晶体中的电负性标度及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电负性概念1932年由著名化学家Pauling提出,它表示分子中的原子将电子吸引向自身的能力。随着新材料的发展以及各学科之间的相互交叉与渗透,电负性如今已成为在化学、物理和材料科学等领域均具有广泛应用的基本原子参数。电负性与材料的超导性、磁性、光学等多种性能之间存在着密切的内在联系,它能够把复杂的分子现象以及材料的物理化学特性简单地参数化为由原子的一些性质来表示的定量关系,为新材料设计提供了理论依据。本论文考虑了原子在晶体中具体的成键环境将电负性概念进行了拓展,进而将其应用于材料的结构-性质关系研究以及超硬材料设计。具体工作如下:
     基于离子的有效静电势,提出了离子电负性模型,确定了周期表中82种元素不同价态、配位数和自旋态的电负性值,是迄今为止最为全面的电负性标度。由于精确地考虑了离子周围实际的化学环境,这些电负性值恰当地反映了离子吸引电子的能力。该电负性标度不但能够合理地估算离子的Lewis酸强度、水合自由能等一些有用的物理化学参量,而且能够预测三价镧离子在无机晶体中的电荷转移能,对于新材料的设计工作具有重要的指导意义。
     基于共价晶体中元素的静电势,提出了适用于共价晶体中元素的电负性模型,确定了周期表中58种元素在共价晶体中具有不同成键电子数和配位数的电负性值,在预测共价晶体的弹性模量、电子极化率等性质时得到了较为理想的应用。该电负性标度是对上述离子电负性标度的重要补充和完善,对于研究共价材料的结构-性质关系具有重要意义。
     根据Sanderson电负性均衡原理,提出了键电负性定义。基于单位体积的抓电子能,定义了原子硬度、离子硬度和键硬度,在这三个微观层次上研究了材料硬度的本质:材料的硬度本质上取决于其单位体积组成化学键的抓电子能,并由此建立了鉴别材料硬度的微观模型。该理论模型仅仅通过材料组成原子的电负性和晶体结构就能准确预测各种材料的硬度,并且将能形成超硬材料的原子组合挑选出来,对于人们设计新型超硬材料具有重要的理论指导意义和实际应用价值。根据该模型,又系统地研究了第ⅣA和ⅣB族氮化物各种相的硬度,发现对于由B、C、N等轻元素组成的化合物,类金刚石结构是最硬的结构,然而对于重元素化合物来说,必须尽可能地增大其平均配位数来达到高硬度。论文最后还基于键密度、键强和键的共价程度这三个决定材料硬度的主要因素将上述硬度模型进行了拓展,新拓展的模型也能很好地预测材料的硬度。
The concept of electronegativity (EN) was proposed by Pauling in 1932, which describes "the power of an atom in a molecule to attract electrons to itself". With the development of new materials and the increase of interdisciplinary cooperation, EN has been a basic atomic parameter which is widely used in the fields of chemistry, physics and materials science. EN is closely related to many properties of materials such as superconductive, magnetic and optical properties, and it can be used to simplify the complicated molecular phenomena and properties of materials to some quantitative correlations, which provides a theoretical basis for the design of new materials, In this thesis, we develope the concept of EN by including the specific bonding environment of atoms in crystals, and then apply EN to the study of structure-property relationship of materials and the design of superhard materials. The detailed contents are listed as following:
     Based on the effective electrostatic potential of ions, an ionic EN model is proposed. According to this model, the EN values of 82 elements with different valence states, coordination numbers and spin states are quantitatively determined, which is the most comprehensive EN scale so far. Due to the detailed consideration of actual chemical environment of ions, these EN values well reflect the electron-attracting power of ions. This EN scale can not only be well used to estimate some useful physical and chemical parameters such as the Lewis acid strength and the hydration free energy of cations, it can also be used to predict the charge transfer energies of trivalent lanthanides in inorganic crystals, which provides a useful guide to the design of new materials.
     Based on the electrostatic potential of elements in covalent crystals, an EN model of elements in covalent crystals is proposed. According to this model, the EN values of 58 elements with different bonding electrons and coordination numbers are determined, which are satisfactorily used to predict the elastic moduli and electronic polarizabilities of covalent crystals. This scale is an important supplement of the ionic EN scale, which is very helpful to the study of the structure-property relationship of covalent materials.
