荷能重离子引起高定向石墨和石墨烯的辐照效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨材料具有诸多优点,如高的熔沸点、良好导热导电性、稳定的化学性质、耐腐蚀、抗热震性、良好可塑性及良好的中子减速性能,非常适合用作核反应堆快中子慢化材料。在高温气冷堆中,石墨是唯一可选择的结构材料和反射层材料。高温中子辐照会在石墨中引起晶格原子离位,产生缺陷和扰动,并引起理化性能和宏观尺寸的变化,因此石墨的辐照效应研究始终是国际上的热点研究课题。石墨烯作为单层的石墨材料,具有优异的电学、热学以及光学性能,是构建其它维数碳材料的基本单元,对其辐照效应的研究一方面可以提高对石墨、碳纳米管、富勒烯等碳同素异构体材料辐照效应的认识。另外也可以为石墨烯的应用提供有价值的参考数据。
     本论文采用机械剥离法成功获得石墨烯样品,借助近物所重离子加速器HIRFL和德国GSI的直线加速器UNILAC提供的快重离子(SHI),以及近物所320kV高压平台提供的高电荷态离子(HCI),对高定向石墨(HOPG)、纳米厚度的HOPG及石墨烯样品进行辐照。辐照后样品采用激光共聚焦拉曼光谱仪、X射线光电子谱仪、扫描隧道显微镜、透射电子显微镜及原子力显微镜进行检测,实验结果分三个部分进行详细分析和讨论。
     快重离子辐照实验结果表明,(1)辐照后HOPG表面有纳米尺寸小丘状潜径迹形成,且有sp3杂化相产生。sp3相产额与电子能损和离子总注量有关。辐照后的样品拉曼D峰与D′峰与G峰面积比(ID/IG)随辐照注量的增加而增大,服从T-K关系。(2)薄层HOPG的辐照损伤与其厚度有关,越薄损伤越严重,单层石墨烯损伤最严重。通过检测样品的拉曼D峰与D′峰的峰高比ID/ID′,讨论了不同厚度样品中可能存在的缺陷类型。(3)实验观测到辐照后石墨烯出现纳米直径的孔洞。Raman测试表明电子能损值是影响石墨烯辐照损伤程度的重要因素。通过改进Lucchese的理论模型,对辐照后石墨烯ID/IG值随潜径迹间距(Ld)变化参数进行拟合。获得了石墨烯损伤程度与入射离子的电子能损dE/dx和单核能的关系,可以用于石墨烯SHI辐照损伤的预测。(4)对比HOPG与石墨烯实验结果发现,石墨烯比块体石墨更容易产生辐照损伤;石墨烯ID/IG值随辐照注量变化出现拐点,而在现有注量范围内石墨的ID/IG值并无拐点出现;在石墨中发现的离子速度效应在石墨烯中并未观察到。
     高电荷态离子辐照实验表明,(1)辐照后HOPG表面有小丘状潜径迹形成,在部分小丘状突起顶端检测到新的HOPG晶格结构。(2)通过对Lucchese的理论模型进行改进,成功拟合了石墨与石墨烯的实验数据。拟合结果表明,石墨与石墨烯的ID/IG随注量的变化趋势不同,差异源于辐照后石墨烯中存在结构完全损伤区与激活区,两种竞争机制导致了石墨烯ID/IG的三个变化阶段。而HOPG只有激活区,所以石墨ID/IG只有两个变化阶段。
     对比快重离子与高电荷态离子在HOPG与石墨烯中引起的辐照效应可以得出,(1)相同辐照注量条件下,在HOPG中,HCI辐照将导致比SHI辐照更大的拉曼D峰与G峰峰高比(ID/IG),然而在石墨烯中,两种离子辐照引起的ID/IG并无明显差异。(2)石墨烯中,HCI将导致比SHI更大的激活区半径rA。
Graphite materials have many advantages, such as high melting and boiling points,good thermal and electrical conductivity, stable chemical property, corrosion resistance,thermal shock resistance and good plasticity. What’s more important is it can slowdown the fast neutrons. Thus graphite is the ideal neutron moderation materials whichcould be used in nuclear reactors. In high-temperature gas-cooled reactor, graphite isthe only choice for structure and reflector materials. Heat neutron irradiation inducesatom displacement, results in defects and disturbance which would further lead to thephysical and chemical properties and even the macroscopic dimensions changes of thegraphite. Therefore, the study of irradiation effects in graphite is always a veryimportant research topic all over the world. Graphene is single layer graphite, whichcould be viewed as the building block for various carbon allotropes. In addition,graphene has excellent electrical, thermal and optical properties. The investigation ofthe irradiation effects on graphene paves a way to understand the property of carbonallotropes. Moreover, it could provide valuable experimental data for the applicationof graphene.
