青藏高原东缘深部速度结构远震层析成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对地震层析成像的理论与方法进行了较为系统地介绍,并且对FMTOMO层析成像软件所使用的多级快速行进正演算法与子空间反演算法进行了详细地阐述。
     本论文研究目标为青藏高原东缘深部速度结构,研究区域为98°E-108°E,26°N-34°N,深度范围为0-300km。利用9194个远震P波走时差,使用FMTOMO层析成像软件获得该区域3维P波速度结构。并结合该地区已有地球物理研究结果,对这一区域3维P波速度结构进行研究,得到以下主要认识:
     在60-140km深度速度扰动水平剖面图中可以看出,包含四川盆地在内的川中块体速度相对较高,川青块体以及川滇菱形块体的速度相对较低。龙门山断裂带为低速的川青块体与高速的川中块体的速度分界线,安宁河断裂带为低速的川滇菱形块体与高速的川中块体的分界线。鲜水河断裂带是川滇菱形块体与川青块体两个低速区域的分界线。
     60-140kmm深度范围内,102°E-104°E、29°N-31°N,四川盆地西南部区域存在一个相对低速的区域。造成这一现象的原因可能为:在下地壳至上地幔的深度范围内,由于青藏高原物质东流作用,东流的较软物质在龙门山断裂带附近遇到了坚硬的四川盆地的阻挡,部分东流物质由于阻挡作用,沿着东南方向以及西北方向流动,但是仍有部分的较软物质侵入到坚硬的四川盆地的西南部区域,造成该区域存在速度较低的现象。
     在60-140kmm深度范围内,沿龙门山断裂带,在龙门山断裂带的西北侧,出现相对高速的现象。造成这一现象的可能原因为:在下地壳至上地幔的深度范围内,较软的青藏高原东流物质同样由于遇到坚硬的四川盆地的阻挡作用,此部分较软的物质沿着坚硬四川盆地的边缘发生了斜上方的逆冲运动,所以在此深度范围内出现了相对高速区域。
     在190-290km深度范围内,青藏高原东缘地区西南区域存在着高速区域,龙门山断裂带、安宁河断裂带不再是高低速区域的分界带。
     在沿30.5°N速度扰动垂直剖面中,四川盆地的高速度区域延伸至大概200km深度处,可以说明坚硬的四川盆地岩石圈可能延伸至上地幔200km深度左右。
     在沿101.5°E速度扰动垂直剖面图中,整个川西高原地区在下地壳至上地幔的范围内表现为低速区域。这一结果也在一定程度上证明川西高原在这个深度范围内存在较软物质的可能性。
The theory and the methods of seismic tomography have been introduced systematically, as well as the multistage fast marching method and the subspace inversion algorithm which are used in the FMTOMO seismic tomography software have been elaborated in this thesis.
     The research aim of the thesis is the deep velocity structure in the eastern edge of Tibetan plateau within the study region of 98°E-108°E,26°N-34°N,0-300km depth. The 3-D P-wave velocity structure has been obtained by using 9194 teleseismic P-wave traveltime residuals data and the FMTOMO seismic tomography software. And then, several results have been got:
     By observing the horizontal slice of P-wave velocity perturbation from 60km to 140km depth, the P-wave velocity of Mid-Sichuan Block is relative high, while the P-wave velocity of Sichuan-Qinghai Block and Sichuan-Yunnan Diamond Block is relative low. The Longmenshan Fault is the velocity boundary between the Sichuan-Qinghai Block with lower velocity and Mid-Sichuan Block with higher velocity. The lower velocity region of the Sichuan-Yunnan Diamond Block and the higher velocity region of the Mid-Sichuan Block are divided by the Anninghe Fault.
     From 60km to 140km,102°E-104°E,29°N-31°N, There is lower velocity region in the southwest of Sichuan basin. The possible explanation of this phenomenon is that: From the lower crust to the upper mantle, because of effect of east flow in the Tibetan plateau, when east flow soft material has met the block of hard Sichuan basin nearby the Longmenshan fault, some of the soft materials flow along the southeast direction as well as northwest direction, but a part of soft materials invade the southwest region of the hard Sichuan basin, which created the low P-wave velocity phenomenon.
