CT序列图像三维可视化技术的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着CT、MRI等医学影像设备的出现,传统的医学诊断方式发生了革命性的变化,利用医学影像设备,医生可以直接从二维面方向对人体内部组织进行观察,从一定的程度上提高了诊断效率和诊断的准确性。医生通过观察一组CT,MRI的二维切片去发现病变体,这主要依赖与医生的读片经验和对图像的定性分析,如何获取病变体更直观准确的信息,因此二维图像的三维可视化技术就被提上了研究日程。
     由于计算机技术的迅速发展,对于海量的体数据进行三维可视化已成为可能。医学图像的三维可视化是一个多学科交叉研究领域,是计算机图形学和图像处理在生物医学工程中的重要应用。
     本文首先介绍了三维数据场的结构,对本文将用到的可视化工具包VTK(Visualization Toolkit)的可视化流程和可视化模型作了系统全面的分析,同时对DICOM格式的CT图像相关知识进行了介绍。本文的研究重点是三维可视化技术,文中对可视化中的面绘制技术,体绘制技术和虚拟切割技术进行了重点研究和探讨。
     面绘制技术中主要介绍了轮廓线连接法,Marching Cubes法和DividingCubes法的原理,并在重点研究MC算法原理的基础上,针对经典的MC算法中产生海量的中间三角面片,极大的耗费了绘制时间,提出了减少三角面片的改进的MC算法。改进的MC算法通过减少满足约束条件的顶点,以达到减少中间过程中生成的三角面片的数目,并通过实验证明改进的MC算法在不明显降低绘制效果的前提下减了少构造的中间三角面片,明显的提高了绘制速度。体绘制技术中介绍了错切—形变法,抛雪球法和光线投射法。光线投射算法是体绘制技术中的典型算法,也是被广泛应用的一种算法,文中对光线投射算法的原理和实现以及绘制结果伪色彩的添加进行了重点探讨。同时本文利用DICOM格式的CT序列图像(512×512×118),借助可视化工具包VTK,结合C++编程在普通计算机上实现了上述的面绘制和体绘制的相关算法。
     为更充分的利用已有的图像信息,更好的辅助诊断,很多情况下仅仅重建出三维模型是远远不能满足诊断的需求的,因此本文在实现了面绘制和体绘制的基础上又对虚拟切割技术进行了探讨,包括规则面的虚拟切割,任意面的虚拟切割和盒状切割。规则面的切割是指从解剖学上三个重要的解剖方向进行虚拟切割。任意面的切割更加灵活,可以从不同角度不同方向对绘制结果进行切割,以便更好的满足医生观察的需要。盒状切割是一种更为复杂的虚拟切割技术,立方盒的六个面都具有切割功能。在对上述各种切割技术的原理进行了详细研究的基础上,结合VTK对虚拟切割进行模拟,得到了较为满意的结果。
     本文不仅从理论上论述了可视化算法的原理,更重要的是利用可视化工具包VTK在普通计算机上实现了相关可视化算法,为辅助诊断奠定了基础,有着重要的实践意义。
The way of traditional medical diagnosis has made a revolutionary change since the mergence of the devices of medical images such as CT and MRI. With the help of these devices, the doctors can observe the inner tissue of a human body by using 2D images. It improves the diagnost efficiency and diagnost accuracy at certain extent. Nowdays, the doctors tends to diagnose by observing a series of slices of CT, MRI images. It mainly depends on the doctors' experience. How to get more intuitionistic and accurate information about conditions of patient? The technology of three-dimensional visualization was put on the research agenda.
     This paper first introduces the structure of the three-dimensional data, the visualizaion process and visualization models of VTK (Visualization Toolkit) and the related knowledge of CT image.
     The three-dimensional visualization of the volume data has become possible because of the rapid development of computer technology. The visualization of medical images is a cross-cutting reaserch areas of different disciplines. It is the important application of the computer graphics and imge processing in bioledical engineering. The study focuses on the three-dimensional vlisualiztion technology. In this paper, the technology of surface rendering, volume rendering and virtual cutting are reasearched and discussed.