     In this thesis, monolayer graphene samples were successfully fabricated bymicromechanical cleavage technique. Both of Swift Heavy Ions (SHI) and HighlyCharged Ions (HCI) were used to irradiate Highly Oriented Pyrolytic Graphite(HOPG), HOPG films with thickness of several nanometers and monolayer graphene.SHI were provided by the accelerator HIRFL of IMP and the linear acceleratorUNILAC of GSI. HCI were offered by320kV high-voltage platform of IMP. Afterirradiation, the samples were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, scanning tunneling microscopy, transmission electronmicroscopy and atomic force microscopy. The detailed analysis and discussion of theexperimental results are divided into three parts as follows.
     The results of irradiation effects caused by SHI indicate that:(1) Nanoscalehillock latent tracks and sp3component were detected on the irradiated HOPG surface.The amount of hybridization (Isp3/Isp2) strongly depends on the electronic energy lossand the fluence of incident ions in the samples. The area ratio of Raman D and D′peak to G peak (ID/IG) increases with the increasing ion fluence, this is correspondingto the T-K relation.(2) The irradiation damage of HOPG films depends on thethickness of the samples. It’s much easier to induce defects into thinner films thanthicker ones. The results showed that the monolayer graphene has the weakest anti–irradiation properties. The possible defect types in samples with different thicknesswere also discussed via different intensity ratio ID/ID′.(3) Nanoscale holes wereobserved in monolayer graphene by TEM. Raman test shows that the electronic energyloss (dE/dx)eplays an important role in the degree of damage in graphene. Lucchese’stheoretical model was improved in this work to study the evolution of ID/IGwith latenttrack spacing (Ld) of graphene irradiated by SHI. In the improved model, the directrelationships of the damage in graphene to the impacting ions parameters includingelectronic energy loss dE/dx and impact ion energy ε were concluded. With this model,the irradiation effects of graphene caused by SHI could be predicted well.(4) Bycomparing the irradiation effects of HOPG and graphene, we found that monolayergraphene is much easier to be damaged than bulk graphite. A turning point wasdetected in the evolution progress of ID/IGwith the fluence obtained from graphene,while such point was never found in HOPG in the fluence range of this work. Thevelocity effect was measured in HOPG However, it was not observed in graphene inthis experiment.
     The results of the HCI irradiation experiment were concluded as following:(1)Hillock latent tracks were detected on the irradiated HOPG surface.Compressed HOPG lattice structure was imaged on the top of some latent tracks.(2)The Lucchese’s phenomenological model was improved to give full line fitting of theexperiment data of HOPG and graphene. According to the improved model, the energetic ions may cause both structurally disordered and activated regions ingraphene. The competing mechanism of these two regions results in three variationregions of the ID/IGof graphene. In HOPG, however, only activated region is inducedby energetic ions, then two variation regions of ID/IGobtained from HOPG has bedetected.
     The different irradiation results of the HOPG and graphene caused by SHI andHCI were discussed. The main results show that:(1) Under the same irradiation ionfluence, the greater intensity ratios of the D peak to G peak (ID/IG) were found inHOPG impacted by HCI than that by SHI. While no obvious differences of ID/IGweredetected in graphene irradiated by those two different kinds of ions.(2) Comparing thegraphene samples impacted by SHI and HCI ions, the larger radius of the activatedregion rAin HCI irradiated graphene was observed.
引文
[1] Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, et al.100-GHz transistors from wafer-scale epitaxial graphene. Science.2010;327(5966):662.
    [2] S. Winecki, St ckli MP, Cocke CL. Energy loss of highly charged argon ions atgrazing incidence on a graphite surface. Phys Rev B.1997;55(6):4310-6.
    [3] Terada M, Nakamura N, Nakai Y, Kanai Y, Ohtani S, Komaki K-i, et al.Observation of an HCI-induced nano-dot on an HOPG surface with STM andAFM. Nucl Instrum Methods Phys Res, Sect B.2005;235(1-4):452-5.