     There is a relative high velocity phenomenon along the northwest side of Longmenshan fault in depth range from 60km to 140km. The possible explanation of this phenomenon is that:From the crust to the upper mantle, because of the soft materials which flow east met the impediment function of hard Sichuan basin, a part of soft materials had the thrust movement along the hard Sichuan basin edge. Therefore the relatively high velocity region appeared in this depth range.
     In the depth range from 190km to 290km, there is a high velocity area in the southwest region of eastern edge of Tibetan plateau. Longmenshan Fault and Anninghe Fault are not the boundary between high velocity region and low velocity region.
     In the image of vertical slice of P-wave velocity perturbation alone the 30.5°N, the high velocity of Sichuan basin extents to about 200km depth, which means the hard lithosphere of Sichuan basin may extent to this depth.
     In the image of vertical slice of P-wave velocity perturbation alone the 101.5°E, The entire west Sichuan plateau area is low velocity region in the depth range from lower crust to upper mantle, which also proves that soft materials may exist in the western Sichuan plateau in this depth range.
引文
程万正,刁桂,吕戈培,等.2003.川滇地块的震源力学机制、运动速率和活动方式.地震地质,25(1):71-87
    吉洪诺夫,阿尔先宁.1979.不适定问题的解法(王秉枕译).北京:地质出版社,
    郭彪,刘启元,陈九辉,等.2009.川西龙门山以及邻近区域地壳上地幔远震P波层析成像.地球物理学报,52(2):346-355
    罗红明,王家映,师学明,等.2008.量子遗传算法.工程地球物理学报,5(6):635-641
    李海鸥.2008.震相多道拾取方法应用研究.[博士后研究工作报告].中国地震局地质研究所
    孙洁,晋光文,白登海,等.2003.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学D辑:地球科学,33(增刊):173-180
    杨海燕,胡家富,赵宏,等.2009.川西地区壳幔结构与汶川Ms8.0级地震的孕育背景.球物理学报,52(2):357-364
    王椿镛,Mooney, W. D.王溪莉,等.2002.川滇地区地壳上地幔三维速度结构研究.地震学报,24(1):1-16
    王椿镛,楼海,吕智勇,等.2008.青藏高原东部地壳上地幔S波速度结构:下地壳流的深部环境.中国科学D辑:地球科学,38(1):22—32
    王椿镛,吴建平,楼海,等.2002.川西-藏东地区的地壳P波速度结构.中国科学D辑:地球科学,33(增刊):181—189
    王家映.2002.地球物理反演理论.北京:高教出版社.
    王家映.2007.蒙特卡洛法.工程地球物理学报,4(2):81-85
    王夫运,段永红,杨卓欣,等.2008.川西盐源-马边地震带上地壳速度结构和活动断裂研究——高分辨率地震折射实验结果.中国科学D辑:地球科学,38(5):611-621
    汪素云,裴顺平,Hearn, T. M.,等.2008.利用ML振幅研究地壳横波Q值:Q横向变化特征.地球物理学报,51(1):133-139
    周华伟,MichalA, MURPHY,林清良,2002.西藏及其周围地区地壳、地幔地震层析成像—印度板块大规模俯冲于西藏高原之下的证据.地学前缘,9(4):285-292
    师学明,王家映.2007.模拟退火法,工程地球物理学报,4(3):165-174
    杨文采,李幼铭,李世雄,等.应用地震层析成像.北京:地质出版社.
    杨文采.2002.线性地球物理反演方法回顾与展望.地球物理学进展,17:255-261
    赵国泽,陈小斌,王立凤,等.2008.青藏高原东边缘地壳“管流”层的电磁探测证据.科学通报,53(3):345—350
    张培震.2008.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程.中国科学D辑:地球科学,38(9):1041-1056
    曾融生,朱介寿,周兵,等.2002.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型,地震学报,11:523-533
    曾融生,丁志峰,吴庆举.1994.青藏高原岩石圈构造及动力学过程研究.地球物理学报,37(增刊):99-116
    张岳桥,杨农,施炜,等.2008.青藏高原东缘新构造及其对汶川地震的控制作用.地质学报,82(12):1668-1677
    张中杰,陈赟,田小波.2009.青藏高原东缘地壳上地幔结构及其动力学意义.地震地质,44(4):1136-1150
    张中杰,滕吉文,李英康,等.2002藏南地壳速度结构与地壳物质东西向“逃逸”—以佩枯错-桑普雍错宽角反射剖面为例.中国科学(D辑),32(10):793-798
    Allen, R. V,1978. Automatic earthquake recognition and timing from single grace. Bull. Seism. Soc. Am.,68:1522-1532.
