杉木人工林林分密度效应及材种结构规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林分密度调控是森林经营过程中需要解决的关键技术问题之一。论文利用江西大岗山28年未经人工干扰(5种初植密度)和27年经人工间伐处理(4种间伐强度)的杉木人工林长期定位测定时间序列数据,在按径阶分布统计各测树因子的基础上,系统研究了杉木人工林密度效应及其与材种结构的有关动态规律,得出如下重要结果:
     1.林分自然稀疏强度随着林龄、初植密度和立地指数级的增大而增大,初植密度和立地指数级越大,林分发生自然稀疏的林龄越小。林龄28年时,14立地指数级的A_2(2 m×3 m)、B_2(2 m×1.5 m)、C_2(2 m×1 m)、D_2(1 m×1.5 m)、E_2(1 m×1 m)各密度小区,自然稀疏总强度分别为1.0%、5.5%、25.7%、37.0%、63.7%,尤以高密度的E_3(1 m×1 m)小区最大,为85.0%。16立地指数级的A1、A3、B1和B3小区,自然稀疏强度分别达到13.0%、7.0%、16.0%、46.0%。
     2.立地指数级和林龄相同时,林分平均胸径、单株材积、冠幅随初植密度的增大而减小,林分断面积、总材积、蓄积、高径比、枝下高随初植密度的增大而增大。14立地指数级的A_2、B_2、C_2、E_2小区间林分优势高差异不显著,表明优势高的差异主要决定于立地指数,而非林分密度;林分平均高除B_2与C_2小区间差异不显著外,其它小区间差异达到显著性水平,表明在过稀或过密的林分中,密度对林分平均高有显著影响。杉木生长速度快,需要的养分多,在稀植的条件下,单位面积林木获得的营养面积大,促进了树高的生长,同时稀植林分的平均胸径较大,依其求出的林分平均高就大;在密植的条件下,单位面积林木获得的营养面积小,且被压木较多,林分平均高较低。林龄和初植密度相同时,立地指数级越大,所有测树因子的值越大。
     3.间伐不能有效促进林分平均高、总材积和总断面积的生长,但间伐能有效促进林分活立木平均胸径、单株材积及单木断面积的生长,且随间伐强度增大而增大。林分活立木断面积除弱度间伐与对照间差异不显著外,其它间伐处理间差异达到显著性水平,且有随间伐强度的增加而降低的趋势;间伐处理的林分,虽然单木断面积比对照增长很多,但因间伐后保留木株数明显比对照少,间伐后短期内单木断面积的增长仍补偿不了因株数减少引起的总断面积的减少,但随着林龄的增长,密度小的林分以单木断面积的迅速增长来增加总断面积,密度大的林分以单位面积株数较多来增加总断面,最终各密度林分断面积将趋向一致。
     4.林分径阶株数(%)和材积(%)的最大分布率所处的径阶,随着林龄的增大向高径阶方向进级。林龄相同时,低密度比高密度林分进级的径阶更高,进级的速度更快;初植密度相同时,立地指数级越高,进级的径阶越高,速度越快。不同间伐水平的径阶株数与材积最大分布率,随间伐强度的增加依次向高径阶方向进级,间伐强度越大,进级的幅度越大,速度越快;间伐强度相同时,立地指数级越高,进级的径阶越高,速度越快。
     5.林分材种株数(%)和材积(%)的分布因材种不同而不同,中、大径材株数和材积的百分率,随着林龄的增加而递增,初植密度越小、立地指数级越高,递增的速度越快;林龄28年时,中、大径材株数与材积的百分率,16立地指数级的A密度(1667株·ha-1)小区最大,大径材分别为11.5%、14.2%,中径材分别为56.3%、74.8%。不同间伐水平中、大径材的株数(%)和材积(%),随着林龄的增加而递增;立地指数级越高,间伐强度越大,递增的速度越快。18立地指数级的A区组,中、大径材株数(%)与材积(%)显著大于16立地指数级的D区组与14立地指数级的B区组,且任何间伐小区都显著大于对照小区;林龄20年时,各间伐水平小区株数(%)分别为58.3%、34.9%、36.0%、22.4%,材积(%)分别为81.5%、60.6%、66.3%、50.0%。
     6.林分的总出材量随着林龄的增加而增加;林龄相同时,随着初植密度的增加而增大;初植密度相同时,随着立地指数级的增大而增大。但活立木出材量占总出材量的比例,立地指数级相同时,随着林分密度的增加而递减;林分密度相同时,随着立地指数级的增加而递减;枯损木出材量占总出材量的比例,则随着林分密度和立地指数级的增加而递增;林龄28年时,14立地指数级的A_2、B_2、C_2、D_2、E_2各密度小区,林分活立木占总出材量的比例,分别为99.6%、98.3%、91.8%、88.7%、69.4%,林分枯损木占总出材量的比例,分别为0.4%、1.7%、8.2%、11.3%、30.6%。间伐林分的总出材量以对照与弱度间伐小区较大,强度间伐与中度间伐小区较小,但林分活立木出材率随着林龄的增加而增加,林龄相同时,间伐小区大于对照小区,表明间伐不能有效促进林分总出材量的增加,但可有效的促进活立木出材率的提高;林分活立木出材率,18立地指数级的A区组,林龄20年时,强度间伐>弱度间伐>中度间伐>对照,分别为78.1%、76.7%、77.1%、76.3%;14立地指数级的B区组,林龄25年时,强度间伐>中度间伐>弱度间伐>对照,分别为76.4%、75.2%、74.5%、74.0%。
     7.林分活立木规格材(大、中、小径材)的出材率,随着林分密度的减少和立地指数级的增加而增加;林龄28年时,大径材出材率,16立地指数级的A、B密度小区较高,A_1>A_3>B_3>B_1,分别为16.8%、13.2%、9.0%、5.5%,每公顷出材量分别为69.399m~3、57.694m~3、31.587m~3、27.069m~3;中径材出材率A_3>A_1>B_1>B_3,分别为53.5%、47.3%、32.1%、31.9%,每公顷出材量分别为234.014m~3、195.555m~3、157.177m~3、111.941m~3;但小径材出材率相反,A_3     8.不同间伐强度林分活立木规格材的出材率,随间伐强度和立地指数级的增大而增大;林龄27年时,大径材出材率,16立地指数级强度与中度间伐的D区组较大,各间伐处理中度间伐>强度间伐>对照>弱度间伐,分别为19.0%、17.1%、2.2%、1.8%,每公顷出材量分别为56.376m~3、44.239m~3、6.832m~3、6.325m~3;中径材出材率,对照>强度间伐>中度间伐>弱度间伐,分别为47.3%、42.3%、41.6%、24.2%,每公顷出材量分别为146.928m~3、123.783m~3、105.196m~3、85.408m~3;小径材出材率,中度间伐<强度间伐<对照<弱度间伐,分别为17.8%、18.8%、25.9%、48.4%,每公顷出材量分别为52.837m~3、47.121m~3、80.561m~3、171.099m~3。