     Surface rendering technology includes many methods, this article introduces the principles of the algorithm of outline connection, Marching Cubes and Dividing Cubes. At the basis of studying the methods, we presented an improved MC algorithm against the classic MC which produces lots of triangular patches and uses lots of time during the rendering process. the improvede MC algorithm reduce the vertexes which meet the constrain condition to reduce the number of triangular patches, and the experiment proves that the improved MC can reduce the rendering time by reducing the trianglar patches at the premise of not obvous reducing the effect of rendering result. This article also disscusses several algorithms of volume redering, such as Shearp-warp, splating and Ray-casting. Ray-casting used widely is the typical algorithm. Its theoy and implementation, as well as the pseudo-color mapping to the result are the foucus of the paper. In the article, the CT images (512×512×118) are used to implement the algorithms of surface rendering and volume rendering in personal computer with VTK (Visualization Toolkit) and C++.
     In many cases, the reconstruction of a three-dimensional model is far from enough to meet the needs of the diagosis. In order to obtain more image information in to diagnosis, the article continues to study the virtual cutting technology after the successful implementation of the surface rendering and volume rendering. It includes the virtual cutting of orthogonal palnes, virtual cutting of arbitrary palne and box-shaped cutting. The virtual cutting of orthogonal palnes means cutting the rendering results along the important anatomical direction, while the virtual cutting of arbitrary plane is more flexible. It can cut the results from different angles and different direction to obtain more information to meet doctors' need. Box-shaped cutting is a more complex virtual cutting technology. The six planes of the cubic box have the function of virtual cutting. Then VTK is used to simulate the virtual cutting after the detailed study of the principle of the above-mentioned virtual cutting technology, and we get the satisfactory experiment results.
     This papper theoretically discusses the principles of visualization algorithm. More importantly, the algorithms are implemented on the computer with VTK. It laid the founfation for assisted diagnosis, has important practical significance.
引文
[1]黄志澄,数据可视化技术及其应用展望[J],电子展望与决策.1999.6:3~9.
    [2]管伟光.体视化技术及其应用[M].北京:电子工业出版社,1998,12~23.
    [3]McCormick B H,Brown M D.Visualization in Scientific Computer[J],Computer Graphics,1987,21(6):1~14.
    [4]宋海友,蒲立信.医学可视化中三维重建的基本方法[J],中国医院,2005.11,增刊第九卷.
    [5]沈海戈,柯有安.医学体数据三维可视化方法的分类与评价[J],中国图像图形学报,2000.5(7):545~547.
    [6]吕维雪,段会龙.三维医学图像可视化及应用[M].浙江大学出版社,2001.7~32.
    [7]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999.12.
    [8]付斌.医学图像可视化研究[D],南京理工大学硕士论文,2005.6.
    [9]Will Schrocder,Lydia Ng.JosbCates.The ITK Software Guide(Second Edition).Updata for ITK Version 2.4[M].NewYork:Kitware Inc Publisher,2005.
    [10]田捷,赵明昌,何晖光.集成化医学影响算法平台理论与实践[M].北京:清华大学出版社,2004:10~18.
    [11]Visualization Tookit,http://www.vtk.org.
    [12]William J.Schroeder,Kenneth M.Martin,Lisa S.Avila et al.The VTK User's Guide[M].New York:Kitware,2000.
    [13]陈琰,宋鸿陟,万艳春.可视化工具VTK技术研究[J],2007系统仿真技术及其应用学术研讨会,2007.08:197~200.
    [14]田娅,饶妮妮,蒲立新.国内医学图像处理技术最新动态[J],电子科技大学学报,2002,31(5):86~89.
    [15]余建明.医学影像技术[M],北京:科学出版社,2004,88~93.
    [16]National Eletrical Manufacture Association(NEMA).Electronic Documents of Digital Imaging and Communication in Medical(DICOM)[S],1999.
    [17]周宴.医学CT图像的三维可视化技术研究[D],重庆大学硕士论文,2005.04,34~36
    [18]Keppel E.Approximating complex surface by triangulation of contours lines[J]. IBM J Res Develop,1975,19:2~11.
    [19]W.Lorresen and H.Cline.Marching Cubes:a high resolution 3D surface construction algorithm[J].ACM Computer Graphic,1987,21(4):163~170.
    [20]祁俐娜,罗述谦.基于VTK的医学图像三维重建[J],北京生物医学工程,2006,25(1):1~5.