    Asawaka, E., Kawanaka, T.,1993. Seismic ray tracing using linear traveltime interpolation. Geophysical. Pro.,41:99-111.
    Aki, K., Lee, W. H. K.,1976. Determination of the three-dimensional velocity anomalies under a seismic array using first P arrivaltimes from local earthquakes 1. A homogeneous intial model. J. Geophys. Res.81,4381-4399.
    Aki, K. Christoffersson, A., Husebye, E. S.,1977. Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res.82,277-296.
    Baer, M. Kradofer, U.,1987. An automatic phase picker for local and teleseismic event. Bull. Seism. Am.,77:1437-1445.
    Benamou, J. D.,1999. Direct computation of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure. Appl. Math.,52:1443-1475.
    Bishop, T. P., Bube, K. P., Cutler, R. T., et al.,1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics,50:903-923.
    Bungum, H., and Husebye, E. S.,1971. Errors in time delay measurement. Pure Appl. Geophys.,91: 56-70.
    Blackman, D. K., et al., seismic anisotrophy in the mantel beneath an oceanic spreading center. Nature,1993,366:675-677.
    Bulant, P.,1999. Two-point ray-tracing and controlled initial-value ray-tracing in 3-D heterogeneous block structures. J. Seismic Explor.,8:57-75.
    Cao, S., and Greenhalgh, S.,1994. Finite-difference solution of the eikonal equation using an efficient, first-arrival, wavefront tracking scheme. Geophysics,59:632-643.
    Cheng, N., House, L.,1996. Minimum traveltime calculations in 3-D graph theory. Geophysics,6: 1895-1898.
    Chervot, S.,2002. Optimal measurements of relative and absolute delay times by simulated annealing. Geophys. J. Int.,151:164-171.
    Chou, C. W., and Booker, J. R.,1979. A Backus-Gilbert approach to inversion of travel time data for three-dimensional velocity structure. Geophys. J. RoyalAstr. Soc.59:325-344.
    Dziewonski, A. M., Hager, B. H., O'Connell, R. J.,1977. Large-scale heterogeneities in the lower mantle. J. Geophys. Res.,82:239-255.
    Eberhart-Phillips, D.,1986. Three-dimensional velocity structure in northern California coast ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am.,76: 1025-1052.
    Eberhart-Phillips, D.,1990. Three-dimensional P and S velocity structure in the Coalinga Region, California. J. Geophys. Res.,95:15343-15363.
    Engquist, B., Runborg, O., Tornberg, A. K.,2002. High-frequency wave propagation by the segment projection method. J. Comp. Phys.,178:373-390.
    Fischer, R., Lee, J. M.,1993. Shortest path ray tracing with sparse graphs. Geophysics,58: 987-996.
    Fomel, S., Sethian, J. A.,2002. Fast-phase space computation of multiple arrivals. Proc. Natl. Acad. Sci.,99:7329-7334.
    Hammer, P. T. C., Dorman, L. M., Hildebrand,1994. Jasper Seamount structure:sea floor seismic refraction tomography. J. Geophys. Res.,99:6731-6752.
    Hicks, G., Pratt, R. G.,2001. Reflection waveform inversion using local descent methods: estimating attenuation and velocity over a gas-sand deposit. Geophysics.66:598-612.
    Hole, J. A.,1992. Nonlinear high-resolution three-dimensional travel-time tomography. J. Geophys. Res.97:6553-6562.
