IL-22和TNF-α在口腔粘膜抗白念珠菌感染固有免疫中的协同作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔念珠菌病(Oral candidiasis)是由念珠菌属真菌感染所引起的急性、亚急性或慢性口腔黏膜疾病。近年来,由于抗生素和免疫抑制剂在临床上的广泛应用,导致菌群失调或免疫力降低,从而使内脏、皮肤及黏膜真菌感染者日益增多,口腔黏膜念珠菌病的发生率也相应增高。口腔念珠菌病可按病损特征及病变部位等分为假膜型、萎缩型、增殖型等口腔念珠菌病,常见的口腔念珠菌病有念珠菌性唇炎及念珠菌性口角炎。长期慢性口腔念珠菌病还有恶变的可能,口腔念珠菌病中最主要的病原菌是白念珠菌,此菌为卵圆形芽生酵母样菌,革兰阳性,有芽孢,延长的芽生细胞极似菌丝,故名假丝白念珠菌。念珠菌对热的抵抗力不强,但对干燥、日光、紫外线及化学制剂等抵抗力较强。白念珠菌是典型的条件致病菌,平时寄生在体内的酵母型念珠菌并无致病性,而当它发展为菌丝型时,才有致病性。白念珠菌的感染及致病机理主要包括四个步骤:附着、芽管和菌丝的形成、分泌蛋白酶、菌落相转换。目前口腔念珠菌病以局部治疗为主,但严重病例及慢性念珠菌感染常需辅以全身抗真菌药物治疗才能奏效。常用的抗真菌药物主要有制霉菌素、咪康唑和氟康唑等。
     T细胞通过其组合分泌的细胞因子来行使其对靶细胞的所有作用。新近被阐述的辅助T细胞Th22亚群以不能产生IFN-γ,IL-4和IL-17,但可以分泌TNF-α和IL-22为特征。Th22细胞属于一类新型白细胞,与其它免疫细胞很少或没有直接作用,其选择性地作用于上皮细胞。最新研究结果显示,IL-22和TNF-α在某些皮肤疾病(如银屑病、特应性皮炎等)中,可以协同激活角质形成细胞的固有免疫反应。本文主要致力于研究IL-22和TNF-α是否在白念珠菌感染的口腔黏膜上皮细胞中也存在类似的固有免疫反应激活机制,从而产生抗真菌作用。
     为此,第一部分实验中我们首先建立了小鼠白念珠菌口腔粘膜感染模型,用ELISA方法检测了模型组体内TNF-α、IL-6、IL-22、IFN-γ、IL-17和TGF-β的水平和局部粘膜组织内抗菌趋化因子(CXCL9、CXCL10)的水平,用免疫沉淀法检测局部粘膜组织中IL-22BP和TNF-αBP的表达水平,在此部分实验基础上我们证明了IL-22和TNF-α是与小鼠口腔黏膜上皮细胞固有免疫反应相关的细胞因子。
     随后我们在第二部分实验中用IL-22和TNF-α体外刺激人原代口腔黏膜上皮细胞,用实时荧光定量PCR检测固有免疫相关因子CXCL‐9、CXCL‐10、CXCL‐11、C1s、C1r、S100A7、HBD2的mRNA表达水平,我们观察到IL-22和TNF-α对其固有免疫反应的激活具有协同作用,IL-22可以增加数种依赖TNF-α的免疫调节因子,诸如初始补体因子C1r及C1s,抗菌肽S100A7及HBD-2和抗菌趋化因子CXCL-9/-10/-11等的诱导和分泌。在此基础上我们进一步研究其胞内信号通路,结果显示这种IL-22和TNF-α的协同机制是经由胞内的MAP激酶及其下游的转录因子AP-1家族介导的。
     在第三部分实验中我们通过给口腔感染了白念珠菌的小鼠腹腔注射IL-22和TNF-α后,可以观察到黏膜损伤症状明显减轻,存活率明显增加。另外,在人原代口腔黏膜上皮细胞的念珠菌感染体外模型中同样也观察到了IL-22和TNF-α对黏膜细胞有显著的协同保护作用,显著抑制了念珠菌的生长,降低了白念珠菌对上皮细胞的毒性作用。
     综上所述,我们通过体内外模型实验证实了IL-22和TNF-α在口腔黏膜免疫中是一个强有力的细胞因子组合。这为开发用于治疗口腔黏膜念珠菌感染性疾病的抗真菌药物提供了一个潜在的靶点。
Oral candidiasis is an acute, subacute or chronic oral mucosal diseases caused bycandida species. In recent years, due to the extensive application of antibiotics andimmunosuppressive agents in clinical which causes dysbacteriosis or Decreasedimmunity, the number of internal organs, skin and mucosal fungal infections is increasing,so as the incidence of oral mucosal candidiasis. Oral candidiasis can be divided intopseudomembranous type, atrophic type and proliferative type according to lesioncharacteristics and location. Common oral candidiasis includes Candida albicans cheilitisand angular cheilitis. There is the possibility of malignant transformation of chronic oralcandidiasis. The most important pathogens of oral candidiasis is candida albicans. Thisbacterium is oval budding yeast like fungi, gram-positive, rod-shaped, extending buddingcells resembling pseudohyphal Candida albicans hyphal, hence the name. Candida’sresistance is not strong to heat, but strong to dry, sunlight, ultraviolet radiation andchemical agents. Candida albicans is a typical opportunistic pathogen, usually notpathogenic when parasitic in vivo, and when it develops into the mycelia type, have thepathogenicity. The infection and pathogenic mechanism of Candida albicans mainlyincludes four steps: adhesion, germ tube and hyphal formation, secretion of protease,colony conversion. At present, the treatment of Candida albicans is mainly by localtherapy, but severe cases of chronic Candida infections often need to be supplementedwith systemic antifungal therapy to be effective. The common antifungal agents includenystatin, miconazole and fluconazole.