     According to Sanderson's idea of EN equalization, the definition of bond EN is proposed. Based on the electron-holding energy per unit volume, atomic stiffness, ionic stiffness and bond hardness are defined, and the nature of material hardness is investigated at these three microscopic levels. It is found that the hardness of materials is essentially determined by the electron-holding energy of its constituent chemical bonds per unit volume, by which a microscopic model for identifying the hardness of materials is established. By using this model, the hardness of various materials can be satisfactorily predicted solely in terms of EN of constituent atoms and crystal structure data. Moreover, the elemental combinations which may form superhard materials are selected, which is of great significance to the design of novel superhard materials. Furthermore, the hardness of various phases of group IVA and IVB nitrides is systematically studied on the basis of current model for hardness. It is found that for compounds made of light elements such as boron, carbon and nitrogen, the diamondlike structure is the hardest one among all possible structures, whereas high coordination number is the general requirement for heavy-element compounds to achieve high hardness. Finally, the hardness model is extended based on bond density, bond strength and degree of covalent bonding, which are three determinative factors for the hardness of materials. The newly developed model for hardness can also be well used to predict hardness.
引文
[1]Pauling L.The Nature of the Chemical Bond,3rd ed.New York:Cornell university press,1960.
    [2]Mulliken R S.A new electroaffmity scale;Together with data on valence states and on valence ionization potentials and electron affinities.J Chem Phys,1934,2(11):782-793.
    [3]Pauling L.The origin and nature of the electronegativity scale.J Chem Educ,1988,65(4):375.
    [4]Hinze J,Jaffe H H.Electronegativity.I.Orbital electronegativity of neutral atoms.J Am Chem Soc,1962,84(4):540-546.
    [5]Allen L C.Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms.J Am Chem Soc,1989,111(25):9003-9014.
    [6]Allen L C.Chemistry and electronegativity.Inter J Quan Chem,1994,49(3):253-277.
    [7]Mann J B,Meek T L,Allen L C,et al.Configuration energies of the main group elements.J Am Chem Soc,2000,122(12):2780-2783.
    [8]Mann J B,Meek T L,Knight E T,et al.Configuration energies of the d-Block elements.J Am Chem Soe,2000,122(21):5132-5137.
    [9]Jorgensen C K.Oxidation numbers and oxidation states.Berlin:Springer-Verlag,1969.
    [10]Gordy W.A new method of determining electronegativity from other atomic properties.Phys Rev,1946,69(11-12):604-607.
    [11]Allred A L,Rochow E G.A scale of electronegativity based on electrostatic force.J Inorg Nucl Chem,1958,5(4):264-268.
    [12]高孝恢.原子的电负性.化学学报.1961,27(3):190-195.
    [13]Sanderson R T.Electronegativities in inorganic chemistry.I.J Chem Educ,1952,29(11):539-543.
    [14]Sanderson R T.An interpretation of bond lengths and a classification of bonds.Science,1951,114(2973):670-672.
    [15]Sanderson R T.Principles of electronegativity.II.Applications.J Chem Educ,1988,65(3):227-231.
    [16]Parr R G,Donnelly R A,Levy M,et al.Electronegativity:the density functional viewpoint.J Chem Phys,1978,68(8):3801-3807.
    [17]Politzer P,Weinstein H.Some relations between electronic distribution and electronegativity.J Chem Phys,1979,71(11):4218-4220.
    [18]袁汉杰.电负性的研究Ⅰ.原子的电负性.化学学报,1964,30(3):341-347.
    [19]Luo Y R,Benson S W.The covalent potential:a simple and useful measure of the valence-state electronegativity for correlating molecular energetics.Acc Chem Res,1992,25(8):375-381.
