3万t组合列车纵向动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,我国铁路重载运输发展很快,2003年以来,大秦铁路开行了万t和2万t级重载列车,使大秦铁路年运量由2002年的1亿t,提高到2010年的4亿t,全线运能大幅度提高。尽管运能不断增加,但仍满足不了国民经济对货物运输的需求,需要更进一步提高运输能力。提高列车运行速度和开行密度等受客观条件限制较多,开行提高牵引质量的3万t组合列车被提上议事日程。
     重载运输中由于列车重量和长度增加,制动波传递时间加长,导致车钩力增大,长大列车的纵向冲动成为首要问题。影响车钩力的因素很多,包括列车编组、制动特性以及车钩缓冲器特性等,其中又以空气制动系统的影响最大。由于重载列车中的多机车和可控列尾装置,给列车制动特性的获取带来困难,直接影响到列车纵向动力学分析的准确性。使用以气体流动理论为基础的列车空气制动仿真方法获得的空气制动系统特性,不受现有的试验条件限制,适用于不同的列车编组、试验工况以及装备条件。本文使用的空气制动系统与纵向动力学系统联合仿真软件,在仿真空气制动系统特性的同时,仿真计算列车纵向冲动,实现了制动与纵向动力学的同步仿真,能够实时动态仿真和显示列车运行的全过程,对于改善重载列车纵向动力学性能具有重要意义。
     本文综合比较了3万t列车在多机车和列尾不同步动作以及改变制动初速条件下,1+1+1+列尾、1+1+1和1+1+1+0三种编组在平道常用全制动和平道紧急制动工况下的车钩力水平,提出了1+1+1的3万t组合列车可行编组,并且研究了不同步时间对车钩力的影响规律。此外,以大秦线最困难的两个长大下坡道区间中的两个连续区段(k139.9-k155.6)和(k285.3-k305.4)为例,进行循环制动仿真计算,列车能顺利通过两段长大坡道,运行速度基本控制在限制速度以内。
     计算结果表明,从控机车滞后时间越长,车钩力越大,平道常用全制动工况下,从控二机车滞后时间比从控一机车滞后时间对车钩力影响更显著,从控机车滞后于主控机车5s时,最大车钩力增加82.4%;平道紧急制动工况下,从控一机车滞后时间对车钩力影响更大,从控机车滞后于主控机车5s时,最大车钩力增加335.9%。常用制动时最大车钩力对列车不构成威胁,紧急制动时,特别是从控机车具有较大滞后时间时,会出现很大的车钩力,是列车运行的危险工况,从控机车滞后时间控制在4.8s以内,车钩力在2500kN的许用范围内。在通过长大坡道时,遵循“小减压和合理控制缓解初速”的原则,两个区段分别进行了4次和3次循环制动,使组合列车顺利通过长大坡道。本文利用仿真软件进行的计算对提高列车的经济性、安全性,对于开行3万t组合列车具有重要意义。
With the rapid development of the national economy,China's railway heavy haul transportation has developed rapidly,since 2003,Datong-Qinhuangdao line opens 10,000 t and 20,000 t heavy haul trains,it makes the annual transportation volume arise from 100 million t in 2002 to 400 million t in 2010,it substantially increases the transportation capacity across the whole line.Despite the transportation capacity constantly increases,but is still fails to meet the needs of the national economy for goods transportation, it needs to improve the transportation capacity further. Increasing train speed and openning density and other measures are restricted by objective conditions,openning the 30,000 t heavy haul trains of improving the traction quality is put on agenda.
     During the heavy haul transportation,due to the weight and the length increase of the heavy haul trains,braking wave propagation time gets longer,the coupler force increases,the longitudinal impulse of the heavy haul trains becomes the primary issue.There are many factors that affect the train coupler force,including train marshalling,braking performance and characteristics of draft gear,among which the air braking system is the most important.Because of multi-locomotives and the controllable train tail device in heavy haul trains,it is difficult to get the braking performance for the heavy haul trains and this will reduce the analysis accuracy of train longitudinal dynamics.The air braking system performance that is obtained from the train air braking system simulation method based on the air flow theory,unrestricted by the current test conditions,applicable to different train marshallings,test conditions and equipment conditions.The air braking system and longitudinal dynamics system co-simulation software used in the article,while simulating the air braking system performance,calculating the train longitudinal impulse,achieving the simultaneous simulation of braking and longitudinal dynamics,can real-time dynamically simulate and display the whole process of train running,is of great importance for improving the performance of the heavy haul trains'longitudinal dynamics.
     The article comprehensively compares the coupler force of the 30,000 t heavy haul train under the condition of multi-locomotives and controllable train tail asynchronous action and changing the braking initial speed,in the case of full service application and emergency braking of marshallings:1+1+1+controllable train tail,1+1+1 and 1+1+1+0,the feasible marshalling 1+1+1 which is applicable to the Datong-Qinhuangdao line's 30,000 t heavy haul train is proposed,and studies the influence law of asynchronous time to the coupler force.In addition,takes Datong-Qinhuangdao line's two most difficult long slope intervals'two consecutive sections (k139.9-k155.6) and (k285.3-k305.4) as example,carries on cycle brake simulation calculation,train can pass two long slopes,running speed basically controls within the speed limit.
