions of the electronic states in SnTe in thepressure range of0-60GPa between semiconducting, metallic, superconducting andtopological insulating states. In particular, our results show that SnTe becomessuperconducting in the intermediate pressure range well before the transition to the B2 phase occurs. Once the B2phase is established, the strong EPC produces asuperconducting state with a maximum critical temperature of7.16K which is inexcellent agreement with the experimental value of about7.5K. With increasingpressure, our calculations predict a steady decline of TC, which again is in agreementwith experimental observation. These results suggest that our calculations havecaptured the main physics concerning the EPC responsible for superconductivity inSnTe, which gives confidence in our prediction of additional superconducting states inthe intermediate phases, and it may stimulate further experimental investigation insearch of such states.
引文
[1] TRAM EK M, and EMVA B. Synthesis, properties and chemistry of xenon (II)fluoride [J]. Acta Chim. Slov2006,53:105
    [2] HOLLOWAY J H, and HOPE E G. Recent advances in noble-gas chemistry [J].Advances in Inorganic Chemistry1999,46:51
    [3] SMITH D F. Xenon trioxide [J]. Journal of the American Chemical Society1963,85:816
    [4] SANLOUP C, BONEV S A, HOCHLAF M, and MAYNARD-CASELY H E.Reactivity of Xenon with Ice at Planetary Conditions [J]. Phys. Rev. Lett.2013,110:265501
    [5] LOUBEYRE P, LETOULLEC R, and PINCEAUX J-P. Compression of Ar (H2)2up to175GPa: A new path for the dissociation of molecular hydrogen?[J].Physical Review Letters1994,72:1360
    [6] ZHU L, LIU H, ZOU G, and MA Y, Is Missing Xenon in the Earth's Inner Core?[J]. arXiv preprint arXiv:1309.2169
    [7] MIAO M-S. Xe anions in stable Mg-Xe compounds: the mechanism of missingXe in earth atmosphere [J]. arXiv preprint arXiv:1309.0696
    [8] WANG H, JOHN S T, TANAKA K, IITAKA T, and MA Y. Superconductivesodalite-like clathrate calcium hydride at high pressures [J]. Proc. Natl. Acad. Sci.USA2012,109:6463
    [9] PENG F, MIAO M, WANG H, LI Q, and MA Y. Predicted Lithium–BoronCompounds under High Pressure [J]. J. Am. Chem. Soc.2012,134:18599
    [10] HERMANN A, MCSORLEY A, ASHCROFT N W, and HOFFMANN R. FromWade–Mingos to Zintl–Klemm at100GPa: Binary Compounds of Boron andLithium [J]. Journal of the American Chemical Society134:18606
    [11] ZHANG W, OGANOV A R, GONCHAROV A F, ZHU Q, BOULFELFEL S E,LYAKHOV A O, STAVROU E, SOMAYAZULU M, PRAKAPENKA V B, andKONPKOV Z. Unexpected stable stoichiometries of sodium chlorides [J].Science342:1502
    [12] GAO G, ASHCROFT N W, and HOFFMANN R. The Unusual and the Expectedin the Si/C Phase Diagram [J]. Journal of the American Chemical Society135:11651
    [13] KIRKPATRICK S, JR. D G, and VECCHI M P. Optimization by simmulatedannealing [J]. Science1983,220:671
    [14]KIRKPATRICK S. Optimization by simulated annealing: Quantitative studies [J].J. Statist. Phys.1984,34:975
    [15]WALES D J, and DOYE J P. Global optimization by basin-hopping and thelowest energy structures of Lennard-Jones clusters containing up to110atoms [J].J. Phys. Chem. A1997,101:5111
    [16]GOEDECKER S. Minima hopping: An efficient search method for the globalminimum of the potential energy surface of complex molecular systems [J]. J.Chem. Phys.2004,120:9911