    Huang. J. L., Zhao, D. P., Zheng, S. H..2002. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res.,107(B10,2255), doi: 10.1029/2000JB000137
    Humphreys, E. R., Clayton, R. W.,1988 Adaptation of back projection tomography to seismic travel time problems. J. Geophys. Res.,93:1073-1085
    Jansson, D. E. Fouch, M. J. VanDecar, J. C., et al.,1966. Application of array data techniques to a network of ordinary seismography stations. Pure. Appl. Geophys.,63:83-104.
    Komatitsch, D., Ritsema, J., Tromp, J.,2002. The spectral-element method, beowulf computing, and global seismology. Science,298:1737-1742.
    Li, C., Van der Hilst, R. D., Toksoz, M. N.,2006. Constraining P-wave velocity variations in upper mantle beneath Southeast Asia. Phys. Earth. Planet. Int.,154:180-195.
    Li, X. D., Giardini, D., Woodhouse.J.,1991. Large-scale three-dimensional even degree structure of the earth from splitting of long-period normal modes. J. Geophys. Res.,96:551-577.
    Mao, W. and Gubbins, D.,1995. Simultaneous determination of time delays and stacking weights in seismic array beamforming. Geophysics,60:491-502.
    McMechan, G. A.,1987. Cross-hole tomography for strongly variable media with applications to scale model data. Bull. Seismol. Soc. Am.77,1945-1960.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., et al.,1953. Equation of state calculations by fast computing machines. J. Chem. Phys.,21:1087-1092.
    Montagner, J. P., Nataf, H. C.,1986. A simple method for inverting the aziumthal anisotropy of surface waves. J. Geophys. Res.91:511-520.
    Morita, Y. and Hamaguchi, H.,1984. Automatic detection of onset time of seismic waves and its confidence interval using the autoregressive model fitting. Zisin,37:281-293.
    Moser. T. J.,1991. Shortest path calculation of seismic rays. Geophysics,56:59-67.
    Oldenburg, D. W., P. R. McGillivray, R. G. Ellis.1993. Generalized subspace method for large-scale inverse problems. Geophys. J. Int.,114:12-20.
    Oldenburg, D. W. and Yaoguo Li.1994. Subspace linear inverse method. Inverse Problem,10: 915-935.
    Osher. S., Cheng, L. T., Kang. M, et al.,2002. Geometric optics in a phase-space-based level set and Eulerian framework. J.Comp.Phys.,179:622-648.
    Paige, C. C. and Saunders, M. A.,1982. LSQR:Sparse linear equations and least squares problems. AMC Transaction. Math.,8:195-209
    Pereyra, V.,1996. Modelling, raytracing, and block nonlinear travel-time inversion in3D. Pure Appl. Geophys.,148:345-386.
    Popovici, A. M., Sethian, J. A.,2002.3-D imaging using higher order fast marching traveltimes. Geophysics,67:604-609.
    Podvin, P., and Lecomte, I.,1991. Finite difference computation of travel times in very contrasted velocity models: amassively parallel approach and its associated tools, Geophys. J. Int.,105: 271-284.
    Pratt, R. G., Worthington, M. H.,1988. The application of diffraction tomography to cross-hole seismic data. Geophysics,53:1284-1294.
    Pratt, R. G., Goulty, N. R.,1991. Combining wave-equation imaging with traveltime tomography to form high-resolution images from crosshole data. Geophysics,56:208-224.
    Rawlinson, N. and Kennett, B. L. N.,2004. Rapid estimate of relative and absolute delay times across a network by adaptive stacking. Geophys. J. Int.,157:332-340.
    Rawlinson, N. and Sambridge, M.,2004. Wavefront evolution in strong heterogeneous layered media using the Fast MarchingMethod. Geophys. J. Int.,156:631-647.
    Rawlinson, N. and Sambridge. M.,2004, Mutilple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophycs.,69:1338-1350.
    Rawlinson, N. and Sambridge, M.,2003. Irregular interface parameterization in 3-D wide-angle seismic traveltime tomography. Geophys. J. Int.,155:79-92.
    Rawlinson, N. and Urvoy, M.,2006. Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania. Geophys. Res. Lett.,33, doi:10.1029/2006GL028105.
    Ronchi, C., Iacono, R., Paolucci, P. S.,1996. The "Cubed Sphere":a new method for the solution of partial differential equations in spherical geometry. J. Comp. Phys.124:93-114.