     The results show that the longer the lag time of the dependent control locomotives is,the greater the coupler force is,in the case of full service application,the change of dependent control 2 locomotive's lag time has a greater impact than the dependent control 1 locomotive's lag time on the coupler force,the dependent control locomotives brake 5s lagging behind the master control locomotive,the maximum coupler force increases by 82.4%;In the case of emergency braking,the change of dependent control 1 locomotive's lag time has a greater impact on the coupler force,the dependent control locomotives brake 5s lagging behind the master control locomotive,the maximum coupler force increases by 335.9%.In the case of full service application,maximum coupler force is not a threat to the train,in the case of emergency braking,especially the dependent control locomotives having large lag time,there will be a great coupler force,is the dangerous condition of train running,the lag time of dependent control locomotives controlling within 4.8s,the coupler force can be controlled within the acceptable range of 2,500 kN.When passing the long slopes, follows the principle which is "small pressure reduction and reasonably control ease initial speed",4 time and 3 time cycle brake is conducted during the two sections,making the heavy haul train smoothly pass the long slopes.In this paper,the calculation by the simulation software is of great importance to improve the train's economy,security and railway's heavy haul transportation technology.
引文
[l]Carlson F G, Round K C. Development and implementation of advanced brakes and improved suspenssion systems for the North American network[A]. Implementation of Heavy Haul Technology for Network Efficiency[C]. International Heavy Haul Association 2003 Specialist Technical Session,2003(5):1.1-1.10
    [2]耿志修.大秦铁路重载运输技术[M].北京:中国铁道出版社,2009
    [3]冀彬.大秦线重载列车发展研究[J].中国铁路.2009,03
    [4]耿志修.大秦线开行20kt级重载组合列车系统集成与创新[J].中国工程科学.2008,10(3):31-43
    [5]朱耀斌,魏庆朝.重载列车运输安全问题分析[J].中国安全科学学报.2005,15(3):6-9
    [6]邹新军.大秦线6起机车车辆分离的原因分析及建议[J].铁道车辆.2008,46(11):39-40
    [7]金辉.超长重载列车易发生抻钩问题的原因和对策[J].机车电传动.2010,01:75-78
    [8]Rao, J.S., Raghavacharyulu, E., and Kumar, N. Mathematical modeling to simulate the transient dynamic longitudinal force draw bars of a train-consist [J]. Journal of Sound and Vibration.1984,94(3),365-379
    [9]Duncan, I. B. and Webb, P. A. The longitudinal behavior of heavy haul trains using remote locomotives. In Proceedings of the Fourth International Heavy Haul Conference, Brisbane, 1989, pp.587-590
    [10]Verbitskiy, V. G., Lobas, L.G. Simulation of dynamic behavior of monorail car[J]. Engineering Simulation.2000,18:119-130
    [11]M. Ansari, E. Esmailzadeh, D. Younesian. Longitudinal dynamics of freight trains[J], Int. J. Heavy Vehicle Systems,2009,16(1/2):102-131
    [12]A.Nasr, S Mohammadi. The effects of train brake delay time on in-train forces[J], Proceeding Institution Mechanical Engineers. Part F:J. Rail and Rapid Transit,2010, 224 (6):523-534
    [13]M. Chou, X. Xia, C. Kayser. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems[J]. Control Engineering Practice, 2007,15(4):501-509
    [14]P. Belforte, F. Cheli, G. Dianaand, S. Melzi. Numerical and experimental approach for the evaluation of severe longitudinal dynamics of heavy freight trains[J]. Vehicle System Dynamics,2008,46, Supplement:937-955