    [17]SOLIS F J, and WETS R J-B. Minimization by random search techniques [J].Mathematics of operations research1981,6:19
    [18]MOTHERWELL W S, AMMON H L, DUNITZ J D, DZYABCHENKO A, ERKP, GAVEZZOTTI A, HOFMANN D W, LEUSEN F J, LOMMERSE J P, andMOOIJ W T. Crystal structure prediction of small organic molecules: a secondblind test [J]. Acta Crystallogr. Sect. B: Struct. Sci.2002,58:647
    [19]SCHERAGA H A. Recent developments in the theory of protein folding:searching for the global energy minimum [J]. Biophys. chem.1996,59:329
    [20]PICKARD C J, and NEEDS R. Ab initio random structure searching [J]. J. Phys.:Condens. Matt.2011,23:053201
    [21]PICKARD C J, and NEEDS R J. Metallization of aluminum hydride at highpressures: A first-principles study [J]. Physical Review B2007,76:144114
    [22]PICKARD C J, and NEEDS R. Highly compressed ammonia forms an ioniccrystal [J]. Nat. Mater.2008,7:775
    [23]PICKARD C J, and NEEDS R J. High-Pressure Phases of Silane [J]. Phys. Rev.Lett.2006,97:045504
    [24] GOLDBERG D E, and HOLLAND J H. Genetic algorithms and machinelearning [J]. Machine learning1988,3:95
    [25] DEAVEN D, and HO K. Molecular geometry optimization with a geneticalgorithm [J]. Phys. Rev. Lett.1995,75:288
    [26] LONIE D C, and ZUREK E. XtalOpt: An open-source evolutionary algorithm forcrystal structure prediction [J]. Comput. Phys. Commun.2011,182:372
    [27]TRIMARCHI G, and ZUNGER A. Global space-group optimization problem:Finding the stablest crystal structure without constraints [J]. Phys. Rev. B2007,75:104113
    [28] KOLMOGOROV A, SHAH S, MARGINE E, BIALON A, HAMMERSCHMIDTT, and DRAUTZ R. New Superconducting and Semiconducting Fe-BCompounds Predicted with an Ab Initio Evolutionary Search [J]. Phys. Rev. Lett.2010,105:217003
    [29] BI W, MENG Y, KUMAR R, CORNELIUS A, TIPTON W, HENNIG R, ZHANGY, CHEN C, and SCHILLING J. Pressure-induced structural transitions ineuropium to92GPa [J]. Phys. Rev. B2011,83:104106
    [30]OGANOV A R, and GLASS C W. Crystal structure prediction using ab initioevolutionary techniques: Principles and applications [J]. The Journal of ChemicalPhysics2006,124:244704
    [31]MA Y, EREMETS M, OGANOV A R, XIE Y, TROJAN I, MEDVEDEV S,LYAKHOV A O, VALLE M, and PRAKAPENKA V. Transparent dense sodium[J]. Nature2009,458:182
    [32] MA Y, OGANOV A R, and GLASS C W. Structure of the metallic ζ-phase ofoxygen and isosymmetric nature of the ε-ζ phase transition: Ab initio simulations[J]. Phys. Rev. B2007,76:064101
    [33]XIE Y, OGANOV A R, and MA Y. Novel High Pressure Structures andSuperconductivity of Ca Li2[J]. Physical Review Letters2010,104:177005
    [34]WECK G, DESGRENIERS S, LOUBEYRE P, and MEZOUAR M. Single-crystalstructural characterization of the metallic phase of oxygen [J]. Phys. Rev. Lett.2009,102:255503
    [35] LI B, DING Y, YANG W, WANG L, ZOU B, SHU J, SINOGEIKIN S, PARK C,ZOU G, and MAO H-K. Calcium with the β-tin structure at high pressure and lowtemperature [J]. Proc. Natl. Acad. Sci. USA2012,109:16459
    [36] GOU H, DUBROVINSKAIA N, BYKOVA E, TSIRLIN A A, KASINATHAN D,SCHNELLE W, RICHTER A, MERLINI M, HANFLAND M, and ABAKUMOVA M. Discovery of a superhard iron tetraboride superconductor [J]. PhysicalReview Letters2013,111:157002