     T cell exercises its full impact on target cell through the combinatorial secretion ofcytokines. The newly elaborated Th22subsets of helper t cells cannot produce IFN-γ,IL-4and IL-17,but is characterized by the secretion of TNF-α and IL-22. Th22cellsbelong to a new class of leukocytes, with little or no direct effect on other immune cells,but selective effect on epithelial cells. The latest research results show that IL-22andTNF-α can synergisticly activate the innate immune response of keratinocytes in certain skin disorders (such as psoriasis, allergic eczema, etc.). This article mainly focuses onstudying whether TNF-α and IL-22have the similar activation mechanism in the Candidaalbicans infected oral mucosal epithelial cells, resulting in anti-fungal activity. To thisend, we first established a mouse Candida albicans oral infection model and on this basisproved that IL-22and TNF-α are the cytokines associated with innate immune responsein mice oral mucosal epithelial cells. Subsequently, in the primary human oral epithelialcells, we observed that IL-22and TNF-α have a synergistic effect on activation of theinnate immune response. IL-22could increase the number of several TNF-α dependentimmune regulatory factors, such as initial complement factor C1r and C1s, theantibacterial peptide S100A7and HBD-2(human βdefensin2) and induction andsecretion of chemotactic factor CXCL-9/-10/-11in human primary keratinocytes. Furtherstudy of intracellular signaling pathways reveal that such a coordination mechanism ofIL-22and TNF-α is mediated via the MAP kinase and its downstream intracellulartranscription factor AP-1family. By intraperitoneal injection of IL-22and TNF-α inmouse with oral infection of Candida albicans, mucosal injury can be significantlyreduced. In addition, the protective effect of IL-22and TNF-α on mucosal cells was alsoobserved in primary human oral mucosal epithelial cells infected with Candida albicans.In conclusion, we demonstrated that IL-22and TNF-α is a powerful combination ofcytokines in the mucosal immune. This provides a potential target for the development oforal mucosa antifungal drugs: IL-22.
引文
1. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ.Candida species: current epidemiology, pathogenicity, biofilm formation, naturalantifungal products and new therapeutic options. J Med Microbiol.201362(Pt1):10-24.
    2. Yuste JR, Alfonso M, Bustos C, Quintana J, Rubio M, Villas C, Del Pozo JL. Iliacbone Candida albicans osteomyelitis in a patient with iliac crest bone autograft: acase report and review of the literature. Infection.201240(4):445-9.
    3. Kadir T, Gümrü B, Uygun-Can B. Phospholipase activity of Candida albicansisolates from patients with denture stomatitis: the influence of chlorhexidinegluconate on phospholipase production. Arch Oral Biol.200752(7):691-6.
    4. Sobel JD, Zervos M, Reed BD, Hooton T, Soper D, Nyirjesy P, Heine MW, WillemsJ, Panzer H. Fluconazole susceptibility of vaginal isolates obtained from womenwith complicated Candida vaginitis: clinical implications. Antimicrob AgentsChemother.200347(1):34-8.
    5. Ozawa H, Okabayashi K, Kano R, Watari T, Watanabe S, Hasegawa A. Rapididentification of Candida tropicalis from canine cystitis. Mycopathologia.2005160(2):159-62.
    6. Rhodus NL. Treatment of oral candidiasis. Northwest Dent.201291(2):32-3.
    7. Lehner T. Oral candidosis. Dent Pract Dent Rec.196717(6):209-16.
    8. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T,Kubo S, Chung SH, Komatsu R, Miura N, Adachi Y, Ohno N, Shibuya K, YamamotoN, Kawakami K, Yamasaki S, Saito T, Akira S, Iwakura Y. Dectin-2recognition ofalpha-mannans and induction of Th17cell differentiation is essential for host defenseagainst Candida albicans. Immunity.2010;32(5):681-91.
    9. Nowakowska D, Kurnatowska A, Stray-Pedersen B, Wilczyński J. Activity ofhydrolytic enzymes in fungi isolated from diabetic pregnant women: is there anyrelationship between fungal alkaline and acid phosphatase activity and glycemiccontrol? APMIS.2004112(6):374-83.