    Rothman, D. H.1986. Automatic estimation of large residual statics correction. Geophysics,51(2): 337-346.
    Scales, J. A.,1987. Tomographic inversion via the conjugate gradient method, Geophysics,52: 179-185.
    Schaff, D. P., Bokelmann, G. H. R., Ellsworth, W. L., et al,2004. Optimizing correlation techniques for improved earthquake location. Bull. Seism. Soc. Am.,94:705-721.
    Sen, M. K, and Stoffa P. L.1991. Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics,56(10):1624-1638.
    Sethian, J. A. and Popovici, A. M.,1999.3-D traveltime computation using the fast marching method. Geophysics,64:516-523.
    Sliver, P. G. and Chan, W. W.,1998. Implication for continental structure and evolution fromseismic anisotropy. Nature,335(1):34-39.
    Steck, L. K., Thurber, C. H., Fehler, M., et al.,1998. Crust and upper mantle P wave velocity structure beneath Valles caldera, NewMexico: results from the Jemez teleseismic tomography experiment. J. Geophys. Res.,103:24301-24320.
    Symes, W. W., Qian, J.,2003. A slowness matching eulerian method for multivalued solutions of eikonal equaions. SIAMJ. Sci. Comput.,19:501-526.
    Tarantola, A.,1987. Inverse problem theory:method for data fitting and model parameter estimation. New York:Elsevier Science Publishing Company Inc.
    Tarantola, A., Nercessian, A.,1984. Three-dimensional inversion without blocks. Geophys. J. RoyalAstr. Soc.76:299-306.
    Thurber, C. H.,1983. Earthquake locations and three-dimensional crustal structure In the Coyote Lake area, central California. J. Geophys. Res.,88:8226-8236.
    Um, J. and Thurber, C.,1987. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am.,77:972-986.
    van Trier, J., and Symes, W. W.,1991. Upwind finite-difference calculation of traveltimes, Geophysics,56:812-821.
    VanDecar, J.C. and Crosson, R.S.,1990. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seism. Soc. Am.80:150-169.
    Vidale, J.1998. Finte-difference calculation of traveltime. Bull. Seism. Soc. Am.,78:2062-2076.
    Vinje, V., Iversen, E., Gjoystdal, H.,1993. Traveltime and amplitude estimation using wavefront construction. Geophysics,58:1157-1166.
    Vinje, V, Astebol, K., Iversen, E., et al.,1999.3-D ray modeling by wavefront construction in open models. Geophys. Prospect.,64:1912-1919.
    Vinje, V, Iversen, E., Asteb(?)l, K., Gjoystdal, H.,1996. Estimation of multivalued arrivals in 3D models using wavefront construction. Partl. Geophys.Prospect,44:819-842.
    Wang. B., Braile. L. W.,1996. Simultaneous inversion of reflection and refraction seismic data and application to field data from the northern Rio Grande rift. Geophys. J. Int.,125:443-458.
    Wang, Z., Dahlen, F. A.,1995. Spherical-spline parameterization of three-dimensional earth models spherical-spline parameterization of three-dimensional earth models. Geophys. Res. Lett.,22: 3099-3102.
    Wiggins. S. M., Dorman, L. M., Comuelle, B. D., et al..,1996. Hess deep rift valley structure from seismic tomography. J. Geophys. Res.101:22335-22353.
    Xu, L, Rondenay, S., Van der Hilst R. D.,2007. Structure of the crust beneath the Southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet Int, doi:10.1016/j.pepi.2007.09.002
    Yao, H., Beghein, C., van der Hilst R. D.,2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis II. Crustal and upper-mantle structure. Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03696.x
    Zhao, D., Hasegawa, A., Horiuchi, S.,1992. Tomographic imaging of P and S Wave velocity structure beneath Northeastern Japan. J. Geophys. Res.,97:19909-19928.
    Zhao, D., Hasegawa, A., Kanamori, H.,1994. Deep structure of Japan sub-duction Zone as derived from local, regional, and teleseismic events. J. Geophys. Res.,99:22313-22329.
    Zhao, D., Hasegawa, A., and Horiuchi, S.,1992. Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan. J. Geophys. Res.,97:19909-19928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700