    [37] GLASS C W, OGANOV A R, and HANSEN N. USPEX—Evolutionary crystalstructure prediction [J]. Computer Physics Communications2006,175:713
    [38] BAHMANN S, and KORTUS J. EVO—Evolutionary algorithm for crystalstructure prediction [J]. Comput. Phys. Commun.2013,
    [39] LAIO A, and PARRINELLO M. Escaping free-energy minima [J]. Proc. Natl.Acad. Sci. USA2002,99:12562
    [40]WANG Y, LV J, ZHU L, and MA Y. Crystal structure prediction viaparticle-swarm optimization [J]. Physical Review B2010,82:094116
    [41]WANG Y, LV J, ZHU L, and MA Y. CALYPSO: A method for crystal structureprediction [J]. Computer Physics Communications2012,183:2063
    [42]LI Q, ZHOU D, ZHENG W, MA Y, and CHEN C. Global structural optimizationof tungsten borides [J]. Physical review letters2013,110:136403
    [43]LV J, WANG Y, ZHU L, and MA Y. Predicted Novel High-Pressure Phases ofLithium [J]. Physical Review Letters2011,106:015503
    [44] WANG X, WANG Y, MIAO M, ZHONG X, LV J, CUI T, LI J, CHEN L,PICKARD C J, and MA Y. Cagelike diamondoid nitrogen at high pressures [J].Physical Review Letters2012,109:175502
    [45] ZHU L, WANG Z, WANG Y, ZOU G, MAO H, and MA Y. Spiral chain O4formof dense oxygen [J]. Proceedings of the National Academy of Sciences2012,109:751
    [46] ZHAO Z, TIAN F, DONG X, LI Q, WANG Q, WANG H, ZHONG X, XU B, YUD, and HE J, Tetragonal Allotrope of Group14Elements [J]. J. Am. Chem. Soc.2012,134:12362
    [47] XU L-C, WANG R-Z, MIAO M-S, WEI X-L, CHEN Y-P, YAN H, LAU W-M,LIU L-M, and MA Y-M. Two dimensional Dirac carbon allotropes from graphene[J]. Nanoscale2014,6:1113
    [48]LI P, GAO G, and MA Y. Modulated structure and molecular dissociation of solidchlorine at high pressures [J]. The Journal of Chemical Physics2012,137:064502
    [49] ZHU L, WANG H, WANG Y, LV J, MA Y, CUI Q, and ZOU G. Substitutionalalloy of Bi and Te at high pressure [J]. Physical Review Letters2011,106:145501
    [50]WANG Y, LIU H, LV J, ZHU L, WANG H, and MA Y. High pressure partiallyionic phase of water ice [J]. Nature Communications2011,2:563
    [51]NISHIO-HAMANE D, ZHANG M, YAGI T, and MA Y. High-pressure andhigh-temperature phase transitions in FeTiO3and a new dense FeTi3O7structure[J]. Am. Mineral.2012,97:568
    [52]LV J, WANG Y, ZHU L, and MA Y. Particle-swarm structure prediction onclusters [J]. J. Chem. Phys.2012,137:084104
    [53] LUO X, YANG J, LIU H, WU X, WANG Y, MA Y, WEI S-H, GONG X, andXIANG H. Predicting Two-Dimensional Boron–Carbon Compounds by theGlobal Optimization Method [J]. J. Am. Chem. Soc.2011,133:16285
    [54] ZHANG X, WANG Y, LV J, ZHU C, LI Q, ZHANG M, LI Q, and MA Y.First-principles structural design of superhard materials [J]. J. Chem. Phys.2013,138:114101
    [55]SHPORTKO K, KREMERS S, WODA M, LENCER D, ROBERTSON J, andWUTTIG M. Resonant bonding in crystalline phase-change materials [J]. NatureMaterials2008,7:653
    [56]SNYDER G J. Application of the compatibility factor to the design of segmentedand cascaded thermoelectric generators [J]. Applied physics letters2004,84:2436
    [57] ANTUNEZ P D, BUCKLEY J J, and BRUTCHEY R L. Tin and germaniummonochalcogenide IV-VI semiconductor nanocrystals for use in solar cells [J].Nanoscale2011,3:2399