The question, stand density controlling, is one of the most key technologies that need to settle immediately in forest management. In this paper, the time series data from 28-year-old Cunninghamia lanceolata test forest in Dagang mountant Jingxi Province without artificial interference (5 initial planting density levels) and 27-year-old plantation with thinning treatment (4 different selection cutting levels) was analyzed. Base on the forest measurement factor according to distribution of diameter class, this paper systematically study the density effect and the dynamic changes rules of timber assortment structure for Cunninghamia lanceolata. The results are listed as following:
     1. The self thinning intensity increased with stand age and primary planting density increasing. The larger planting density was, the younger forest occurred self thinning was. When stand age are 28 years, in the plots A_2(2m×3m), B_2(2m×1.5m), C_2(2m×1m), D_2 (1m×1.5m)and E_2(1m×1m) with the same 14 site index class, the total self thinning intensity were 1.0%、5.5%、25.7%, 37.0%, 63.7%, respectively,the E3(1m×1m) plot, 85.0%, was the largest. In the plots A_1, A_3, B_1 and B_3 with the same 16 site index class, the self thinning intensity respectively reached 13.0%、7.0%、16.0% and 46.0%。
     2. In the plots with the same site index class and age, the stand average DBH, individual volume and crown width were decreasing with the initial density increasing; the stand basal area, gross volume, stand volume, ratio of height to diameter and clear bole height were increasing with the growth of forest age dominant height, whereas volume were increasing with the growth of the initial density. The stand dominate height of A_2, B_2, C_2, D_2 and E_2 plots with 14 site index class had no obvious difference, the study shows that the difference of dominant height mainly determined by site index class not stand density; The difference in plots except B_2 and C_2 was significant, which suggested that density had an effect on stand dominate height in the excessive thin or dense stand. The Cunninghamia lanceolata grow fast and need more nutrient, Under the condition of density being smaller, the unit area stand obtain more nutrient, which promote the growth of tree height, at the same time the average DBH of the sparse stands was larger, then the stand average height from it was larger, too. Contrarily, when the initial density was larger, the unit area stand obtained less nutrient and the stands had more overstock wood, the stand average height was lower. When the plots with the same initial density and site index class, the larger site index was, the larger values of all forest measured factors were.