    10. PROSPERO MT, REYES AC. Acta Med Philipp. The efficacy of corn meal agar,soil extract agar and purified polysaccharide medium in the morphologicalidentification of Candida albicans.1955Oct-Dec;12(2):69-74.
    11. WALKER L, HUPPERT M. Corn meal-tween agar: an improved medium for theidentification of Candida albicans. Tech Bull Regist Med Technol.196030:10-4.
    12. Jeong YJ, Hong SW, Kim JH, Jin DH, Kang JS, Lee WJ, Hwang YI. VitaminC-treated murine bone marrow-derived dendritic cells preferentially drive na ve Tcells into Th1cells by increased IL-12secretions. Cell Immunol.2011266(2):192-9.
    13. Shi M, Huangfu H, Zhang C, Huang Q, Zhang M, Jin Y. The expression andregulation of Th17cell in murine modal of allergic rhinitis. Lin Chung Er Bi YanHou Tou Jing Wai Ke Za Zhi.201125(14):652-5.
    14. Brandt EB, Sivaprasad U. Th2Cytokines and Atopic Dermatitis. J Clin CellImmunol.201110;2(3).
    15. Kue CS, Lim HX, Jung MY, Hong HJ, Cho D, Kim TS. C6-ceramide in combinationwith transforming growth factor-β enhances Treg cell differentiation and stableFoxP3expression in vitro and in vivo. Immunobiology.2012Nov21.
    16. Malhotra N, Robertson E, Kang J. SMAD2is essential for TGF beta-mediated Th17cell generation. J Biol Chem.201017;285(38):29044-8.
    17. Tang Y, Desierto MJ, Chen J, Young NS. The role of the Th1transcription factorT-bet in a mouse model of immune-mediated bone-marrow failure. Blood.201021;115(3):541-8.
    18. Zhou L. Striking similarity: GATA-3regulates ILC2and Th2cells. Immunity.201219;37(4):589-91.
    19. Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N, Gedye C,Moss D, Ng SP, MacGregor D, Davis ID, Cebon J, Chen W. The regulatory Tcell-associated transcription factor FoxP3is expressed by tumor cells. Cancer Res.200815;68(8):3001-9.
    20. Young HA, Bream JH. IFN-gamma: recent advances in understanding regulation ofexpression, biological functions, and clinical applications. Curr Top MicrobiolImmunol.2007316:97-117.
    21. Estes DM. Differentiation of B cells in the bovine. Role of cytokines inimmunoglobulin isotype expression. Vet Immunol Immunopathol.199654(1-4):61-7.
    22. Li L, Young D, Wolf SF, Choi YS. Interleukin-12stimulates B cell growth byinducing IFN-gamma. Cell Immunol.1996168(2):133-40.
    23. Vey N, Viens P, Fossat C, Olive D, Sainty D, Baume D, Stoppa AM, Bouabdallah R,Brandely M, Gastaut JA, Maraninchi D, Blaise D. Clinical and biological effects ofgamma interferon and the combination of gamma interferon and interleukin-2afterautologous bone marrow transplantation.Eur Cytokine Netw.19978(4):389-94.
    24. Matsubara S, Takeda K, Kodama T, Joetham A, Miyahara N, Koya T, Swasey CH,Okamoto M, Dakhama A, Gelfand EW. IL-2and IL-18attenuation of airwayhyperresponsiveness requires STAT4, IFN-gamma, and natural killer cells. Am JRespir Cell Mol Biol.200736(3):324-32.
    25. Gafa V, Lande R, Gagliardi MC, Severa M, Giacomini E, Remoli ME, Nisini R,Ramoni C, Di Francesco P, Aldebert D, Grillot R, Coccia EM. Human dendritic cellsfollowing Aspergillus fumigatus infection express the CCR7receptor and adifferential pattern of interleukin-12(IL-12), IL-23, and IL-27cytokines, which leadto a Th1response. Infect Immun.200674(3):1480-9.
    26. Wang J, Hargrove ME, Ting CC. IL-2and IL-4mediate through two distinct kinasepathways for the activation of alphaCD3-induced activated killer cells. Cell Immunol.1996174(2):138-46.
    27. Hirsch HH, Nair AP, Moroni C. Suppressible and nonsuppressible autocrine mastcell tumors are distinguished by insertion of an endogenous retroviral element (IAP)into the interleukin3gene. J Exp Med.1993178(2):403-11.
    28. Chen XP, Falkner DH, Morel PA. Impaired IL-4production by CD8+T cells inNOD mice is related to a defect of c-Maf binding to the IL-4promoter. Eur JImmunol.200535(5):1408-17.
    29. Erpenbeck VJ, Hagenberg A, Krentel H, Discher M, Braun A, Hohlfeld JM, Krug N.Regulation of GATA-3, c-maf and T-bet mRNA expression in bronchoalveolarlavage cells and bronchial biopsies after segmental allergen challenge. Int ArchAllergy Immunol.2006139(4):306-16.