    [58]SCOTT G, and HELMS C R. Characterization of PbTe/p-Si and SnTe/p-Siheterostructures [J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures1991,9:1785
    [59]SUGAI S, MURASE K, KATAYAMA S, TAKAOKA S, NISHI S, andKAWAMURA H. Carrier density dependence of soft TO-phonon in SnTe byRaman scattering [J]. Solid State Communications1977,24:407
    [60] SALJE E K H, SAFARIK D J, MODIC K A, GUBERNATIS J E, COOLEY J C,TAYLOR R D, MIHAILA B, SAXENA A, LOOKMAN T, SMITH J L, FISHERR A, PASTERNAK M, OPEIL C P, SIEGRIST T, LITTLEWOOD P B, andLASHLEY J C. Tin telluride: A weakly co-elastic metal [J]. Physical Review B2010,82:184112
    [61]LITTLEWOOD P B, MIHAILA B, SCHULZE R K, SAFARIK D J,GUBERNATIS J E, BOSTWICK A, ROTENBERG E, OPEIL C P,DURAKIEWICZ T, SMITH J L, and LASHLEY J C. Band Structure of SnTeStudied by Photoemission Spectroscopy [J]. Physical Review Letters2010,105:086404
    [62] TANAKA Y, REN Z, SATO T, NAKAYAMA K, SOUMA S, TAKAHASHI T,SEGAWA K, and ANDO Y. Experimental realization of a topological crystallineinsulator in SnTe [J]. Nature Physics2012,8:800
    [63] VALASSIADES O, and ECONOMOU N A. On the phase transformation of SnTe[J]. Phys. Status solidi A1975,30:187
    [64]ALLEN P B, and COHEN M L. Carrier-Concentration-DependentSuperconductivity in SnTe and GeTe [J]. Physical Review1969,177:704
    [65]ZHOU D, LI Q, MA Y, CUI Q, and CHEN C. Unraveling Convoluted StructuralTransitions in SnTe at High Pressure [J]. Journal of Physical Chemistry C2013,117:5352
    [66] KOBAYASHI K L I, KATO Y, KATAYAMA Y, and KOMATSUBARA K F.Carrier-Concentration-Dependent Phase Transition in SnTe [J]. Physical ReviewLetters1976,37:772
    [67] COCHRAN W, COWLEY R A, DOLLING G, and ELCOMBE M M. The crystaldynamics of lead telluride [J]. Proc. R. Soc. A1966,293:433
    [68]PIERMARINI G J, and WEIR C E. A diamond cell for x-ray diffraction studies athigh pressures [J]. J. Res. Natl. Bur. Stand. A1962,66:325
    [69]KAFALAS J A, and MARIANO A N. High-Pressure Phase Transition in TinTelluride [J]. Science1964,143:952
    [70]KAPITANOV E V, and YAKOVLEV E N. M ssbauer Study of Phase Transitionsunder High Hydrostatic Pressures II. The Phase Transition of SnTe [J]. physicastatus solidi (a)1979,54:139
    [71] ONODERA A, FUJII Y, and SUGAI S. Polymorphism and amorphism at highpressure [J]. Physica B+C1986,139:240
    [72]TOLEDANO P, KNORR K, EHM L, and DEPMEIER W. Phenomenologicaltheory of the reconstructive phase transition between the NaCl and CsCl structuretypes [J]. Physical Review B2003,67:144106
    [73] TIMOFEEV Y A, VINOGRADOV B V, YAKOVLEV E N, KAPITANOV E V,and KYZYAN R O. The Superconductivity of Tin Telluride at High Pressures [J].Fiz. Tverd. Tela1982,24:3143
    [74] HSIEH T H, LIN H, LIU J, DUAN W, BANSIL A, and FU L. Topologicalcrystalline insulators in the SnTe material class [J]. Nature Communications2012,3:982
    [75]RABII S. Energy-Band Structure and Electronic Properties of SnTe [J]. PhysicalReview1969,182:821
    [76]DIMMOCK J O, MELNGAILIS I, and STRAUSS A J. Band Structure and LaserAction in PbxSn1-xTe [J]. Physical Review Letters1966,16:1193
    [77] BURKE J R, JR., ALLGAIER R S, HOUSTON B B, JR., BABISKIN J, andSIEBENMANN P G. Shubnikov-de Haas Effect in SnTe [J]. Physical ReviewLetters1965,14:360