     3.The thinning can’t effectively promote the growth of stand average height, gross volume and the growth of the total basal area, but can promote the growth of stand living trees average DBH, individual volume and the growth of single basal area, and these indices increase with the increasing of the thinning intensity. The total basal area of stand living trees weren’t significant except light thinning and control difference, the difference of other thinning treatments were up to significance level, and there was the trend that decreasing with the increasing of the thinning intensity. In plots with thinning treatment, the single basal area of stand was more than control, but the reserved trees were less than control after thinning, the growth of single basal area can’t compensate the decreasing the total basal area because of decreasing the number of trees in a short time;the small density stand increased the total basal area at the growth speed of single basal area with the increasing of forest age, big density stand increased the total basal area by the larger number of trees per hectare, finally the basal area of each stand density were approached to uniform.
     4.The diameter class, in which the most trees and volume of stand diameter class located move to the higher diameter class with the stand age increasing. When at the same forest age, the low-density stands own higher extent and faster speed than high-density stands. With the same initial density, the higher site index class and approaching to diameter class were, the faster speed was. The stand diameter class of different thinning level and the most distribution rate of volume approached to high diameter class with increasing thinning intensity. With the same thinning intensity, the higher site index class results in the larger extent and the faster speed.
     5.The distribution of tree number of wood sorts (%) and volume (%) in stands depended on wood sorts, the percentage of tree number and volume of moderate and big diameter woods increased with stand age. growth increasing speed increased with declination in initial planting density and raise in site index; the proportion of moderate and big diameter woods at the age of 28 in density A plots with 16 site index class was the highest, the big diameter woods was 11.5% and 14.2%, respectively, moderate diameter woods was 56% and 74.8%. At different thinning intensity, the tree number(%)and volume(%)of big diameter woods increased with stand age; the growth rate increased with site index and thinning intensity. The tree number(%)and volume(%)of big diameter woods in density A district with 18 site index class was significantly higher than those in density D plots with 16 site index class and density B plots with 14 site index class, and all thinning plots were remarkably higher than control district; At the age of 20, the tree number (%) in all thinning plots were 58.3%、34.9%、36.0% and 22.4%, the volume (%) were 81.5%、60.6%、66.3% and 50.0%, respectively.
     6. The gross wood yield of stands increased with stand age, and increase with initial planting density increasing at the same stand age, and increased with the site index increasing when the initial density was same. However, the contribution percentage of wood yield of living trees to gross wood yield decreased with stand density when site index were same. The contribution percentage of wood yield of dead standing trees to gross wood yield increased with stand density and site index; in the plots A_2, B_2, C_2, D_2, E_2 with the same 14 site index class, the percentage of wood yield of living trees in gross wood yield were 99.6%, 98.3%, 91.8%, 88.7% and 69.4%, while proportion of dead standing trees were 0.4%, 1.7%, 8.2%, 11.3% and 30.6%, respectively at the stand age of 28. In the terms of gross wood yield of stands of thinning, there was an apparent difference between control and districts of thinning, but no such difference between control and intensive, moderate districts of thinning, outturn rate of living trees increased with stand age, outturn rate of living trees in districts of thinning was higher than control at the same age, and indicated that the increase in gross wood yield of stands could not be improved by thinning, but promoting outturn rate of living trees. At the stand of 20, the outturn rate of living trees in district A of 18 site index class, intensive thinning> slight thinning > moderate thinning>control, were 78.1%, 76.7%, 77.1% and 76.3%, respectively ; At the stand of 25, the outturn rate of living trees in district B of 14site index class, intensive thinning> moderate thinning> slight thinning>control, were 76.4%, 75.2%, 74.5% and 74.0%, respectively
     7.The outturn rate of dimension lumber of living trees (big, moderate and small diameter woods) decreased with stand density and increased with site index; At the stand age of 28, the outturn rates of big diameter woods in plot A and B with 16 site index class were higher, A_1>A_3>B_3>B_1,were 16.8%,13.2%,9.0% and 5.5%,respectively, the wood yield per hectare were 69.399m~3, 57.694m~3, 31.587m~3 and 27.069m~3; the outturn rates of moderate diameter woods was A_1>A_3>B_3>B_1,were 53.5%, 47.3%, 32.1% and 31.9%,respectively, the wood yield per hectare were 234.014m~3, 195.555m~3, 157.177m~3 and 111.941m~3, respectively; In contrary to big and moderate diameter woods, the outturn rates of small diameter woods was A_3     8.Under different thinning intensity, the total wood yield rate of dimension lumber of living trees increased with thinning intensity and site index; at the stand age of 27, outturn rates of big diameter woods,in 16 site index class and the plot D with moderate thinning treatment were larger,moderate thinning>intensive thinning >control> slight thinning, were 19.0%, 17.1%, 2.2% and 1.8%,respectively, wood yield of big diameter woods per hectare were 56.376m~3, 44.239m~3, 6.832m~3 and 6.325m~3; outturn rates of moderate diameter woods was control> intensive thinning>moderate thinning> slight thinning, were 47.3%, 42.3%, 41.6% and 24.2%,respectively, wood yield of big diameter woods per hectare were 146.928m~3, 123.783m~3, 105.196m~3 and 85.408m~3; outturn rates of small diameter woods was slight thinning>control>intensive thinning>moderate thinning, were 17.8%, 18.8%, 25.9% and 48.4%,respectively, wood yield of big diameter woods per hectare were 52.837m~3, 47.121m~3, 80.561m~3 and 171.099m~3.