    [20]Nagle J K.Atomic polarizability and electronegativity.J Am Chem Soc,1990,112(2):4741-4747.
    [21]Phillips J C.Dielectric definition of electronegativity.Phys Rev Lett,1968,20(11):550-553.
    [22]陈念贻,章兴国.电负性与若干原子结构参数的关系.化学学报,1975,33(2):101-112.
    [23]lczkowski R P,Margrave J L.Electronegativity.J Am Chem Soc,1961,83(17):3547-3551.
    [24]Ray N K,Samuels L,Parr R G.Studies of electronegativity equalization.J Chem Phys,1979,70(8):3680-3684.
    [25]Parr R G,Pearson R G.Absolute hardness:companion parameter to absolute electronegativity.J Am Chem Soc,1983,105(26):7512-7516.
    [26]Portier J,Hilal H S,Saadeddin I,et al.Thermodynamic correlations and band gap calculations in metal oxides.Prog Solid State Chem,2004,32(3-4):207-211.
    [27]Sproul G.Electronegativity and bond type.2.Evaluation of electronegativity scales.J Phys Chem,1994,98(27):6699-6703.[28]Pearson R G.Eleetronegativity scales.Ace Chem Res,1990,23(1):1-2.[29]Murphy L R,Meek T L,Allred A L,et al.Evaluation and test of Pauling's electronegativity scale.J Phys Chem A,2000,104(24):5867-5871.
    [30]Leyssens T,Geerlings P,Peeters D.A group electronegativity equalization scheme including external potential effects.J Phys Chem A,2006,110(28):8872-8879.
    [31]Sanderson R T,Electronegativities in inorganic chemistry.J Chem Edue,1954,31(1):2-7.
    [32]Sanderson R T.Electronegativity and bonding of transitional elements.Inorg Chem,1986,25(19):3518-3522.
    [33]Zhang Y H.Electronegativities of elements in valence states and their applications.1.Eleetronegativities of elements in valence states.Inorg Chem,1982,21(11):3886-3889.
    [34]Zhang Y H.Electronegativities of elements in valence states and their applications.2.A scale for strengths of Lewis acids.Inorg Chem,1982,21(11):3889-3893.
    [35]Portier J,Campet G,Etoumeau J,et al.A simple model for the estimation of electronegativities of cations in different electronic states and coordinations.J Alloys Comp,1994,209(1-2):285-289.
    [36]Portier J,Campet G,Etourneau J,et al.A simple approach to materials design:Role played by an ionic-covalent parameter based on polarizing power and electronegativity.J Alloys Comp,1994,209(1-2):59-64.
    [37]Xue D,Zuo S,Ratajczak H.Electronegativity and structural characteristics of lanthanides.Physica B,2004 352(1-4):99-104.
    [38]Hinze J,Whitehead M A,Jaffe H H.Electronegativity.Ⅱ.Bond and orbital electronegativities.J Am Chem Soc,1963,85(2):148-154.
    [39]Ghosh S K.Toward a semiempirical density functional theory of chemical binding.Theor Chim Acta,1987,72(5-6):379-391.
    [40]Ghosh S K.Electronegativity,hardness,and a semiempirical density functional theory of chemical binding.Inter J Quan Chem,1994,49(3):239-251.
    [41]Yang Z Z,Wang C S.Atom-Bond Electronegativity Equalization Method.1.Calculation of the Charge Distribution in Large Molecules.J Phys Chem A,1997,101(35):6315-6321.
    [42]崔宝秋,赵东霞,杨忠志.应用原子-键电负性均衡方法预测超氧化物歧化酶催化反应的活性部位.化学学报,2007,65(23):2687-2692.
    [43]Olson G B.Pathways of discovery designing a new material world.Science,2000,288(5468):993-998.
    [44]熊家炯.材料设计.天津:天津大学出版社,2000.
    [45]谢佑卿.金属材料系统科学.长沙:中南工业大学出版社,1998.
    [46]Bensaude-Vincent B,Hessenbruch A.Materials science:a field about to explode? Nat Mater,2004, 3(6):345-347.
    [47]洪广言.无机固体化学.北京:科学出版社,2002.
    [48]Liu A Y,Cohen M L.Prediction of new low compressibility solids.Science,1989,245(4920):841-842.