    30. Okuda Y, Takahashi I, Kim JK, Ohta N, Iwatani K, Iijima H, Kai Y, Tamagawa H,Hiroi T, Kweon MN, Kawano S, Takeda K, Akira S, Sasaki Y, Hori M, Kiyono H.Development of colitis in signal transducers and activators of transcription6-deficient T-cell receptor alpha-deficient mice: a potential role of signal transducersand activators of transcription6-independent interleukin-4signaling for thegeneration of Th2-biased pathological CD4+betabetaT cells. Am J Pathol.2003162(1):263-71.
    31. Zhang W, Luo FJ, Zhou JJ. Research progress on Th17cells. Zhejiang Da Xue XueBao Yi Xue Ban.200736(6):620-5.
    32. Cortez DM, Feldman MD, Mummidi S, Valente AJ, Steffensen B, Vincenti M,Barnes JL, Chandrasekar B. IL-17stimulates MMP-1expression in primary humancardiac fibroblasts via p38MAPK-and ERK1/2-dependent C/EBP-beta,NF-kappaB, and AP-1activation. Am J Physiol Heart Circ Physiol.2007293(6):H3356-65.
    33. Che Mat NF, Zhang X, Guzzo C, Gee K. Interleukin-23-induced interleukin-23receptor subunit expression is mediated by the Janus kinase/signal transducer andactivation of transcription pathway in human CD4T cells. J Interferon Cytokine Res.201131(4):363-71.
    34. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T,Ramon M. IL-22-producing "T22" T cells account for upregulated IL-22in atopicdermatitis despite reduced IL-17-producing TH17T cells. J. Allergy Clin. Immunol.2009123:1244–1252e1242.
    35. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A. Sallusto F., Production ofinterleukin22but not interleukin17by a subset of human skin-homing memory Tcells. Nat. Immunol.200910:857–863.
    36. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a humanhelper T cell population that has abundant production of interleukin22and is distinctfrom T(H)-17, T(H)1and T(H)2cells. Nat. Immunol.200910:864–871.
    37. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S. Cianfarani F.Th22cells represent a distinct human T cell subset involved in epidermal immunityand remodeling. J. Clin. Invest.2009.119:3573–3585.
    38. Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, Chen H, Wu C. MemoryIL-22-producing CD41T cells specific for Candida albicans are present in humans.Eur. J. Immunol.200939:1472–1479.
    39. Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-relatedT cell-derived inducible factor (IL-TIF), a novel cytokine structurally related toIL-10and inducible by IL-9. J. Immunol.2000164:1814–1819.
    40. de Oliveira Neto M, Ferreira JR, Colau D, Fischer H, Nascimento AS, Craievich AF,Dumoutier L. Interleukin-22forms dimers that are recognized by twointerleukin-22R1receptor chains. Biophys. J.200894:1754–1765.
    41. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22increases theinnate immunity of tissues. Immunity.200421:241–254.
    42. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22inhibitsepidermal differentiation and induces proinflammatory gene expression andmigration of human keratinocytes. J. Immunol.2005174:3695–3702.
    43. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M,Cardinale I, Khatcherian, A. Th17cytokines interleukin (IL)-17and IL-22modulatedistinct inflammatory and keratinocyte-response pathways. Br. J. Dermatol.2008159:1092–1102.
    44. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, Volk HD. IL-22regulates the expression of genes responsible for antimicrobial defense, cellulardifferentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J.Immunol.200636:1309–1323.
    45. Sa SM,Valdez PA,Wu J.The efects of IL-20subfamily cytokines on reconstitutedhuman epidermis suggest potential roles in cutaneous innate defense and pathogenicadaptive immunity in psoriasis. J Immunol.2007,178(4):2229-2240.
    46. Zenewicz LA, Yancepoules GD, Valenzuela DM. Interleukin-22but notinterleukin-17provides protection to hepatocytes during acute liver inflammation.Immunity.200727(4):647–659.
    47. Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M.Human epithelial cells establish direct antifungal defense through TLR4-mediatedsignaling. J. Clin. Invest.2007117:3664–3672.
    48. Schaller M, Boeld U, Oberbauer S, Hamm G, Hube B, Korting HC.Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokineepithelial responses in an in vitro model of oral candidosis. Microbiology.2004150:2807–2813.
    49. Schaller M, Mailhammer R, Grassl G, Sander CA, Hube B, Korting HC. Infection ofhuman oral epithelia with Candida species induces cytokine expression correlated tothe degree of virulence. J. Invest. Dermatol.2002118:652–657.
    50. Villar CC, Dongari-Bagtzoglou A. Immune defence mechanisms andimmunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol Med2008,13,10:e29.