引文
[1]周少华.中国森林资源安全现状及发展态势.湖南城市学院学报, 2008, 29(6), 27-30.
    [2]夏自谦,滕秀玲.世界森林资源现状及前景展望.北京林业大学学报:社会科学版, 2003, 2(3), 24-28.
    [3] Siry, J., Cubbage, F., Ahmed, M. Sustainable forest management: global trends and opportunities. Forest Policy and Economics, 2005, 7(4), 551-561.
    [4]张建国,段爱国.理论生长方程与直径结构模型的研究.北京:科学出版社, 2004.
    [5]张建国.北方速生丰产林栽培技术及人工林发展趋势.中国林业产业, 2004, 55-6.
    [6]李星.日本近年来的国产材动向.世界林业动态, 2007,(30), 5.
    [7]张煜星.中国森林资源1950―2003年结构变化分析.北京林业大学学报, 2006, 28(6), 80-87.
    [8]孙长忠,沈国舫.我国主要树种人工林生产力现状及潜力的调查研究Ⅰ.杉木,马尾松人工林生产力研究中国农业资源与区划, 2000, 13(6), 613-621.
    [9]雷加富.中国森林资源.北京:中国林业出版社, 2005.
    [10]周霆,盛炜彤.关于我国人工林可持续问题.世界林业研究, 2008, 21(3), 49-53.
    [11]吴承祯,洪伟.杉木数量经营学引论.北京:中国林业出版社, 2000.
    [12]姜汉侨,段昌群,杨树华,等.植物生态学.北京:高等教育出版社, 2005.
    [13] Weiner, J., Thomas, S. Size variability and competition in plant monocultures. Oikos, 1986, 47(2), 211-222.
    [14]方精云,万方浩.植物种群密度变化的理论.青年生态学者论丛.北京:科学技术出版社, 1991, 190.
    [15] Reineke, L. Perfecting a stand-density index for even-aged forests. J. Agric. Res, 1933, 46(7), 627-638.
    [16] Curtis, R. Stand density measures: an interpretation. Forest Science, 1970, 16(4), 403-414.
    [17] Zeide, B. How to measure stand density. Trees-Structure and Function, 2005, 19(1), 1-14.
    [18] Shaw, J. Reineke’s stand density index: where are we and where do we go from here. 2005, 10:19-23.
    [19] Woodall, C., Fiedler, C., Milner, K. Stand density index in uneven-aged ponderosa pine stands. Canadian Journal of Forest Research, 2003, 33(1), 96-100.
    [20] Woodall, C., Miles, P., Vissage, J. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. Forest Ecology and Management, 2005, 216(1-3), 367-377.
    [21] Pretzsch, H., Biber, P. A re-evaluation of Reineke's rule and stand density index. Forest Science, 2005, 51(4), 304-320.
    [22] Yoda, K., Kira, T., Ogawa, H., et al. Intraspecific competition among higher plants. XI. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ, 1963, 14:107-129.
    [23] Drew, T., Flewelling, J. Some recent Japanese theories of yield-density relationships and their application to Monterey pine plantations. Forest Science, 1977, 23(4), 517-534.
    [24] Gorham, E. Shoot height, weight and standing crop in relation to density of monospecific plant stands. Nature, 1979, 279:148-150.
    [25] Cousens, R., Hutchings, M. The relationship between density and mean frond weight in monospecific seaweed stands. Nature Publishing Group 1983, 301:240-241.
    [26] White, J., Harper, J. Correlated changes in plant size and number in plant populations. The Journal of Ecology, 1970, 58(2), 467-485.
    [27] Westoby, M. The self-thinning rule. Advances in ecological research, 1984, 14:167-226.
    [28] White, J., Solbrig, O. Demographic factors in populations of plants, Blackwell Scientific Publications. 1980.
    [29] Long, J., Smith, F. Relation between size and density in developing stands: a description and possible mechanisms. Forest Ecology and Management, 1984, 7(3), 191-206.
    [30] White, J. The allometric interpretation of the self-thinning rule. Journal of Theoretical Biology, 1981, 89(3), 475-500.
    [31] Bi, H. Stochastic frontier analysis of a classic self-thinning experiment. Austral ecology, 2004, 29(4), 408-417.
    [32] Huiquan. Stochastic frontier analysis of a classic self-thinning experiment. Austral ecology, 2004, 29(4), 408-417.
    [33] Zeide, B. Tolerance and self-tolerance of trees. Forest Ecology and Management, 1985, 13(3-4), 149-166.