    [4] Meguro T, Yamaguchi Y, Fukagawa H, Takai H, Hanano N, Yamamoto Y, et al.Nanoscale modification of electronic states of HOPG by the single impact ofHCI. Nucl Instrum Methods Phys Res, Sect B.2005;235(1-4):431-7.
    [5] Koguchi Y, Meguro T, Hida A, Takai H, Maeda K, Yamamoto Y, et al.Modification of highly oriented pyrolytic graphite (HOPG) surfaces with highlycharged ion (HCI) irradiation. Nucl Instrum Methods Phys Res, Sect B.2003;206:202-5.
    [6] Ritter R, Kowarik G, Meissl W, Süss L, Maunoury L, Lebius H, et al.Nano-structure formation due to impact of highly charged ions on HOPG. NuclInstrum Methods Phys Res, Sect B.2010;268(19):2897-900.
    [7]史平,丁富荣,王尧,马宏骥,聂锐.载能团簇离子的非线性辐照损伤.原子核物理评论.2006;23(3):348-52.
    [8]付晓刚,李正操,张正军.核石墨耐辐照性能的评价方法. Atomic EnergyScience and Technology.2010;44(6):686-9.
    [9]翟鹏济,唐孝廉.辐射损伤潜径迹的纳米尺度观测研究. Atomic EnergyScience and Technology.2002;36(6):564-8.
    [10] Liu F, YugangWang, Xue J, SixueWang, Yan S, Zhao W. STM observation ofdamage on HOPG induced by energetic ions escaped from thick botanic samples.Phys Lett A.2001;383:360–7.
    [11] Robertson J. Diamond-like amorphous carbon. Materials Science andEngineering R2002;37:129-281.
    [12] Nakamura K, Kitajima M. Raman studies of graphite lattice-disordering kineticsunder low-energy He-ion irradiation. Phys Rev B.1992;45(10):5672-4.
    [13] Nakamura K, Kitajima M. Ion-irradiation effects on the phonon correlationlength of graphite studied by Raman spectroscopy. Phys Rev B.1992;45(1):78-82.
    [14] Tripathi A, Khan SA, Srivastava SK, Kumar M, Kumar S, Rao SVSN, et al.Electronic sputtering from HOPG: A study of angular dependence. Nucl InstrumMethods Phys Res, Sect B.2003;212:402-6.
    [15] Tripathi A, Khan SA, Kumar M, Baranwal V, Krishna R, Kumar S, et al. Angulardependence of electronic sputtering from HOPG. Nucl Instrum Methods PhysRes, Sect B.2008;266(8):1265-8.
    [16] Winecki S, Cocke CL. Energy loss of highly charged argon ions at grazingincidence on a graphite surface. Phys Rev A.1997;55(3):4310-7.
    [17] Singh JP, Tripathi A, Kanjilal D. In situ STM studies of HOPG surface after200MeV Au+13ion irradiation. Vacuum.2000;57:319-25.
    [18] Bouffard S, Cousty J, Pennec Y, Thibaudau F. STM and AFM observations oflatent tracks. Radiat Eff Defect S.1993;126(1):225-8.
    [19] Biró LP, Gyulai J, Havancsak K. Atomic scale investigation of surfacemodification induced by215MeV Ne irradiation on graphite. Nucl InstrumMethods Phys Res, Sect B.1996;112(1-4):270-4.
    [20] Havancsák K, Bir LP, Gyulai J, Didyk AJ. STM and AFM observations ofdamage produced by swift Ne and Kr ions in graphite. Radiat Meas.1997;28:65-70.
    [21] Johnson RE. Electronic mechanisms for sputtering of condensed-gas solids byenergetic ions. Nucl Instrum Methods Phys Res.1982;198(1):103-18.
    [22] Watson CC, Tombrello TA. A modified lattice potential model of electronicallymediated sputtering. Radiation Effects.1985;89(3-4):263-83.
    [23] Meftah A, Costantini JM, Djebara M, Khalfaoui N, Stoquert JP, Studer F, et al.Thermal spike model applied to the irradiated yttrium iron garnet_Meandiffusion length of the energy deposited on the electrons. Nucl Instrum MethodsPhys Res, Sect B.1997;122:470-5.
    [24] Toulemonde M, Dufour C, Paumier E. Transient thermal process after ahigh-energy heavy-ion irradiation of amorphous metals and semiconductors.Phys Rev B.1992;46(22):14362-9.