    51. Scully C, el Kabir M, Samaranayake LP. Candida and oral candidiasis: A review. CritRev Oral Biol Med1994,5:125–157.
    52. Neville, BW., et al. Oral and Maxillofacial Pathology.. Philadelphia: Saunders;2002,2,
    53. Kirkpatrick CH. Chronic mucocutaneous candidiasis. Pediatr Infect Dis J2001;20:197–206
    54. Steele C, et al. Growth inhibition of Candida albicans by vaginal cells from naivemice. Med Mycol1999;37:251–259.
    55. Dmnoutier L, Louahed J, Renauld JC. Cloning and characterication of IL-10-relatedT cel1-defived inducible factor(IL-TIF), a novel cytokine structurally related toIL-10and inducible by IL-9. J Immunol.2000,164(4): l814–1819.
    56. Eyerich S, Wagener J, Wenzel V, et al. IL-22and TNF-α represent a key cytokinecombination for epidermal integrity during infection with Candida albicans.Eur JImmunol.2011,41(7):1894-901
    57. Murphy,P.M.. Chemokines and Chemokine Receptors. Philadelphia,PA:Elsevier,2008,
    58. Olson,T.S.,andLey,K.Chemokines and chemokine recep-torsin leukocytetrafficking.Am.J.Physiol.Regul.Integr.Comp.Physiol.2002,283, R7–R28.
    59. Singh,SP,Zhang,HH,Foley,JF,et al.Human T cells that are able to produce IL-17express the chemokine receptor CCR6. J. Immunol,2008180,214–221.
    60. Cole AM, Ganz T, Liese AM, et al. Cutting edge: IFN-inducible ELR-CXCchemokines display defensin-like antimicrobial activity. J Immunol,2001,167(2):623-627.
    61. Egesten,A,Eliasson,M,Johansson,HM,et al.The CXC chemokine MIG/CXCL9isimportant in innate immunity against Streptococcus pyogenes. J. Infect.Dis.2007,195,684–693.
    62. Maerki,C.,Meuter,S.,Liebi,M.et al.Potent and broad-spectrum antimicrobial activityof CXCL14suggests an immediate role in skin infections. J. Immunol.2009,182,507–514.
    63. Hernandez-Molina G,Michel-Peregrina M,Hernandez-Ramirez DF,et al.Chemokinesaliva levels in patients with primary Sjogren’s syndrome,associated Sjogren’ssyndrome, pre-clinical Sjogren’s syndrome and systemic autoimmune diseases.Rheumatology(Oxford)2011,50,1288–1292.
    64. Pestka S, Krause CD, Sarkar D. Interleukin-10and related cytokines and receptors.Annu Rev Immunol.200422:929–979.
    65. Boniface, K., et al.2005. IL-22inhibits epidermal differentiation and inducesproinflammatory gene expression and migration of human keratinocytes.J. Immunol.174:3695–3702.
    66. Auila SJ, Chan YR, Zheng M. IL‐22mediates mucosal host defense againstGram‐negative bacterial pneumonia. Nat Med.200814(3):275–281.
    67. Zheng Y, Danlienko DM, Valdez P. Interleukin-22, aT(H)17cytokine, mediatesIL-23-induced dermal inflammation and acanthosis. Nature.2007445(7l28):648–651.
    68. Zheng Y, Valdez PA, Danilenko DM. Interleukin-22mediates early host defenseagainst attaching and effacing bacterial pathogens. Nat Med.200814(3):282–289.
    69. Zenewicz LA, Yancepoules GD, Valenzuela DM. Interleukin-22but notinterleukin-17provides protection to hepatocytes during acute liver inflammation.Immunity.200727(4):647–659.
    70. Yeh JH, Sidhu SS, Chan AC. Regulation of a lated phase of T cell po1arity andefector functions by Crtam. Cell.2008132(5):846–859.
    71. Eyerich S, Eyerich K, Cavani A, Schmidt-Weber C. IL-17and IL-22: siblings, nottwins. Trends Immunol.201031:354–361.
    72. Sa SM, Valdez PA, Wu J. The efects of IL-20subfamily cytokines on reconstitutedhuman epidermis suggest potential roles in cutaneous innate defense and pathogenicadaptive immunity in psoriasis. J Immunol.2007178(4):2229–2240.
    73. Levillayer F, Mas M, Levi-Acobas F. Interleukin22is a candidate gene for Tmevp3,a locu controlling Theiler’s virus-induced neurological diseased. Genetics.2007176(3):1835–1844.
    74. Misse D, Yssel H, Trabattoni D. IL-22participates in an innate anti-HIV-lhost-resistance network through acute-phase protein induction. J Immunol.2007178(1):407–415.
    75. Weber GF, Schlantkotter S, Kaiser-Moore S. Inhitition of inter1eukin-22attenuatesbacterial load an d orgen failure during acute polymicrobial sepsis. Infect Immun.200775(4):1690–1697.
    76. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M,Fouser L. A. Interleukin (IL)-22and IL-17are coexpressed by Th17cells andcooperatively enhance expression of antimicrobial peptides. J. Exp. Med.2006203:2271–2279.
    77. de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M,Feinberg J. Mutations in STAT3and IL12RB1impair the development of humanIL-17-producing T cells. J. Exp. Med.2008205:1543–1550.