    [34] Zeide, B. Analysis of the 3/2 power law of self-thinning. Forest Science, 1987, 33(2), 517-537.
    [35] Weller, D. A reevaluation of the-3/2 power rule of plant self-thinning. Ecological Monographs, 1987, 57(1), 23-43.
    [36] Sprugel, D. Density, biomass, productivity, and nutrient-cycling changes during stand development in wave-regenerated balsam fir forests. Ecological Monographs, 1984, 54(2), 165-186.
    [37]韩文轩,方精云.植物种群的自然稀疏规律――-3/2还是-4/3?北京大学学报:自然科学版, 2008, 44(4), 661-668.
    [38]付立华,张建国,段劳国,等.最大密度法则研究进展.植物生态学报, 2008, 32(002), 501-511.
    [39]方精云. Kira Tatsuo与生态学的发展.生态学杂志, 1995, 14(2), 70-75.
    [40]李凤日.林分密度研究评述:关于3/2乘则理论.林业科学研究, 1995, 8(001), 25-32.
    [41]王仁忠,方林.植物种群―3/2幂自疏定律假设的点评.东北师大学报:自然科学版, 1998,(004), 58-62.
    [42]薛立.纯林自然稀疏研究综述.生态学报, 2001, 21(005), 834-838.
    [43]张大勇,赵松岭.森林自疏过程中密度变化规律的研究.林业科学, 1985, 21(4), 369-373.
    [44]吴承祯,洪伟.杉木人工林自然稀疏规律研究.林业科学, 2000, 36(4), 97-101.
    [45]吴承祯,洪伟,闫淑君.同龄纯林自然稀疏过程的经验模型研究.应用生态学报, 2005, 16(002), 233-237.
    [46]江希钿,杨锦昌,王素萍.同龄纯林自然稀疏密度变化的研究.林业科学, 2001,(0z1), 84-89.
    [47]唐守正,李希菲.同龄纯林自稀疏方程验证.林业科学, 1995, 31(001), 27-34.
    [48]宋丁全,郑作孟.光皮桦种群自疏调节的初步研究.南京林业大学学报:自然科学版, 1999, 23(003), 33-36.
    [49]方精云.一种描述植物种群自然稀疏过程的经验模型.林业科学, 1995, 31(003), 247-253.
    [50] Shinozaki, K., Kira, T. Intraspecific competition among higher plants VII. Logistic theory of the CD effect. Journal of biology, 1955,35.
    [51] Li, X. Competition-density effect in plant populations. Journal of Forestry Research, 2002, 13(1), 48-50.
    [52] Hagihara, A. Logistic theory of the density effect in self-thinning populations. Bulletin of the Nagoya University Forests (Japan), 1996.
    [53] Hagihara, A. Theoretical considerations on the CD effect in self-thinning plant populations. Researches on Population Ecology, 1999, 41(2), 151-159.
    [54] Thoranisorn, S., Sahunalu, P., Yoda, K. Density effects and self-thinning in even-aged pure stands ofEucalyptus camaldulensis Dehn. Journal of Plant Research, 1990, 103(3), 283-295.
    [55] Xue, L., Hagihara, A. Growth analysis of the self-thinning stands of Pinus densiflora Sieb. et Zucc. Ecological Research, 1998, 13(2), 183-191.
    [56] Xue, L., Hagihara, A. Density effect, self-thinning and size distribution in Pinus densiflora Sieb. et Zucc. stands. Ecological Research, 1999, 14(1), 49-58.
    [57] Xue, L., Hagihara, A. Growth analysis on the competition-density effect in Chinese fir (Cunninghamia lanceolata) and Masson pine (Pinus massoniana) stands. Forest Ecology and Management, 2001, 150(3), 331-337.
    [58]薛立, ?原秋男. I-72杨林的竞争密度效应.林业科学, 2003, 39(005), 61-66.
    [59]吴承祯,洪伟,柳江,等.封育次生马尾松(Pinus massoniana)林优势种群竞争密度效应.应用与环境生物学报, 2005, 11(001), 14-17.
    [60]王艳霞,吴承祯,洪伟,等.杉木人工林生长对密度效应的响应.福建林学院学报, 2007, 27(001), 25-29.
    [61] Krajicek, J., Brinkman, K., Gingrich, S. Crown competition--a measure of density. Forest Science, 1961, 7(1), 35-42.
    [62] Hall, R. Use of the crown competition factor concept to select clones and spacings for short-rotation woody crops. Tree Physiology, 1994, 14(7-8-9), 899.
    [63] Strub, M., Vasey, R., Burkhart, H. Comparison of diameter growth and crown competition factor in loblolly pine plantations. Forest Science, 1975, 21(4), 427-431.
    [64]唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程.林业科学, 1999, 35(006), 35-41.
    [65]王迪生,宋新民.华北落叶松人工林CCF特性的探讨.河北林学院学报, 1995, 10(001), 1-6.