    [78] TUNG Y W, and COHEN M L. Relativistic Band Structure and ElectronicProperties of SnTe, GeTe, and PbTe [J]. Physical Review1969,180:823
    [79]ALLGAIER R S, and HOUSTON B. Weak-Field Magnetoresistance and theValence-Band Structure of SnTe [J]. Physical Review B1972,5:2186
    [80]MELVIN J S, and HENDRY D C. Self-Consistent Relativistic Energy Bands forTin Telluride [J]. J. Phys. C1979,12:3003
    [81] TSANG Y W, and COHEN M L. Calculation of the Temperature Dependence ofthe Energy Gaps in PbTe and SnTe [J]. Physical Review B1971,3:1254
    [82]WEI S-H, and ZUNGER A. Electronic and structural anomalies in leadchalcogenides [J]. Physical Review B1997,55:13605
    [83] ZHANG Y, KE X, KENT P R C, YANG J, and CHEN C. Anomalous LatticeDynamics near the Ferroelectric Instability in PbTe [J]. Physical Review Letters2011,107:175503
    [84]ZHANG Y, KE X, CHEN C, YANG J, and KENT P R C. Nanodopant-InducedBand Modulation in AgPbmSbTe2+m-Type Thermoelectrics [J]. Physical ReviewLetters2011,106:206601
    [85]ZHOU D, LI Q, MA Y, CUI Q, and CHEN C. Pressure-Driven Enhancement ofTopological Insulating State in Tin Telluride [J]. Journal of Physical Chemistry C2013,117:8437
    [86] EHM L, KNORR K, DERA P, KRIMMEL A, BOUVIER P, and MEZOUAR M.Pressure-induced structural phase transition in the IV-VI semiconductor SnS [J].Journal of Physics: Condensed Matter2004,16:3545
    [87]ALPTEKIN S, and DURANDURDU M. Formation of a Cmcm phase in SnS athigh pressure; an ab initio constant pressure study [J]. Solid StateCommunications2010,150:870
    [88]HASAN M Z, and KANE C L. Colloquium: topological insulators [J]. Reviewsof modern physics2010,82:3045
    [89] HASAN M Z, and MOORE J E. Three-dimensional topological insulators [J].Annu. Rev. Condens. Matter Phys.2011,2:55
    [90]QI X L, and ZHANG S C. Topological insulators and superconductors [J].Reviews of modern physics2011,83:1057
    [91]MOORE J E. The birth of topological insulators [J]. Nature2010,464:194
    [92] XIA Y, QIAN D, HSIEH D, WRAY L, PAL A, LIN H, BANSIL A, GRAUER D,HOR Y S, and CAVA R J. Observation of a large-gap topological-insulator classwith a single Dirac cone on the surface [J]. Nature Physics2009,5:398
    [93] XU S Y, LIU C, ALIDOUST N, NEUPANE M, QIAN D, BELOPOLSKI I,DENLINGER J D, WANG Y J, LIN H, and WRAY L A. Observation of atopological crystalline insulator phase and topological phase transition inPb1-xSnxTe [J]. Nature Communications2012,3:1192
    [94]SCHNYDER A P, RYU S, FURUSAKI A, and LUDWIG A W W. Classificationof topological insulators and superconductors in three spatial dimensions [J].Physical Review B2008,78:195125
    [95] MONG R S K, ESSIN A M, and MOORE J E. Antiferromagnetic topologicalinsulators [J]. Physical Review B2010,81:245209
    [96] LI R, WANG J, QI X L, and ZHANG S C. Dynamical axion field in topologicalmagnetic insulators [J]. Nature Physics2010,6:284
    [97] FU L. Topological crystalline insulators [J]. Physical Review Letters2011,106:106802
    [98] XU S Y, XIA Y, WRAY L A, JIA S, MEIER F, OSTERWALDER J, SLOMSKI B,BANSIL A, LIN H, and CAVA R J. Topological phase transition and textureinversion in a tunable topological insulator [J]. Science2011,332:560
    [99]吴代鸣.固体物理基础(高等教育出版社,北京,2007).
    [100]李正中.固体理论(高等教育出版社,北京,2002).
    [101]谢希德, and陆栋.固体能带理论(复旦大学出版社,1998).