    78. Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, Ring J,Traidl-Hoffmann C. Patients with chronic mucocutaneous candidiasis exhibitreduced production of Th17-associated cytokines IL-17and IL-22. J. Invest.Dermatol.2008128:2640–2645.
    79. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y.Impaired T(H)17cell differentiation in subjects with autosomal dominant hyper-IgEsyndrome. Nature.2008452:773–776.
    80. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H, Ring J. IL-17in atopic eczema: linking allergen-specific adaptive and microbial-triggered innateimmune response. J. Allergy Clin. Immunol.2009123:59–66e54.
    81. Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA.Deficiency of Th17cells in hyper IgE syndrome due to mutations in STAT3. J. Exp.Med.2008205:1551–1557.
    82. Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C,Cobat A. Autoantibodies against IL-17A, IL-17F, and IL-22in patients with chronicmucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp.Med.2010207:291–297.
    83. Kisand K, BoeWolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, Ersvaer E.Chronic mucocutaneous candidiasis in APECED or thymoma patients correlateswith autoimmunity to Th17-associated cytokines. J. Exp. Med.2010207:299–308.
    84. Albanesi C, Cavani A, Girolomoni G. IL-17is produced by nickelspecific Tlymphocytes and regulates ICAM-1expression and chemokine production in humankeratinocytes: synergistic or antagonist effectswith IFN-gamma and TNF-alpha. J.Immunol.1999162:494–502.
    85. Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F, Garcovich S.IL-17amplifies human contact hypersensitivity by licensing hapten nonspecific Th1cells to kill autologous keratinocytes. J. Immunol.2010184:4880–4888.
    86. Wolk K, Haugen HS, Xu W, Witte E,Waggie K, Anderson M, Vom Baur E. IL-22and IL-20are key mediators of the epidermal alterations in psoriasis while IL-17andIFN-gamma are not. J. Mol. Med.200987:523–536.
    87. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, OuyangW. Interleukin-22, a T(H)17cytokine, mediates IL-23-induced dermal inflammationand acanthosis. Nature.2007445:648–651.
    88. Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V, Guillet G. SkinInflammation induced by the synergistic action of IL-17A, IL-22, Oncostatin M,IL-1}alpha{, and TNF-}alpha{recapitulates some features of psoriasis. J Immunol.2010184:5263–5270.
    89. Classen A, Kalali BN, Schnopp C, Andres C, Aguilar-Pimentel JA, Ring J, Ollert M,Mempel M. TNF receptor I on human keratinocytes is a binding partner forstaphylococcal protein A resultingin the activation of NF kappa B, AP-1, anddownstream gene transcription. Exp. Dermatol.201120:48–52.
    90. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC.Interleukin-22(IL-22) activates the JAK/STAT, ERK, JNK, and p38MAP kinasepathways in a rat hepatoma cell line. Pathways that are shared with and distinct fromIL-10. J. Biol. Chem.2002277:33676–33682.
    91. Chen G, Goeddel DV. TNF-R1signaling: a beautiful pathway. Science.2002296:1634–1635.
    92. Albanesi C, Fairchild HR, Madonna S, Scarponi C, De Pita O, Leung DY, HowellMD. IL-4and IL-13negatively regulate TNFalpha-and IFN-gamma-inducedbeta-defensin expression through STAT-6, suppressor of cytokine signaling(SOCS)-1, and SOCS-3. J. Immunol.2007179:984–992.
    93. Klein RS., Harris CA,Small CB,et al.Oral candidiasis in high-risk patients as theinitial manifestationof the acquired immunodefi ciency syndrome. N. Engl. J.Med.1984,311:354-358.
    94. Dongari-Bagtzoglou A., Fidel P.The host cytokine responsesand protective immunityin oropharyngeal candidiasis. J. Dent.Res.2005,84:966-977.
    95. Scully C, el-Kabir M,Samaranayake LP.Candida and oralcandidosis: a review. Crit.Rev. Oral Biol. Med.1994,5:125-157.
    96. Fidel PL.,Sobel JD. Protective immunity in experimental Candida vaginitis. Res.Immunol.1998,149:361-373.
    97. Fantini MC., Monteleone G, Macdonald TT. New players in the cytokine orchestra ofinfl ammatory bowel disease. Infl amm.Bowel Dis.2007,13:1419-1423.
    98. Aujla SJ., Dubin PJ, Kolls JK.Th17cells and mucosal host defense. Semin.Immunol.2007,19:377-382.
    99. Raff atellu M., Santos RL, Verhoeven DE, et al.Simian immunodefi ciencyvirus-induced mucosal interleukin-17defi ciency promotes Salmonelladissemination from the gut. Nat. Med.2008,14:421-428.
    100. Shen F., Gaff en SL. Structure-function relationships in the IL-17receptor:implications for signal transduction and therapy.Cytokine.2008,41:92-104.
    101. de Beaucoudrey L., Puel A., Filipe-Santos O., et al. Mutations in STAT3andIL12RB1impairthe development of human IL-17-producing T cells. J. Exp. Med.2008.205:1543–1550.