    [66]孟宪宇.测树学.北京林业出版社, 2002, 18.
    [67] Ando, T. Ecological studies on the stand density control in even-aged pure stand. Bulletin, 1968, 210.
    [68] Kira, T., Ogawa, H., Sakazaki, N. Intraspecific competition among higher plants. I. Competition-yield-density interrelationship in regularly dispersed populations. Journal of the Institute of Polytechnics, Osaka City University, Series D, 1953, 41-16.
    [69] Newton, P. Stand density management diagrams: Review of their development and utility in stand-level management planning. Forest Ecology and Management, 1997, 98(3), 251-265.
    [70] Jack, S., Long, J. Linkages between silviculture and ecology: an analysis of density management diagrams. Forest Ecology and Management, 1996, 86(1-3), 205-220.
    [71] Shaw, J., Long, J. A density management diagram for longleaf pine stands with application to red-cockaded woodpecker habitat. Southern Journal of Applied Forestry, 2007, 31(1), 28-38.
    [72] Drew, T., Flewelling, J. Stand density management: an alternative approach and its application to Douglas-fir plantations. Forest Science, 1979, 25(3), 518-532.
    [73] Dean, T., Jokela, E. A density-management diagram for slash pine plantations in the lower coastal plain.Southern Journal of Applied Forestry, 1992, 16(4), 178-185.
    [74] Penner, M., Swift, D., Gagnon, R., et al. A stand density management diagram for balsam fir in New Brunswick. Forestry Chronicle, 2006, 82(5), 700.
    [75] Barrio Anta, M., Gonzalez, A. Development of a stand density management diagram for even-aged pedunculate oak stands and its use in designing thinning schedules. Forestry, 2005, 78(3), 209.
    [76] Long, J., Shaw, J. A density management diagram for even-aged ponderosa pine stands. Western Journal of Applied Forestry, 2005, 20(4), 205-215.
    [77] Vacchiano, G., Motta, R., Long, J., et al. A density management diagram for Scots pine (Pinus sylvestris L.): A tool for assessing the forest's protective effect. Forest Ecology and Management, 2008, 255(7), 2542-2554.
    [78] Valbuena, P., Peso, C., Bravo, F. Stand Density Management Diagrams for two Mediterranean pine species in Eastern Spain. Investigación Agraria: Sistemas y Recursos Forestales, 2008, 17(2), 97-104.
    [79]尹泰龙,韩福庆,迟金城,等.林分密度控制图的编制与应用.林业科学, 1978, 14(1), 1-11.
    [80]刘景芳,童书振.编制杉木林分密度管理图研究报告.林业科学, 1980, 16(4), 241-251.
    [81]宋永俊,郭志坤.思茅松人工林林分密度控制图的编制与应用.林业调查规划, 2002, 27(002), 1-5.
    [82]林小梅.闽东柳杉人工林林分密度控制图的研究.福建林业科技, 2002, 29(003), 75-77.
    [83]张惠光.福建柏林分密度控制图的研究.福建林业科技, 2006, 33(004), 41-44.
    [84] Zeide, B. Optimal stand density: a solution. Canadian Journal of Forest Research, 2004, 34(4), 846-854.
    [85]沈国舫.森林培育学,北京:中国林业出版社2001.
    [86] Hyytiainen, K., Tahvonen, O., Valsta, L. Optimum Juvenile Density, Harvesting, and Stand Structure in Even-Aged Scots Pine Stands. Forest Science, 2005, 51(2), 120-133.
    [87] Haight, R., Monserud, R. Optimizing any-aged management of mixed-species stands: II. Effects of decision criteria. Forest Science, 1990, 36(1), 125-144.
    [88] Haight, R. Optimal management of loblolly pine plantations with stochastic price trends. Canadian journal of forest research(Print), 1993, 23(1), 41-48.
    [89] Solberg, B., Haight, R. Analysis of optimal economic management regimes for Picea abies stands using a stage-structured optimal-control model. Scandinavian Journal of Forest Research, 1991, 6(1), 559-572.
    [90] Gong, P. Determining the Optimal Planting Density and Land Expectation Value--A Numerical Evaluation of Decision Model. Forest Science, 1998, 44(3), 356-364.
    [91] Zhou, W. Optimal natural regeneration of Scots pine with seed trees. Journal of Environmental Management, 1998, 53(3), 263-271.
    [92] Scott, W., Meade, R., Leon, R., et al. Planting density and tree-size relations in coast Douglas-fir. Canadian Journal of Forest Research, 1998, 28(1), 74-78.
    [93] Knowe, S., Hibbs, D. Stand structure and dynamics of young red alder as affected by planting density* 1. Forest Ecology and Management, 1996, 82(1-3), 69-85.
    [94] Woodruff, D., Bond, B., Ritchie, G., et al. Effects of stand density on the growth of young Douglas-fir trees. Canadian Journal of Forest Research, 2002, 32(3), 420-427.