    [102]KOHN W, and SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev.1965,140:A1133
    [103]PERDEW J P, BURKE K, and ERNZERHOF M. Generalized gradientapproximation made simple [J]. Physical Review Letters1996,77:3865
    [104]PERDEW J P, and WANG Y. Pair-distribution function and its coupling-constantaverage for the spin-polarized electron gas [J]. Phys. Rev. B1992,46:12947
    [105]VIRNAU P, and M LLER M. Calculation of free energy through successiveumbrella sampling [J]. J. Chem. Phys.2004,120:10925
    [106]WANG Y, and MA Y. Perspective: Crystal structure prediction at high pressures[J]. The Journal of Chemical Physics2014,140:040901
    [107]GREGORYANZ E, LUNDEGAARD L F, MCMAHON M I, GUILLAUME C,NELMES R J, and MEZOUAR M. Structural diversity of sodium [J]. Science2008,320:1054
    [108]MCMAHON M I, NELMES R J, and REKHI S. Complex crystal structure ofcesium-III [J]. Physical Review Letters2001,87:255502
    [109]LOA I, NELMES R J, LUNDEGAARD L F, and MCMAHON M I.Extraordinarily complex crystal structure with mesoscopic patterning in barium athigh pressure [J]. Nature Materials11:627
    [110]PARLINSKI K, LI Z Q, and KAWAZOE Y. First-Principles Determination of theSoft Mode in Cubic ZrO2[J]. Physical Review Letters1997,78:4063
    [111]BARONI S, DE GIRONCOLI S, DAL CORSO A, and GIANNOZZI P. Phononsand related crystal properties from density-functional perturbation theory [J]. Rev.Mod. Phys.2001,73:515
    [112]BARDEEN J, COOPER L N, and SCHRIEFFER J R. Theory ofSuperconductivity [J]. Phys. Rev.1957,108:1175
    [113]章立源.超越自由:神奇的超导体(科学出版社,北京,2005).
    [114]章立源.超导理论(科学出版社,北京,2003).
    [115]WANG Y, LV J, ZHU L, and MA Y. CALYPSO: A method for crystal structureprediction [J]. Comput. Phys. Commun.2012,183:2063
    [116]NAMBU Y. Quasi-Particles and Gauge Invariance in the Theory ofSuperconductivity [J]. Physical Review1960,117:648
    [117]ALLEN P B, and MITROVIC B. Theory of superconducting Tc [J]. Solid StatePhysics1982,37:1
    [118]CHOI H J, ROUNDY D, SUN H, COHEN M L, and LOUIE S G. The origin ofthe anomalous superconducting properties of MgB2[J]. Nature2002,418:758
    [119]LIU A Y, MAZIN I I, and KORTUS J. Beyond Eliashberg Superconductivity inMgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps [J]. Phys. Rev.Lett.2001,87:087005
    [120]MCMILLAN W L. Transition Temperature of Strong-Coupled Superconductors[J]. Phys. Rev.1968,167:331
    [121]ALLEN P B, and DYNES R C. Transition temperature of strong-coupledsuperconductors reanalyzed [J]. Physical Review B1975,12:905
    [122]MAO H K, XU J, and BELL P M. Calibration of the ruby pressure gauge to800kbar under quasi-hydrostatic conditions [J]. J. Geophys. Res1986,91:4673
    [123]SHEN G, IKUTA D, SINOGEIKIN S, LI Q, ZHANG Y, and CHEN C. DirectObservation of a Pressure-Induced Precursor Lattice in Silicon [J]. PhysicalReview Letters2012,109:205503
    [124]TIMOFEEV Y A, VINOGRADOV B V, YAKOVLEV E N, KAPITANOV E V,and KUZYAN R O. Superconductivity of stannous telluride at high pressure [J].Sov. Phys.-Solid State (Engl. Transl.);(United States)1982,24:
    [125]KNORR K, EHM L, HYTHA M, WINKLER B, and DEPMEIER W. Thehigh-pressure α/β phase transition in lead sulphide (PbS)[J]. The EuropeanPhysical Journal B-Condensed Matter and Complex Systems2003,31:297
    [126]STRELTSOV S V, MANAKOV A Y, VOKHMYANIN A P, OVSYANNIKOV SV, and SHCHENNIKOV V V. Crystal lattice and band structure of theintermediate high-pressure phase of PbSe [J]. Journal of Physics: CondensedMatter2009,21:385501
    [127]ROUSSE G, KLOTZ S, SAITTA A M, RODRIGUEZ-CARVAJAL J,MCMAHON M I, COUZINET B, and MEZOUAR M. Structure of theintermediate phase of PbTe at high pressure [J]. Physical Review B2005,71:224116
    [128]RUOFF A L, LUO H, VANDERBORGH C, XIA H, BRISTER K, andARNOLD V. Production and metrology of5μm x-ray apertures for100keVdiffraction studies in the diamond anvil cell [J]. Review of scientific instruments1993,64:3462
    [129]HAMMERSLEY A P, SVENSSON S O, HANFLAND M, FITCH A N, andHAUSERMANN D. Two-dimensional detector software: from real detector toidealised image or two-theta scan [J]. International Journal of High PressureResearch1996,14:235
    [130]LARSON A C, and VONDREELE R B. Los Alamos National Laboratory ReportNo. LA-UR-86-748(2000).[J].