    [21]陈兵,蒙培生.基于Dividing Cubes的算法实现螺旋CT数据的三维重建[J],计算机应用研究,2003(04):63~65.
    [22]朱经纬,蒙培,王乘.基于MC算法的螺旋CT扫描数据三维重建[J],华中科技大学学报,2002,30(3):74~76.
    [23]T Moeller,R Machiraju,K Mueller.Evaluation and Design of Filter Using a Taylor Series Expansion[J],IEEE Transactions on Visualization and Computer Graphics,1997,3(2):184-199.
    [24]T Moeller,R Machiraju,K Mueller,R Yagel.Classification and Local Error Estimation of Interpolation and Derivative Filter for Volume Rendering[J],Proceedings of IEEE Symposium on Volume Visualization'96[C],1996,3(3):71-78.
    [25]Max N.Optical Models for Direct Volume Rendering.IEEE Transcation on Visualization and Computer Graphics,1995,(2):99~108.
    [26]Heewon Kye,Byeong-Seok Shin,Yeong Gil Shin,Helen Hong.Shear-rotation-warp volume rendering[J],Computer Animation and Virtual Worlds,2005,16:547~557.
    [27]P Lacroute,M Levoy.Fast Volume Rendering Using a Shearp-warp Factorization of the Viewing Transformation[J],In Processing of ACM SIGGRAPH'94,1994,8(3):451~457.
    [28]P Lacroute.Fast Volume Rendering Using a Shearp-warp Factorization of the Viewing Transformation[D],Stanford USA:Stanford University,1995.
    [29]Westover L.Footprint Evaluaton for Volume Rendering[J],Computer Graphics,1990,24(4):367~376.
    [30]张志刚,张加万,孙济洲.一种改进的Splatting体绘制方法[J],天津大学学报,2003(05):626~630.
    [31]H K Tuy,L T Tuy.Direct 2-D Display of 3-D Objects[J],IEEE Computer Graphics and Application,1984,4(10):29~33.
    [32]Drebin R A,CarPenter I,Hanrahan P.Volume Rendering[J].Computer Graphic,1988.22(4):65~74.
    [33]汪陆君.医学图像三维重建技术研究[D],电子科技大学硕士论文,2004.3.
    [34]陈良琴,陈新,钟少君.基于PC的体绘制技术[J],现代电子技术,2007.30(14):82~85.
    [35]宋海友.基于VTK的医学图像重建及可视化技术研究[D],成都理工大学硕士论文,2006.
    [36]Brookshire D Conner,Scott S Snibbe,Kenneth P Herndon,Daniel C Robbins,Robert C Zeleznik,Andries Van Dam.Three-dimension widgets[C].Processings of Interactive 3D graphics Symposium,1992,183~188.
    [37]Michael J Meguffin,Liviu Taneau,Ravin Balakrishnan.Using Deformations for Browsing Volumetric Data[C].Proceedings of the IEEE Visualization Conference,2003,401~408.
    [38]Fred Dech,Jonathan C Silverstein.Rigorous Exploration of Medical Data in Collaborative Virtual Reality Applications[C].Sixth International Conference on Information Visualization,2002,32~38.
    [39]VTK 5.1.0 Documentation.http://www.vtk.org.
    [40]王立功,于甬华,罗立民.医学图像体数据场的剖切显示方法[J],中国图像图像学报,2003,8(7):769~773.
    [41]何晖光,田捷,林瑶,赵明昌,李光明.虚拟切割及其在医学影像中的应用[J],中国医学物理学杂志,2002,4(2):72~78.
    [42]王满宁,韩正文,宋志坚.三维医学图像的快速重建与任意切割[J],复旦大学(医学版),2002,29(2):142~144.
    [43]李金,胡战利.三维物体的任意方向二维断面图像提取[J],生命科学仪器,2008,06(1):44~47.
    [44]Schroeder W,Martin K,Lorensen B.The Visualization Tookit:An Object Oriented Approach to 3D Graphics(3rd Edition)[M].New York:Kitware Inc Publisher,2003.
    [45]D.S.Malik.C++编程-从问题分析到程序设计[M],电子工业出版社,2003.
    [46]秦绪佳,欧宗瑛,候建华.医学图像三维重建模型的剖切与立体视窗裁剪[J],计算机辅助设计与图像学学报,2002,14(3):275~279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700