    102. Sims, C.R., Ostrosky-Zeichner, L. and Rex, J.H.(2005)Invasive candidiasis inimmunocompromised hospitalizedpatients. Arch Med Res36:660–671.
    103. Romani, L.(2004) Immunity to fungal infections. Nat RevImmunol4:1–23.
    104. Eyerich K., Foerster S., Rombold S., et al., Patients with chronic mucocutaneouscandidiasis exhibit reduced production of Th17-associated cytokines IL-17andIL-22. J. Invest. Dermatol.2008.128:2640–2645.
    105. Milner J D., Brenchley J M., Laurence A., et al. Impaired T(H)17celldifferentiation in subjects ith autosomal dominant hyper-IgE syndrome. Nature2008.452:773–776.
    106. Eyerich K., Pennino D., Scarponi C., et al. IL-17in atopic eczema: linkingallergen-specific adaptive nd microbial-triggered innate immune response. J. AllergyClin. Immunol.2009.123:59–66e54.
    107. Ma CS., Chew G Y., Simpson N. et al. Deficiency of Th17cells in hyper gEsyndrome due to mutations in STAT3. J. Exp. Med.2008.205:1551–1557.
    108. Albanesi C., Cavani A.,Girolomoni G. IL-17is produced by nickelspecific Tlymphocytes and regulates ICAM-1expression and chemokine production in humankeratinocytes: synergistic or antagonist effectswith IFN-gamma and TNF-alpha. J.Immunol.1999.162:494–502.
    109. Li W, Danilenko DM, Bunting S, Ganesan R, Sa S, Ferrando R,Wu TD. Theserine protease marapsin is expressed in stratified squamous epithelia and isup-regulated in the hyperproliferative epidermis of psoriasis and regeneratingwounds. J. Biol. Chem.2009284:218–228.
    110. Scott DL, Kingsley GH. Tumor necrosis factor inhibitors for rheumatoidarthritis. N. Engl. J. Med.2006355:704–712.
    1. Casadevall A.,Pirofski L.A.Accidental virulence, cryptic pathogenesis,martians, lost hosts, andthe pathogenicity of environmental microbes. Eukaryot. Cell.2007,6:2169-2174.
    2. Casadevall A., Pirofski L. The damage-response framework of microbial pathogenesis. Nat. Rev.Microbiol.2003,1:17-24.
    3. Rakoff-Nahoum S.,Medzhitov R. Role of the innate immune system and host-commensalmutualism. Curr. Top.Microbiol. Immunol.2006,308:1-18.
    4. Bauer E, Williams B.A.,Smidt H, et al.Influence of the gastrointestinal microbiotaondevelopment of the immune system in young animals. Curr. Issues Intest. Microbiol.2006,7:35-51.
    5. Fidel P.L. Immunity to Candida.Oral Dis.2002,8(Suppl2):69-75.
    6. Conti H.R., Shen F, Nayyar N, et al.Th17cells and IL-17receptor signaling are essential formucosal host defense against oral candidiasis. J. Exp. Med.2009,206:299-311.
    7. Happel KI,Zheng M, Young E,et al. Cutting edge: roles of Toll-like receptor4and IL-23inIL-17expression in response to Klebsiella pneumoniae infection. J. Immunol.2003,170:4432-4436.
    8. Godinez I.,Haneda T, Raff atellu M.T cells help to amplify inflammatory responses induced bySalmonella enterica serotype Typhimurium in the intestinal mucosa. Infect. Immun.2008,76:2008-2017.
    9. Huang W., Fidel LN, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis.2004,190:624-631.
    10. Zelante T.,Bonifazi LA, Montagnoli C, et al. IL-23and the Th17pathway promote inflammation and impair antifungal immune resistance. Eur. J. Immunol.2007,37:2695-2706.
    11. Acosta-Rodriguez E.V., Rivino L, Geginat J, et al.Surface phenotype and antigenicspecifi city ofhuman interleukin17-producing T helper memory cells. Nat. Immunol.2007,8:639-646.
    12. Harrington L.E.,Hatton R.D.,Mangan P.R,et al.Interleukin17-producing CD4+eff ector T cellsdevelopvia a lineage distinct from the T helper type1and2lineages. Nat. Immunol.2005,6:1123-1132.
    13. Langrish C.L.,ChenY.,Blumenschein W.M,et al.IL-23drives a pathogenic T cell population thatinduces autoimmune infl ammation. J. Exp. Med.2005,201:233-240.
    14. Fidel P.L. Candida-host interactions in HIV disease: relationships in oropharyngeal candidiasis.Adv. Dent. Res.2006,19:80-84.
    15. Farah C.S., Elahi S., Drysdale K.,et al. Primary role for CD4(+) T lymphocytes in recoveryfrom oropharyngeal candidiasis. Infect. Immun.2002,70:724-731.
    16. Kleinschek M.A.,Muller U.,,Brodie S.J., et al.IL-23enhances the infl ammatory cell responseinCryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12.J.Immunol.2006,176:1098-1106.