    [131]TOBY B H. EXPGUI, a graphical user interface for GSAS [J]. Journal ofApplied Crystallography2001,34:210
    [132]WANG Y, LV J, ZHU L, and MA Y. Crystal structure prediction viaparticle-swarm optimization [J]. Physical Review B82:094116
    [133]KRESSE G, and FURTHM LLER J. Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set [J]. Physical Review B1996,54:11169
    [134]BIRCH F. Finite strain isotherm and velocities for single-crystal andpolycrystalline NaCl at high pressures and300K [J]. Journal of GeophysicalResearch1978,83:1257
    [135]TOGO A, OBA F, and TANAKA I. First-principles calculations of theferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures[J]. Physical Review B2008,78:134106
    [136]See [http://theory.cm.utexas.edu/henkelman] for study of the kinetic processes atthe atomic scale.
    [137]WANG J-T, CHEN C, and KAWAZOE Y. Low-Temperature PhaseTransformation from Graphite to sp3Orthorhombic Carbon [J]. Physical ReviewLetters2011,106:075501
    [138]WANG J T, CHEN C, and KAWAZOE Y. Mechanism for direct conversion ofgraphite to diamond [J]. Physical Review B2011,84:012102
    [139] We take16intermediate images besides the two end-point phases. In theCINEB calculations, we choose the force and energy convergences to be0.01eV/and0.001eV, respectively. No symmetry constraint was imposed in thestructural optimization procedure and a Monkhorst-Pack (MP) grid of6$\times$6$\times$6was used.[J].
    [140]ESAKI L, and STILES P J. New Type of Negative Resistance in BarrierTunneling [J]. Physical Review Letters1966,16:1108
    [141]GAO X, and DAW M S. Investigation of band inversion in (Pb,Sn)Te alloysusing ab initio calculations [J]. Physical Review B2008,77:033103
    [142]KRESSE G, and JOUBERT D. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Physical Review B1999,59:1758
    [143]HEYD J, SCUSERIA G E, and ERNZERHOF M. Erratum:"hybrid functionalsbased on a screened Coulomb potential" J. Chem. Phys.118,8207(2003)][J].Journal of chemical physics2006,124:219906
    [144]HEYD J, PERALTA J E, SCUSERIA G E, and MARTIN R L. Energy band gapsand lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screenedhybrid functional [J]. Journal of chemical physics2005,123:174101
    [145]HEYD J, and SCUSERIA G E. Efficient hybrid density functional calculationsin solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybridfunctional [J]. Journal of chemical physics2004,121:1187
    [146]ALF D. PHON: A program to calculate phonons using the small displacementmethod [J]. Computer Physics Communications2009,180:2622
    [147]HENKELMAN G, ARNALDSSON A, and J NSSON H. A fast and robustalgorithm for Bader decomposition of charge density [J]. ComputationalMaterials Science2006,36:354
    [148]BIS R F, and DIXON J R. Applicability of Vegard's Law to the PbxSn1-xTe AlloySystem [J]. Journal of Applied Physics1969,40:1918
    [149]KAWAMURA H, KATAYAMA S, TAKANO S, and HOTTA S. Dielectricconstant and soft mode of Pb1-xSnxTe [J]. Solid State Communications1974,14:259
    [150]ZHANG Y, KE X, CHEN C, YANG J, and KENT P R C. Thermodynamicproperties of PbTe, PbSe, and PbS: First-principles study [J]. Physical Review B2009,80:024304