    [25] Ritchie RH, Claussen C. A core plasma model of charged particle trackformation in insulators. Nucl Instrum Methods Phys Res.1982;198(1):133-8.
    [26] Stampfli P, Bennemann K. Time dependence of the laser-induced femtosecondlattice instability of Si and GaAs: Role of longitudinal optical distortions. PhysRev B.1994;49(11):7299-305.
    [27] Stampfli P. Electronic excitation and structural stability of solids. Nucl InstrumMethods Phys Res, Sect B.1996;107(1-4):138-45.
    [28] G.Schiwietz, E.Luderer, G.Xiao, P.L.Grande. Energy dissipation of fast heavyions in matter. Nucl Instrum Methods Phys Res, Sect B.2001;175-177:1-11.
    [29] Liu J, Hou MD, Liu CL, Wang ZG, Jin YF, Zhai PJ, et al. Tracks of high energyheavy ions in HOPG studied with scanning tunneling microscopy. Nucl InstrumMethods Phys Res, Sect B.1998;146:356-61.
    [30] Liu J, Hou MD, Trautmann C, Neumann R, Müller C, Wang ZG, et al. STM andRaman spectroscopic study of graphite irradiated by heavy ions. Nucl InstrumMethods Phys Res, Sect B.2003;212:303-7.
    [31] Liu J, Neumann R, Trautmann C, Müller C. Tracks of swift heavy ions ingraphite studied by scanning tunneling microscopy. Phys Rev B.2001;64(18):184115.
    [32] Toulemonde M, Costantini JM, Dufour C, Meftah A, Paumier E, Studer F. Trackcreation in SiO2and BaFe12O19by swift heavy ions a thermal spike description.Nucl Instrum Methods Phys Res, Sect B.1996;116:37-42.
    [33] Toulemonde M, Dufour C, Meftah A, Paumier E. Transient thermal processes inheavy ion irradiation of crystalline inorganic insulators. Nucl Instrum MethodsPhys Res, Sect B.2000;166-167:903-12.
    [34] F.Tuinstra, Koenig JL. Raman Spectrum of Graphite. The Journal of ChemicalPhysics.1970;53(3):1126-30.
    [35] Zeng J, Zhai PF, Liu J, Yao HJ, Duan JL, Hou MD, et al. Production of sp3hybridization by swift heavy ion irradiation of HOPG. Nucl Instrum MethodsPhys Res, Sect B.2013;307:562-5.
    [36]刘杰, Neumann R, Trautmann C, Müller C,侯明东,金运范.快重离子在石墨中引起表面及体径迹的STM研究. Nucler Techniques.2002;25(7):501-5.
    [37]侯明东,刘杰,张庆祥.电子能损的潜径迹形成机制及理论模型的新进展.核技术.2002;25(7):484-6.
    [38] Liu J, Trautmann C, C.Muller, Neumann R. Graphite irradiated by swift heavyions under grazing incidence. Nucl Instrum Methods Phys Res, Sect B.2002;193:259-64.
    [39] Liu J, Yao HJ, Sun YM, Duan JL, Hou MD, Mo D, et al. Temperature annealingof tracks induced by ion irradiation of graphite. Nucl Instrum Methods Phys Res,Sect B.2006;245(1):126-9.
    [40] Zhai PF, Liu J, Duan JL, Chang HL, Zeng J, Hou MD, et al. Velocity effect ofswift heavy ions in graphite studied by Raman spectroscopy. Nucl InstrumMethods Phys Res, Sect B.2011;269(18):2035-9.
    [41] Ishikawa N, Chimi Y, Michikami O, Hashimoto T, Kambara T, Neumann R, et al.Ion-velocity dependence of high-density electronic excitation effects in oxidesuperconductors. Nucl Instrum Methods Phys Res, Sect B.2005;230(1-4):136-41.
    [42] Wang ZG, Dufour C, Cabeau B, Dural J, Fuchs G, Paumier E, et al. Velocityeffect on the damage creation in metals in the electronic stopping power regime.Nucl Instrum Methods Phys Res, Sect B.1996;107:175-80.
    [43] Ishikawa N, Iwase A, Chimi Y, Michikami O, Wakana H, Hashimoto T, et al.Se-scaling of lattice parameter change in high ion-velocity region (v≥2.6109cm/s) in ion-irradiated EuBa2Cu3Oy. Nucl Instrum Methods Phys Res, Sect B.2002;193(1-4):278-82.