    [49]Cohen M L.Predicting new solids and superconductors.Science,1986,234(4776):549-553.
    [50]张思远.复杂晶体化学键的介电理论及其应用.北京:科学出版社,2005.
    [51]薛冬峰.晶体材料的设计与模拟.人工晶体学报,2007,36(4):743-749.
    [52]薛冬峰.晶体的化学键和非线性光学效应:(博士学位论文).长春:中国科学院长春应用化学研究所,1998.
    [53]Plachinda P A,Dolgikh V A,Stefanovich S Y,et al.Nonlinear-optical susceptibility of hilgardite-like borates M_2B_5O_9X(M=Pb,Ca,Sr,Ba;X=Cl,Br).Solid State Sci,2005,7(10):1194-1200.
    [54]许东利,薛冬峰.结晶成长的化学键合理论.人工晶体学报,2006,35(3):598-603.
    [55]Yan X,Xu D,Xue D.SO_4~(2-) ions direct the one-dimensional growth of 5Mg(OH)_2·MgSO_4·2H_2O.Acta Mater,2007,55(17):5747-5757.
    [56]Xue D,He X.Dopant occupancy and structural stability of doped lithium niobate crystals.Phys Rev B,2006,73(6):064113.
    [57]Zhang X,Xue D.Bond energy prediction of Curie temperature of lithium niobate crystals.J Phys Chem B,2007,111(10):2587-2590.
    [58]He Y,Xue D.Bond-energy study of photorefractive properties of doped lithium niobate crystals.J Phys Chem C,2007,111(35):13238-13243.
    [59]Zhang H,Li N,Li K et al.Structural stability and formability of ABO_3-type perovskite compounds.Acta Crystallogr B,2007,63(6):812-818.
    [60]Yu D,Xue D.Bond analyses of borates from the Inorganic Crystal Structure Database.Acta Crystallogr B,2006,62(5):702-709.
    [61]Hannay N B,Smyth C P.The dipole moment of hydrogen fluoride and the ionic character of bonds.J Am Chem Soc,1946,68(2):171-173.
    [62]Gordy W.Interpretation of nuclear quadrupole couplings in molecules.J Chem Phys,1951,19(6):792-793.
    [63]Wilmshurst J K.Empirical expression for ionic character and the determination of s hybridization from nuclear quadrupole coupling constants.J Chem Phys,1959,30(2):561-565.
    [64]Jacques B.Convenient relations for the estimation of bond ionicity in A-B type compounds.J Chem Educ,1983,60(8):640-641.
    [65]Matcha R L.Theory of the chemical bond.6.Accurate relationship between bond energies and electronegativity.J Am Chem Soc,1983,105(15):4859-4862.
    [66]Reddy R R,Rao T V R,Viswanath R.Correlation between electronegativity differences and bond energies.J Am Chem Soc,1989,111(8):2914-2915.
    [67]Smith D W.A new approach to the relationship between bond energy and electronegativity.Polyhedron,2007,26(2):519-523.
    [68]Somajazulu G R.Dependence of force constant on electronegativity,bond strength,and bond order.J Chem Phys,1958,28(5):814-821.
    [69]Gordy W.A relation betweeen bond force constants,bond orders,bond lengths,and the electronegativities of the bonded atoms.J Chem Phys,1946,14(5):305-320.
    [70]Schomaker V,Stevenson D P.Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds.J Am Chem Soc,1941,63(1):37-40.
    [71]Blom R,Haaland A.A modification of the Schomaker-Stevenson rule for prediction of single bond distances.J Mol Struct,1985,128(1-3):21-27.
    [72]张克从.晶体结构与性能关系及其发展.人工晶体学报,1985,14(Z1):11.
    [73]Mooser E,Pearson W B.On the crystal chemistry of normal valence compounds.Acta Crystallogr,1959,12(12):1015-1022.
    [74]Phillips J C.Bonds and bands in semiconductors.Science,1970,169(3950):1035-1042.
    [75]P Villars.A three-dimensional structural stability diagram for 998 binary AB intermetallic compounds.J Less-Common Met.1983,92(2):215-238.
    [76]Wahl U,Rita E,Correia J G,et al.Direct evidence for As as a Zn-site impurity in ZnO.Phys Rev Lett,2005,95(21):215503.
    [77]Zhu K,Yanagisawa K,Shimanouchi R.Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method.J Eur Cera Soc,2006,26(4-5):509-513.