    17. Happel K.I.,Dubin P.J., Zheng M.,et al.Divergent roles of IL-23and IL-12in host defenseagainst Klebsiellapneumoniae. J. Exp. Med.2005,202:761-769.
    18. Dubin P.J.,Kolls J.K. IL-23mediates inflammatory responses to mucoid Pseudomonasaeruginosa lung infection in mice. Am. J. Physiol. Lung Cell. Mol. Physiol.2007,292: L519-L528.
    19. Liang S.C.,Tan X.Y.,Luxenberg D.P., et al.Interleukin(IL)-22and IL-17are coexpressed byTh17cells and cooperatively enhance expressionof antimicrobial peptides. J. Exp.Med.2006,203:2271-2279.
    20. Tanida T.,Okamoto T, Okamoto A,et al.Decreased excretion of antimicrobial proteinsandpeptides in saliva of patients with oral candidiasis. J. Oral Pathol. Med.2003,32:586-594.
    21. de Beaucoudrey L.,Puel A.,Filipe-Santos O, et al. Mutations in STAT3and IL12RB1impair thedevelopment of human IL-17-producing T cells. J. Exp.Med.2008,205:1543-1550.
    22. Yue F.Y.,Merchant A, Kovacs CM,et al. Virus-specifi c interleukin-17-producing CD4+T cellsare detectable in early human immunodefi ciency virus type1infection. J. Virol.2008,82:6767-6771.
    23. Yang Y.L.,Lo H.J., Hung C.C.,et al.2Eff ect of prolonged HAART on oralcolonization withCandida and candidiasis.BMC Infect. Dis.2006,6:8.
    24. Gaitan-Cepeda L.A.,Martinez-Gonzalez M,Ceballos-Salobrena A.Oral candidosis as a clinicalmarker of immune failure in patients with HIV/AIDS on HAART. AIDS Patient Care STDS.2005,19:70-77.
    25. Miziara I.D.,Weber R. Oral candidosis and oral hairy leukoplakia as predictors of HAARTfailure in Brazilian HIV-infected patients. Oral Dis.2006,12:402-407.
    26. Gaitan Cepeda L.A.,Ceballos SA, Lopez OK,et al. Oral lesions and immune reconstitutionsyndrome in HIV+/AIDS patients receiving highly active antiretroviral therapy. Epidemiologicalevidence. Med. Oral Patol.Oral Cir. Bucal.2008,13:E85-93.
    27. Nacher M., Vantilcke V, Mahamat A,et al.Increased incidence of cutaneous mycoses afterHAART initiation: a benign form of immune reconstitution disease?AIDS.2007,21:2248-2250.
    28. Farah C.S.,Elahi S, Pang G,et al.T cells augment monocyte and neutrophil function in hostresistance against oropharyngeal candidiasis.Infect. Immun.2001,69:6110-6118.
    29. Farah C.S.,Hu Y, Riminton S,et al. Distinct roles for interleukin-12p40and tumour necrosisfactor in resistance to oral candidiasis defi ned by gene-targeting. Oral Microbiol. Immunol.2006,21:252-255.
    30. Brenchley J.M., Paiardini M, Knox KS, et al.Diff erential Th-17CD4T-cell depletion inpathogenic and nonpathogenic lentiviral infections. Blood.2008,112:2826-2835.
    31. Duerr A., Heilig C.M., Meikle S.F., et al. Incident and persistent vulvovaginal candidiasisamong human immunodefi ciency virus-infected women: risk factors and severity. Obstet.Gynecol.2003,101:548-556.
    32. Sobel J.D.Vulvovaginal candidiasis:a comparison of HIV-positive and-negative women. Int. J.STD AIDS.2002,13:358-362.
    33. Beltrame A., Matteelli A, Carvalho AC,et al.Vaginal colonization with Candida spp. In humanimmunodefi ciency virus-infectedwomen: a cohort study. Int. J. STD AIDS.2006,17:260-266.
    34. Ohmit S.E.,Sobel JD, Schuman P,et al. Longitudinal study of mucosal Candida speciescolonization and candidiasis among human immunodefi ciency virus (HIV)-seropositive andat-risk HIV-seronegative women. J. Infect. Dis.2003,188:118-127.
    35. Leigh J.E.,Barousse M, Swoboda RK,et al.Candida-specifi c systemic cell-mediated immunereactivities in human immunodefi-ciency virus-positive persons with mucosal candidiasis. J.Infect. Dis.2001,183:277-285.
    36. Fidel P.L..History and new insights into host defense against vaginal candidiasis. TrendsMicrobiol.2004,12:220-227.
    37. Fidel, P.L.Immune regulation and its role in the pathogenesis of candida vaginitis. Curr. Infect.Dis.2003,Rep.5:488-493.
    38. Ryan K.R.,Hong M,Arkwright PD,et al.Impaired dendritic cell maturation and cytokineproduction in patients with chronic mucocutaneous candidiasis with or without APECED. Clin.Exp. Immunol.2008,154:406-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700