    [95]秦国峰,周志春.马尾松速生丰产林不同培育目标的适宜造林密度.林业科学研究, 1999, 12(006), 620-627.
    [96]温佐吾,谢双喜.造林密度对马尾松林分生长木材造纸特性及经济效益的影响.林业科学, 2000, 36(z01), 36-43.
    [97]林武星,叶功富,徐俊森,等.木麻黄防护林不同造林密度综合评价研究.防护林科技, 2004,(003), 1-3.
    [98]姜景民,虞沐奎,童方平,等.湿地松,火炬松工业用材林造林密度初步研究.林业科学研究, 2000, 13(002), 167-176.
    [99]任军,范丽颖,林玉梅,等.大青杨人工林初植密度控制技术的研究.吉林林业科技, 2005, 34(001), 11-13.
    [100]陈代喜,莫泽莲.浅谈杉木合理的造林密度.广西林业科学, 2001, 30(002), 62-67.
    [101]郑海水,黎明.西南桦造林密度与林木生长的关系.林业科学研究, 2003, 16(001), 81-86.
    [102]孙书存,高贤明,包维楷,等.岷江上游油松造林密度对油松生长和群落结构的影响.应用与环境生物学报, 2005, 11(001), 8-13.
    [103]郑泽良,陈文久,文辉斌.造林密度对四川桤木生长的影响.湖南林业科技, 2008,(001), 16-17.
    [104] Zeide, B. Thinning and growth: a full turnaround. Journal of Forestry, 2001, 99(1), 20-25.
    [105] R, P. Age and diameter classes or growth stages as criteria for the implementation of thinning. Journal of forest science, 2002, 48 (1), 8-15.
    [106] Peltola, H., Miina, J., Rouvinen, I., et al. Effect of early thinning on the diameter growth distribution along the stem of Scots pine. Silva Fennica, 2002, 36(4), 813-825.
    [107] Skovsgaard, J., Vanclay, J. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry, 2008, 81(1), 13.
    [108] Plauborg, K. Analysis of radial growth responses to changes in stand density for four tree species. Forest Ecology and Management, 2004, 188(1-3), 65-75.
    [109] Wilson, J., Oliver, C. Stability and density management in Douglas-fir plantations. Canadian Journal of Forest Research, 2000, 30(6), 910-920.
    [110] Tasissa, G., Burkhart, H. Modeling thinning effects on ring width distribution in loblolly pine (Pinus taeda). Canadian Journal of Forest Research, 1997, 27(8), 1291-1301.
    [111] Zhang, J., Oliver, W., Powers, R. Long-term effects of thinning and fertilization on growth of red fir in northeastern California. Canadian Journal of Forest Research, 2005, 35(6), 1285-1293.
    [112] Zhang, J., Oliver, W. Stand structure and growth of Abies magnifica responded to five thinning levels in northeastern California, USA. Forest Ecology and Management, 2006, 223(1-3), 275-283.
    [113] Zhang, S., Chauret, G., Swift, D., et al. Effects of precommercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada. Canadian Journal of Forest Research, 2006, 36(4), 945-952.
    [114]欧建德.马尾松人工林抚育间伐起始期的研究.江苏林业科技, 2001, 28(004), 14-15.
    [115]雷相东,陆元昌,张会儒,等.抚育间伐对落叶松云冷杉混交林的影响.林业科学, 2005, 41(004), 78-85.
    [116]潘贤溪.福建柏人工林不同间伐强度效应试验.福建林业科技, 2005, 32(003), 24-26.
    [117]林少华.马尾松抚育间伐强度效应试验.林业调查规划, 2006, 31(001), 9-11.
    [118]张水松,陈长发,何寿庆,等.杉木林间伐强度自然稀疏与结构规律研究.林业科学, 2006, 42(001), 55-62.
    [119]张水松,陈长发,吴克选,等.杉木林间伐强度材种出材量和经济效果的研究.林业科学, 2006,42(007), 37-46.
    [120]张春锋,殷鸣放,孔祥文,等.不同间伐强度对人工阔叶红松林生长的影响.辽宁林业科技, 2007, 1.
    [121]王启美.不同抚育间伐强度对日本落叶松生长量的影响研究.现代农业科学, 2008,(009), 33-34.
    [122]李贵祥,孟广涛,方向京,等.抚育间伐对云南松纯林结构及物种多样性的影响研究.西北林学院学报, 2007, 22(005), 164-167.
    [123]张金文.巨尾桉大径材间伐试验研究.林业科学研究, 2008, 21(004), 464-468.
    [124] Mainwaring, D., Maguire, D., Kanaskie, A., et al. Growth responses to commercial thinning in Douglas-fir stands with varying severity of Swiss needle cast in Oregon, USA. Canadian Journal of Forest Research, 2005, 35(10), 2394-2402.