    [78]Luo R G,Wang R Y.Electronegativity and superconductivity.J Phys Chem Solids,1987,48(5):425-430.
    [79]Asokamani R,Manjula R.Correlation between electronegativity and superconductivity.Phys Rev B,1989,39(7):4217-4221.
    [80]Jayaprakash R,Shanker J.Correlation between electronegativity and high temperature superconductivity.J Phys Chem Solids,1993,54(3):365-369.
    [81]Ichikawa S.High-Tc superconductors and weighted harmonic mean electronegativities.J Phys Chem,1989,93(21):7302-7304.
    [82]Inoue A,Zhang T,Masumoto T.Glass-forming ability of alloys.J Non-Cryst Solids,1993,156-158(2):473-480.
    [83]Louzguine D V,Inoue A.Electronegativity of the constituent rare-earth metals as a factor stabilizing the supercooled liquid region in Al-based metallic glasses.Appl Phys Lett,2001,79(21):3410-3412.
    [84]Louzguine D V,Inoue A,Botta W J.Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K.Appl Phys Lett,2006,88(1):011911.
    [85]Xi X K,Zhao D Q,Pan M X,et al.On the criteria of bulk metallic glass formation in MgCu-based alloys.Intermetallics,2005,13(6):638-641.
    [86]杨频.分子结构参量及其与物性关联规律.北京:科学出版社,2007.
    [87]Duffy J A.Ultraviolet transparency of glass:a chemical approach in terms of band theory,polarisability and electronegativity.Phys Chem Glasses,2001,42(3):151-157.
    [88]Di Quarto F,Sunseri C,Piazza S,et al.Semiempirical correlation between optical band gap values of oxides and the difference of electronegativity of the elements.Its importance for a quantitative use of photocurrent spectroscopy in corrosion studies.J Phys Chem B,1997,101(14):2519-2525.
    [89]杨秋华.纳米钙钛矿型ABO_3复合氧化物的光催化氧化还原活性:(博士学位论文).天津:天津大学,2002.
    [90]Hur S G,Kim T W,Hwang S,et al.Synthesis of new visible light active photocatalysts of Ba(In_(1/3)Pb_(1/3)M'_(1/3))O_3(M'=Nb,Ta):A band gap engineering strategy based on electronegativity of a metal component.J Phys Chem B 2005,109(31):15001-15007.
    [91]Jansen M,Letschert H P.Inorganic yellow-red pigments without toxic metals.Nature,2000,404(6781):980-982.
    [92]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293(5528):269-271.
    [93]Xia Z C,Dong B,Liu G,et al.Effect of electronegativity on transport properties of (La_(0.83)M_(0.17))_(0.67)Ca_(0.33)MnO_3(M=Y,Bi).Phys Status Solidi A,2005,202(1):113-119.
    [94]蒋建生,杜红林,张文勇.电负性、原子赝势半径与稀土永磁材料.中国稀土学报,2003,21(3):287-290.
    [95]Duffy J A,Ingrain M D.Establishment of an optical scale for Lewis basicity in inorganic oxyacids,molten salts,and glasses.J Am Chem Soc,1971,93(24):6448-6454.
    [96]Duffy J A,Ingrain M D.Nephelauxetic effect and Pauling electronegativity.Chem Commun,1973,17:635-636.
    [97]Lebouteiller A,Courtine P.Improvement of a bulk optical basicity table for oxidic systems.J Solid State Chem,1998,137(1):94-103.
    [98]李建保,周益春,林红等.新材料科学及其实用技术.北京:清华大学出版社,2004.
    [99]Kaner R B,Gilman J J,Tolbert S H.Designing superhard materials.Science,2005,308(5726):1268-1269.
    [100]Cumberland R W,Weinberger M B,Gilman J J,et al.Osmium diboride,and ultra-incompressible,hard material.J Am Chem Soc,2005,127(20):7264-7265.
    [101]Bundy F P,Hall H T,Strong H M,et al.Man-made diamonds.Nature,1955,176(4471):51-55.
    [102]Wentorf R H Jr.Cubic form of boron nitride.J Chem Phys,1957,26(4):956.
    [103]Solozhenko VL,Andrault D,Fiquet G,et al.Synthesis of superhard cubic BC_2N.Appl Phys Lett,2001,78(10):1385-1387.
    [104]Cohen M L.Predicting useful materials.Science,1993,261(5119):307-308.