    [44] Meftah A, Brisard F, Costantini J, Hage-Ali M, Stoquert J, Studer F, et al. Swiftheavy ions in magnetic insulators: A damage-cross-section velocity effect. PhysRev B.1993;48(2):920-5.
    [45] Katz R, Kobetich E. Particle Tracks in Emulsion. Phys Rev.1969;186(2):344-51.
    [46] Tripathi A, Khan SA, Kumar M, Baranwal V, Krishna R, Pandey AC. SHIinduced surface modification studies of HOPG using STM. Nucl InstrumMethods Phys Res, Sect B.2006;244(1):225-9.
    [47] Hansson A, Paulsson M, Stafstr m S. Effect of bending and vacancies on theconductance of carbon nanotubes. Phys Rev B.2000;62(11):7639-44.
    [48] Ewels CP, Heggie MI, Briddon PR. Adatoms and nanoengineering of carbon.Chem Phys Lett.2002;351(3-4):178-82.
    [49] Nordlund K, Keinonen J. Formation of Ion Irradiation Induced Small-ScaleDefects on Graphite Surfaces. Phys Rev Lett.1996;77:699-720.
    [50] Krasheninnikov A, Nordlund K, Sirvi M, Salonen E, Keinonen J. Formation ofion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. PhysRev B.2001;63(24).
    [51] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Direct evidence foratomic defects in graphene layers. Nature.2004;430:870-3.
    [52] Teweldebrhan D, Balandin AA. Modification of Graphene Properties due toElectron-Beam Irradiation. Appl Phys Lett.2009;94(1):013101
    [53] TapasztóL, Dobrik G, Nemes-Incze P, Vertesy G, Lambin P, BiróL. Tuning theelectronic structure of graphene by ion irradiation. Phys Rev B.2008;78(23).
    [54] Compagnini G, Giannazzo F, Sonde S, Raineri V, Rimini E. Ion irradiation anddefect formation in single layer graphene. Carbon.2009;47(14):3201-7.
    [55] Chen JH, Cullen W, Jang C, Fuhrer M, Williams E. Defect Scattering inGraphene. Phys Rev Lett.2009;102(23):236805.
    [56] Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS. Intrinsic and ExtrinsicPerformance Limits of Graphene Devices on SiO2. Nature Nanotechnology2008;3:206-9
    [57] Wang ZG, Dufour C, Paumier E, Toulemonde M. The Se sensitivity of metalsunder swift-heavy ion irradiation a transient thermal process. J.Phys: Condens,Matter.1994;6:6733-50.
    [58] Szenes G. Thermal spike model of amorphous track formation in insulatorsirradiated by swift heavy ions. Nucl Instrum Methods Phys Res, Sect B.1996;116(1-4):141-4.
    [59] Wang ZG, Dufour C, Paumier E, Toulemonde M. Defects in metals induced bynuclear collisions and their modifications by swift heavy ion irradiations. NuclInstrum Methods Phys Res, Sect B.1996;115(1-4):577-80.
    [60] Dufour C, Beuneu F, Paumier E, Toulemonde M. Experimental evidence of theirradiation temperature effect in bismuth under swift heavy-ion irradiation.Europhys Lett.1999;45(5):585-90.
    [61] Burgd rfer J, Lerner P, Meyer F. Above-surface neutralization of highly chargedions: The classical over-the-barrier model. Phys Rev A.1991;44(9):5674-85.
    [62] Burgd rfer J, Meyer F. Image acceleration of multiply charged ions by metallicsurfaces. Phys Rev A.1993;47(1):R20-R2.
    [63] Ducrée JJ, Casali F, Thumm U. Extended classical over-barrier model forcollisions of highly charged ions with conducting and insulating surfaces. PhysRev A.1998;57(1):338-50.
    [64] Cheng H-P, Gillaspy JD. Nanoscale modification of silicon surfaces viaCoulomb explosion. Phys Rev B.1997;55(4):2628-36.
    [65] Ghose D, Karmakar P, Parilis E. Evidence of Coulomb explosion sputtering ofultra-thin Pt films due to impact of multi-charged Ar ions. Nucl Instrum MethodsPhys Res, Sect B.2003;212:420-5.