    [15]大秦线采用Locotrol技术开行2万吨重载组合列车试验报告[R].中国铁道科学研究院:机车车辆研究所,2006
    [16]姚小沛.大秦线HXD1机车牵引2万吨组合列车试验报告[R].中国铁道科学研究院:机车车辆研究 所,2007
    [17]耿志修,李学峰,张波.大秦线重载列车运行仿真计算研究[J].中国铁道科学.2008,2(29):88-93
    [18]赵鑫,王成国,马大炜.机车无线同步控制技术对2万t重载组合列车纵向力的影响[J].中国铁道科学.2008,3(29):78-83
    [19]常崇义,王成国,马大炜等.2万t组合列车纵向力计算研究[J].铁道学报,2006,2(28):89-94
    [20]魏伟,李文辉.120阀列车空气制动系统性能仿真程序简介[J].铁道车辆.2004,42(7):34-35
    [21]Abdol-Hamid K S, Limbert D E, Gauthier R G, et al. Simulation of freight train air brake system[C]//ASME. Proceeding of the ASME Winter Annual Meeting. New York:ASME,1986:5-9
    [22]Johnson M R, Booth G F, Mattoon D W. Development of practical techniques for the simulation of train air brake operation[C]//ASME. Proceeding of the ASME Winter Annual Meeting. New York:ASME,1986:1-4
    [23]Hiroshi T, Izumi H. Characteristics of pressure reduction in air brake pipe of rolling stock[J].Quaterly Reports,1986,27(4):127-130
    [24]Hiroshi T, Izumi H, Kazuyuki K, et al. A study on characteristics of pressure reduction of compressed air in a long pipe[J]. Nippon Kikai Gakkai Ronbunshu B Hen,1988, 52(481):213-234
    [25]Izumi H, Kiyoshi K, Hiroshi T.A study on characteristics of pressure reduction of compressed air in a long pipe installing branch pipes[J]. Nippon Kikai Gakkai Ronbunshu:B Hen,1987,54(3):1602-1606
    [26]Bharath S, Nakra B C, Gupta K N. A distributed mathematical model for pressure transient analysis railway pneumatic brake system[J]. International Journal of Mechanical Sciences, 1990,32(2):133-145
    [27]Murtaza M A. Railway air brake simulation:an empirical approach[J]. Proceedings Institution Mechanical Engineers:Part F,1993,207(1):51-56
    [28]Murtaza M A, Garg S B L铁路空气制动机作用的瞬态相应[J].北京:国际重载运输协会制动专题讨论会论文集,1988
    [29]Murtaza M A, Garg S B L. Parametric Study of A Railway Air Brake System[J]. Proceeding Institution Mechanical Engineers, Part F,1992, (206):31-38
    [30]刘金朝,Won Seong,王成国等.长大货物列车空气管系3维充气模型的数值仿真[J].中国铁道科学.2005,26(5):66-70
    [31]魏伟.120阀及试验台的计算机模拟[J].铁道学报.2000,22(1):31-35
    [32]魏伟,李文辉.列车空气制动系统数值仿真[J].铁道学报.2003,25(1):38-42
    [33]王振宇,魏伟.高原低气压对120阀部分试验标准的影响[J].铁道车辆.2005,43(5):10-11
    [34]魏伟.2种单阀试验台初充气试验仿真比较研究[J].铁道车辆.2005,43(5):10-11
    [35]魏伟,刁亮.使用F8型空气制动机的快运货物列车制动系统仿真分析[J].铁道机车车辆.2007年第5期
    [36]徐毅.快速货车采用104型阀制动系统能力的预测[J].铁道机车车辆工人.2007年第7期
    [37]魏伟,赵福雷.两种试验台缓解阀通量试验的等效性探讨[J].铁道机车车辆.2008,2(28):6-8
    [38]魏伟,徐忠刚.两种试验台紧急二段阀试验的仿真比较[J].大连交通大学学报.2008,1(29):23-28
    [39]魏伟,李文辉.缩短120阀试验时间的标准与方法探讨[J].铁道车辆.2002,6
    [40]魏伟.列车空气制动系统仿真的有效性[J].中国铁道科学.2006,5(27):104-109
    [41]魏伟,赵旭宝,姜岩等.列车空气制动与纵向动力学集成仿真系统[J].2010年度全国铁路机车车辆动态仿真学术会议论文集(上),成都,2010:166-172
    [42]中华人民共和国铁道部.TB/T1407-1998列车牵引计算规程[S].北京:中国标准出版社,1998
    [43]W Wei, Y Lin. Simulation of a freight train brake system with 120 valves [J]. Proceeding Institution Mechanical Engineers, Part F:J. Rail and Rapid Transit,2009,223:85-92.
    [44]Benson R S程宏,朱倩,邵明锋译.内燃机的热力学和空气动力学[M].北京:机械工业出版社,1986.
    [45]魏伟.两万吨组合列车制动特性[J].交通运输工程学报.2007,7(6):12-16
    [46]魏伟,赵连刚.两万吨列车纵向动力学性能预测[J].大连交通大学学报.2009,2(30):39-43
    [47]高春明,冀彬,张波等.大秦线重载组合列车的LOCOTROL技术应用研究[J].电力机车与城轨车辆.2006,6(29):5-7,41
    [48]马大炜,冀彬,王成国.大秦线开行2万t级重载列车的关键技术问题和对策[J].铁道机车车辆.2007,27(4):1-3,24
    [49]高伟.关于交直流传动电力机车轮轨防擦伤的研究[J].电力机车与城轨车辆.2009,6(32):17-19
    [50]冀彬,马大炜,王成国.大秦线重载列车下坡道安全运行的技术对策研究[J].铁道机车车辆.2008,4(28):36-37
    [51]王奇钟.货物列车常用制动时如何掌握机车制动力[J].铁道机车车辆,2004,4(24):64-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700