    [125] Karlsson, K. Impact of the thinning regime on the mean diameter of the largest stems by diameter at breast height in even-aged Picea abies stands. Scandinavian Journal of Forest Research, 2006, 21(1), 20-31.
    [126]陈辉,何宗明,洪伟.杉木人工林密度效应模型研究.福建林学院学报, 1992, 12(003), 277-282.
    [127]江希钿.同龄纯林密度效应新模型的研究.生物数学学报, 2002, 17(004), 476-481.
    [128]刘金福,洪伟.马尾松人工林密度效应模型研究.西南林学院学报, 1998, 18(003), 148-152.
    [129]程煜,洪伟.闽北马尾松人工林密度效应蓄积量改进模型.河南农业大学学报, 2002, 36(002), 147-150.
    [130]张怡春,兰湛.长白落叶松人工林密度效应模型的研究.吉林林业科技, 2000, 29(002), 21-22.
    [131]江希钿,黄悢增,江传阳,等.柳杉人工林密度效应新模型.福建林学院学报, 2005, 25(003), 193-196.
    [132]张惠光.巨尾桉人工林密度效应模型的研究.林业勘察设计, 2006,(2), 4-7.
    [133] Tong, Q., Zhang, S., Thompson, M. Evaluation of growth response, stand value and financial return for pre-commercially thinned jack pine stands in Northwestern Ontario. Forest Ecology and Management, 2005, 209(3), 225-235.
    [134]童书振,盛炜彤.杉木林分密度效应研究.林业科学研究, 2002, 15(001), 66-75.
    [135]揭建林,骆昱春,龙蔚,等.南岭山地杉木人工林密度试验研究.江西农业大学学报, 2007, 29(002), 203-208.
    [136]李昌荣,项东云,周国福,等.栽培密度与施肥对尾巨桉中大径材生长的影响.广西林业科学, 2007, 36(001), 31-35.
    [137]龙滕周,项东云,孟永庆,等.桉树人工林栽培密度效应研究进展.广西林业科学, 2008, 37(002), 71-75.
    [138]沈作奎,徐伟声.日本落叶松人工林密度效应的研究.湖北民族学院学报:自然科学版, 2002, 20(004), 11-13.
    [139] Zhaorigetu, H., Jing, B., You-liang, T., et al.大青山区油松人工林密度对林木生长影响的研究.内蒙古农业大学学报(自然科学版), 2007.
    [140]谌红辉,丁贵杰.马尾松造林密度效应研究.林业科学, 2004, 40(001), 92-98.
    [141] Zhang, J., Oliver, W., Ritchie, M. Effect of stand densities on stand dynamics in white fir (Abies concolor) forests in northeast California, USA. Forest Ecology and Management, 2007, 244(1-3), 50-59.
    [142] Hummel, S. Height, diameter and crown dimensions of Cordia alliodora associated with tree density1. Forest Ecology and Management, 2000, 127(1-3), 31-40.
    [143] Li, Y., Turnblom, E., Briggs, D. Effects of density control and fertilization on growth and yield of youngDouglas-fir plantations in the Pacific Northwest. Canadian Journal of Forest Research, 2007, 37(2), 449-461.
    [144]段爱国,张建国,童书振,等.杉木人工林林分直径结构动态变化及其密度效应的研究.林业科学研究, 2004, 17(002), 178-184.
    [145]杨锦昌,许煌灿,尹光天,等.黄藤人工林密度效应.林业科学, 2006, 42(004), 57-61.
    [146]盛炜彤.杉木建筑材优化栽培模式研究总报告,杉木建筑材优化栽培模式研究专题.世界林业研究, 1996, 932―53.
    [147]蔡坚,潘文,王保华,等.林分密度对湿地松林木干形影响的研究.广东林业科技, 2006, 22(002), 6-10.
    [148]惠刚盈,罗云五.杉木中大径材成材机理的研究.林业科学研究, 2000, 13(002), 177-181.
    [149]毕君,高洪真.林分材种出材量与立地质量及林分密度的关系.河北林业科技, 1994,(001), 11-14.
    [150]叶传界.马尾松大径材林分密度的探讨.林业勘察设计, 2008,(001), 58-60.
    [151]涂育合,叶功富,林武星,等.杉木大径材定向培育的适宜经营密度.浙江林学院学报, 2005, 22(005), 530-534.
    [152]孙时轩,造林学.北京:中国林业出版社. 1992.
    [153]刘景芳,童书振.杉木林经营新技术.世界林业研究, 1996, 9.
    [154]林开敏,郑燕明.杉木造林密度生长效应规律的研究.福建林学院学报, 1996, 16(001), 53-56.
    [155]王素萍,江希钿.杉木人工林林分材种出材率变化规律的分析.福建林学院学报, 2002, 22(002), 146-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700