    [151]RABE K M, and JOANNOPOULOS J D. Ab initio relativistic pseudopotentialstudy of the zero-temperature structural properties of SnTe and PbTe [J]. PhysicalReview B1985,32:2302
    [152]JANESKO B G, HENDERSON T M, and SCUSERIA G E. Screened hybriddensity functionals for solid-state chemistry and physics [J]. Phys. Chem. Chem.Phys.2008,11:443
    [153]FAST L, AHUJA R, NORDSTR M L, WILLS J M, JOHANSSON B, andERIKSSON O. Anomaly in c/a Ratio of Zn under Pressure [J]. Physical ReviewLetters1997,79:2301
    [154]STRUZHKIN V V, TIMOFEEV Y A, HEMLEY R J, and MAO H-K.Superconducting Tcand Electron-Phonon Coupling in Nb to132GPa: MagneticSusceptibility at Megabar Pressures [J]. Physical Review Letters1997,79:4262
    [155]LI Z, and TSE J S. Phonon Anomaly in High-Pressure Zn [J]. Physical ReviewLetters2000,85:5130
    [156]POLIAN A, GAUTHIER M, SOUZA S M, TRICH S D M, CARDOSO DELIMA J, and GRANDI T A. Two-dimensional pressure-induced electronictopological transition in Bi2Te3[J]. Physical Review B2011,83:113106
    [157]LI Q, LI Y, CUI T, WANG Y, ZHANG L J, XIE Y, NIU Y L, MA Y M, and ZOUG T. The effects of pressure on the electronic, transport and dynamical propertiesof AuX2(X=Al, Ga and In)[J]. Journal of Physics: Condensed Matter2007,19:425224
    [158]YELLAND E A, BARRACLOUGH J M, WANG W, KAMENEV K V, andHUXLEY A D. High-field superconductivity at an electronic topologicaltransition in URhGe [J]. Nature Physics2011,7:890
    [159]BARONI S, GIANNOZZI P, and TESTA A. Green's-function approach to linearresponse in solids [J]. Physical Review Letters1987,58:1861
    [160]GIANNOZZI P, BARONI S, BONINI N, CALANDRA M, CAR R,CAVAZZONI C, CERESOLI D, CHIAROTTI G L, COCOCCIONI M, andDABO I. QUANTUM ESPRESSO: a modular and open-source software projectfor quantum simulations of materials [J]. Journal of Physics: Condensed Matter2009,21:395502
    [161]GIANNOZZI P, DE GIRONCOLI S, PAVONE P, and BARONI S. Ab initiocalculation of phonon dispersions in semiconductors [J]. Physical Review B1991,43:7231
    [162]MONKHORST H J, and PACK J D. Special points for Brillouin-zoneintegrations [J]. Physical Review B1976,13:5188
    [163]LIFSHITZ I M. Anomalies of electron characteristics of a metal in the highpressure region [J]. Sov. Phys. JETP1960,11:1130
    [164]MICNAS R, RANNINGER J, and ROBASZKIEWICZ S. Superconductivity innarrow-band systems with local nonretarded attractive interactions [J]. Reviewsof Modern Physics1990,62:113
    [165]RANNINGER J, and ROBASZKIEWICZ S. Superconductivity of locally pairedelectrons [J]. Physica B+C1985,135:468
    [166]RANNINGER J, ROBIN J M, and ESCHRIG M. Superfluid Precursor Effects ina Model of Hybridized Bosons and Fermions [J]. Physical Review Letters1995,74:4027
    [167]RANNINGER J, and ROBIN J M. The boson-fermion model of high Tcsuperconductivity. Doping dependence [J]. Physica C: Superconductivity1995,253:279
    [168]SIMON A. Superconductivity and chemistry [J]. Angew. Chem. Int. Ed.1997,36:1788
    [169]BROOM R F, RAIDER S I, OOSENBRUG A, DRAKE R E, and WALTER W.Niobium oxide-barrier tunnel junction [J]. IEEE Trans. Electron Devices1980,27:1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700