    [66] Bárány A, Astner G, Cederquist H, Danared H, Huldt S, Hvelplund P, et al.Absolute cross sections for multi-electron processes in low energy Arq+Arcollisions Comparison with theory. Nucl Instrum Methods Phys Res, Sect B.1985;9(4):397-9.
    [67] Wang TS, Grambole D, Herrmann F, Peng HB, Wang SW. Hydrogen3D-distribution and the kinetics in a Ti/H system studied by micro-ERDA, NRAand XRD. Surf Interface Anal.2007;39(1):52-7.
    [68] Niehaus A. A classical model for multiple-electron capture in slow collisions ofhighly charged ions with atoms. J Phys B: At. Mol Opt Phys.1986;19(18):2925-37.
    [69] Parilis ES. Coulomb Explosion Sputtering, Crater and Blister Formation by HCI.Phys Scripta.2001;2001:197-201.
    [70] Srivastava SK, Shukla AK, Vankar VD, Kumar V. Growth, structure and fieldemission characteristics of petal like carbon nano-structured thin films. ThinSolid Films.2005;492(1-2):124-30.
    [71] Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, et al.Free-standing subnanometer graphite sheets. Appl Phys Lett.2004;85(7):1265.
    [72] Zhu M, Wang J, Holloway BC, Outlaw RA, Zhao X, Hou K, et al. A mechanismfor carbon nanosheet formation. Carbon.2007;45(11):2229-34.
    [73] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, et al. Electrochemicaldelamination of CVD grown graphene film toward the recyclable use of coppercatalyst. Acs Nano.2011;5(12):9927–33.
    [74] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbonsfrom carbon nanotubes. Nature.2009;458(7240):877-80.
    [75] Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK,et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature.2009;458(7240):872-6.
    [76] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, et al. Electronic confinementand coherence in patterned epitaxial graphene. Science.2006;312(5777):1191-6.
    [77] Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, et al. Ultrathin epitaxialgraphite.2D electron gas properties and a route toward graphene-basednanoelectronics. The journal of physics chemistry B.2004;108(52):19912–6.
    [78] Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun.2007;143(1-2):47-57.
    [79] Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, et al.Making graphene visible. Appl Phys Lett.2007;91(6):063124.
    [80] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, et al.Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett.2007;7(9):2711-7.
    [81] Jung I, Pelton M, Piner R, Dikin DA, Stankovich S, Watcharotone S, et al.Simple Approach for High-Contrast Optical Imaging and Characterization ofGraphene-Based Sheets. Nano Lett.2007;7(12):3569-75.
    [82] Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, et al. Graphene thicknessdetermination using reflection and contrast spectroscopy. Nano Lett.2007;7(9):2758-63.
    [83] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al.Raman Spectrum of Graphene and Graphene Layers. Phys Rev Lett.2006;97(18):187401.
    [84] Gupta A, Chen G, Joshi P, Tadigadapa S, P.C.Eklund. Raman Scattering fromHigh Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett.2006;6(12):2667–73.
    [85] I. Calizo, Balandin AA, Bao W, Miao F, Lau CN. Temperature Dependence ofthe Raman Spectra of Graphene and Graphene Multilayers. Nano Lett.2007;7(9):2645-9.
    [86] F.Banhart, P.M.Ajayan. Carbon onion as nanoscopic pressure cells for diamondformation. Nature.1996;283.
    [87] P.Wesolowski, Y.Lyutovich, F.Banhart, H.D.Carstanjen, H.Kronmuller.Formation of diamond in carbon onions under MeV ion irradiation. Appl PhysLett.1997;71(14):1948.
    [88] T.L.Daulton, M.A.Kirk, R.S.Lewis, L.E.Rehn. Production of nanodiamonds byhigh-energy ion irradiation of graphite at room temperature. Nucl InstrumMethods Phys Res, Sect B.2001;175-177:12-20.
    [89] Nemanich RJ, Solin SA. First-and second-order Raman scattering fromfinite-size crystals of graphite. Phys Rev B.1979;20(2):392-401.
    [90] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered andamorphous carbon. Phys Rev B.2000;61(20):14095–107.
    [91] F.Tuinstra, Koenig JL. Raman Spectrum of Graphite. J Chem Phys.1970;53(3):1126-30.
    [92] Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials:structural basis of observed spectra. Chem Mater.1990;2(5):557-63.