    [105]Sung CM,Sung M.Carbon nitride and other speculative superhard materials.Mater Chem Phys,1996,43(1):1-18.
    [106]Teter D M.Computational alchemy:The search for new superhard materials.MRS Bull,1998,23(1):22-27.
    [107]Gao F M,He J L,Wu E D,et al.Hardness of covalent crystals.Phys Rev Lett,2003,91(1):015502.
    [108]Simunek A,Vackar J.Hardness of covalent and ionic crystals:first-principle calculations.Phys Rev Lett,2006,96(8):085501.
    [109]Gibbs G V,Tamada O,Boisen M B Jr.Atomic and ionic radii:a comparison with radii derived from electron density distributions.Phys Chem Miner,1997,24(6):432-439.
    [110]Allred A L,Rochow E G.Electronegativity values from thermochemical data.J Inorg Nucl Chem,1961,17(3-4):215-221.
    [111]Shannon R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallogr A,1976,32(5):751-767.
    [112]Dean J A.Lange's Handbook of Chemistry,15th ed.New York:McGraw-Hill,1998.
    [113]Lide D R.CRC Handbook of Chemistry and Physics.87th ed.Boca Raton,FL:CRC Press,2006-2007.
    [114]Emsley J.The Elements,2nd ed.New York:Oxford University Press,1991.
    [115]张若桦.稀土元素化学.天津:天津科学技术出版社,1987.
    [116]Dudev M,Wang J,Dudev T,et al.Factors governing the metal coordination number in metal complexes from Cambridge structural database analyses.J Phys Chem B,2006,110(4):1889-1895.
    [117]Jia Y Q.Crystal radii and effective ionic radii of the rare earth ions.J Solid State Chem,1991,95(1):184-187.
    [118]Luo Y R,Benson S W.A new electronegativity scale for the correlation of heats of formation.4.The values of group parameters.J Phys Chem,1989,93(8):3306-3308.
    [119]Luo Y R,Benson S W.A new electronegativity scale.8.Correlation of the ionization potentials of the main-group atoms(Ⅰ-Ⅶ).J Phys Chem,1989,93(21):7333-7335.
    [120]Luo Y R,Benson S W.New electronegativity scale.11.Comparison with other scales in correlating heats of formation.J Phys Chem,1990,94(2):914-917.
    [121]Robles J,Bartolotti L J.Eleetronegativities,electron affinities,ionization potentials,and hardnesses of the elements within spin polarized density functional theory.J Am Chem Soc,1984,106(13):3723-3727.
    [122]O'Keeffe M,Brese N E.Atom sizes and bond lengths in molecules and crystals.J Am Chem Soc,1991,113(9):3226-3229.
    [123]Brown I D,Skowron A.Electronegativity and Lewis acid strength.J Am Chem Soc,1990,112(9):3401-3403.
    [124]Luo Y R,Benson S W.A new electronegativity scale.12.Intrinsic Lewis acid strength for main-group elements.Inorg Chem,1991,30(7):1677-1680.
    [125]Tsuruta H,Yamaguchi K,Imamoto T,et al.Tandem mass spectrometric analysis of rare earth(Ⅲ)complexes:evaluation of the relative strength of their Lewis acidity.Tetrahedron,2003,59(52):10419-10438.
    [126]苏锵.稀土化学.郑州:河南科学技术出版社,1993.
    [127]Asthagiri D,Pratt L R,Paulaitis M E,et al.Hydration structure and free energy of biomolecularly specific aqueous dications,including Zn~(2+) and first transition row metals.J Am Chem Soc,2004,126(4):1285-1289.
    [128]李建宇.稀土发光材料及其应用.北京:化学工业出版社,2003.
    [129]Dorenbos P.Systematic behaviour in trivalent lanthanide charge transfer energies.J Phys:Condens Matter,2003,15(49):8417-8434.
    [130]Luo Y R,Pacey P D.Theoretical support for a new electronegativity scale.J Am Chem Soc,1991,113(4):1465-1466.
    [131]Bergmann D,Hinze J.Electronegativity and molecular properties.Angew Chem Int Edit,1996,35(2):150-163.
    [132] Van Vechten J A, Phillips J C. New set of tetrahedral covalent radii. Phys Rev B, 1970, 2(6): 2160-2167.
    