    [93] Reich S, Thomsen C. Raman spectroscopy of graphite. Phil Trans R Soc Lond A.2004;362(1824):2271-88.
    [94] K hler T, Frauenheim T, Jungnickel G. Stability, chemical bonding, andvibrational properties of amorphous carbon at different mass densities. Phys RevB.1995;52(16):11837-44.
    [95] Beeman D, Silverman J, Lynds R, Anderson M. Modeling studies of amorphouscarbon. Phys Rev B.1984;30(2):870-5.
    [96] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, et al. SpatiallyResolved Raman Spectroscopy of Single-and Few-Layer Graphene. Nano Lett.2007;7(2):238-42.
    [97] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, et al. Ramanmapping of a single-layer to double-layer graphene transition. The EuropeanPhysical Journal Special Topics.2007;148(1):171-6.
    [98] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, et al. Ramanimaging of graphene. Solid State Commun.2007;143(1-2):44-6.
    [99] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, etal. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A.2005;102(30):10451-3.
    [100] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.Electric field effect in atomically thin carbon films. Science.2004;306(5696):666-9.
    [101] Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, etal. Probing the Nature of Defects in Graphene by Raman spectroscopy. NanoLett.2012;12(8):3925–30.
    [102] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahighelectron mobility in suspended graphene. Solid State Commun.2008;146(9-10):351-5.
    [103] Altland A. Low-Energy Theory of Disordered Graphene. Phys Rev Lett.2006;97(23).
    [104] Pereira V, Guinea F, Lopes dos Santos J, Peres N, Castro Neto A. DisorderInduced Localized States in Graphene. Phys Rev Lett.2006;96(3).
    [105] Vozmediano MAH, López-Sancho MP, Stauber T, Guinea F. Local defects andferromagnetism in graphene layers. Phys Rev B.2005;72(15).
    [106] Ochedowski O, Marinov K, Wilbs G, Keller G, Scheuschner N, Severin D, etal. Radiation hardness of graphene and MoS2field effect devices against swiftheavy ion irradiation. J Appl Phys.2013;113(21):214306.
    [107] Geim AK. Graphene: status and prospects. Science.2009;324(5934):1530-4.
    [108] Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO, Capaz RB,et al. Quantifying ion-induced defects and Raman relaxation length in graphene.Carbon.2010;48(5):1592-7.
    [109] Akco ltekin S, Bukowska H, Peters T, Osmani O, Monnet I, Alzaher I, et al.Unzipping and folding of graphene by swift heavy ions. Appl Phys Lett.2011;98(10):103103.
    [110] Ochedowski O, Kleine Bussmann B, Ban d'Etat B, Lebius H, Schleberger M.Manipulation of the graphene surface potential by ion irradiation. Appl PhysLett.2013;102(15):153103.
    [111] Ochedowski O, Akc ltekin S, Ban-d‘Etat B, Lebius H, Schleberger M.Detecting swift heavy ion irradiation effects with graphene. Nucl InstrumMethods Phys Res, Sect B.2013;314:18-20.
    [112] Knight DS, White WB. Characterization of diamond films by Ramanspectroscopy. J Mater Res.1989;4:385-93.
    [113] Tombrello TA. Distribution of damage along an MeV ion track. Nucl InstrumMethods Phys Res, Sect B.1993;83:508-12.
    [114] Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Obergfell D, Roth S, et al.On the roughness of single-and bi-layer graphene membranes. Solid StateCommun.2007;143(1-2):101-9.
    [115] Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K,Keinonen J. Effects of ion bombardment on a two-dimensional target:Atomistic simulations of graphene irradiation. Phys Rev B.2010;81(15).
    [116] Can ado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, et al.Quantifying defects in graphene via Raman spectroscopy at different excitationenergies. Nano Lett.2011;11(8):3190-6.
    [117] Jorio A, Lucchese MM, Stavale F, Achete CA. Raman spectroscopy study ofAr+bombardment in highly oriented pyrolytic graphite. physica status solidi(b).2009;246(11-12):2689-92.
    [118] Chadderton LT. Nuclear tracks in solids: registration physics and the compoundspike. Radiat Meas.2003;36(1-6):13-34.
    [119] Tie-Shan W, Xiu-Yu Y, O'Rourke BE, He X, Liang C, Rui C, et al. Observationof Nano-Dots on HOPG Surface Induced by Highly Charged Arq+Impact.Chinese Phys Lett.2008;25(6):2020-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700