    [133] Batsanov S S. The atomic radii of the elements. Russ J Inorg Chem, 1991, 36(12): 1694-1706.
    
    [134] Burns G. Solid State Physics. Orlando, FL: Academic Press, 1985.
    
    [135] Gillespie R J, Robinson E A. Bond lengths in covalent fluorides. A new value for the covalent radius of fluorine. Inorg Chem, 1992,31(10): 1960-1963.
    
    [136] Lin G Q, Gong H, Wu P. Electronic properties of barium chalcogenides from first-principles calculations: Tailoring wide-band-gap Ⅱ-Ⅳ semiconductors. Phys Rev B, 2005,71(8): 085203.
    
    [137] Garcia A, Cohen M L. First-principles ionicity scales. I. Charge asymmetry in the solid state. Phys RevB, 1993,47(8): 4215-4220.
    
    [138] Zaoui A, Ferhat M, Khelifa B, et al. Correlation between the ionicity character and the charge density in semiconductors. Phys Status Solidi B, 1994,185(1): 163-169.
    
    [139] Levine B F. Bond susceptibilities and ionicities in complex crystal structures. J Chem Phys, 1973, 59(3): 1463-1486.
    
    [140] Kamran S, Chen K, Chen L. Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals. Phys Rev B, 2008, 77(9): 094109.
    
    [141] Haines J, Leger J M, Bocquillon G. Synthesis and design of superhard materials. Annu Rev Mater Res, 2001,31: 1-23.
    
    [142] Chen K, Zhao L R, Tse J S, et al. Elastic properties of platinum Rh and Rh_3X compounds. Phys Lett A, 2004,331(6): 400-403.
    
    [143] 方俊鑫, 陆栋. 固体物理学. 上海: 上海科学技术出版社, 1981.
    
    [144] Kittel C. Introduction to Solid State Physics, Ⅳth ed. New York: Wiley, 1971.
    
    [145] Ravindra N M, Srivastava V K. Variation of electronic polarizability with energy gap in compound semiconductors. Infrared Phys, 1979,19(5): 605-606.
    
    [146] Reddy R R, Ahammed Y N, Gopal K R, et al. Optical electronegativity, bulk modulus and electronic polarizability of materials. Opt mater, 2000,14(4): 355-358.
    
    [147] Kumar V, Prasad G M, Chandra D. Lattice energy and electronic polarizability of binary tetrahedral semiconductors. J Phys Chem Solids, 1997, 58(3): 463-465.
    
    [148] Reddy R R, Kumar M R, Rao T V R. Relationships between lattice energy, interionic distance and plasma energy in Ⅱ-Ⅵ group semiconductors. J Phys Chem Solids, 1993, 54(5): 603-605.
    
    [149] Gupta V P, Srivastava V K, Gupta P N L. Electronic properties of chalcopyrites. J Phys Chem Solids, 1981,42(12): 1079-1085.
    
    [150] Gilman J J. Physical chemistry of intrinsic hardness. Mater Sci Eng A, 1996,209(1-2): 74-81.
    
    [151] Pearson R G. Hard and soft acids and bases. J Am Chem Soc, 1963, 85(22): 3533-3539.
    
    [152] Politzer P. A relationship between the charge capacity and the hardness of neutral atoms and groups. J Chem Phys, 1987, 86(2): 1072-1073.
    
    [153] Pauling L. Atomic radii and interatomic distances in metals. J Am Chem Soc, 1947, 69(3): 542-553.
    
    [154] Gilman J J, Cumberland R W, Kaner R B. Design of hard crystals. Int J Metals Hard Mater, 2006, 24(1-2): 1-5.
    
    [155] Inorganic Crystal Structure Database (Fachinformationszentrum Karlsruhe, Germany, release 2005).
    [156] Dubrovinsky L S, Dubrovinskaia N A, Swamy V, et al. The hardest known oxide. Nature, 2001, 410(6829): 653-654.
    
    [157] Gao F M, Xu R, Liu K. Origin of hardness in nitride spinel materials. Phys Rev B, 2005, 71(5): 052103.
    
    [158] Chen S Y, Gong X G, Wei S H. Superhard pseudocubic BC_2N superlattices. Phys Rev Lett, 2007, 98(1): 015502.
    
    [159] He D W, Zhao Y S, Daemen L, et al. Boron suboxide: As hard as cubic boron nitride. Appl Phys Lett, 2002, 81(4): 643-645.
    
    [160] Amberger E, Stumpf W. Gmelin Handbook of Inorganic Chemistry, edited by Buschbeak K C. Berlin: Springer-Verlag, 1981.
    
    [161] Eremets M I, Gavriliuk A G, Trojan I A, et al. Single-bonded cubic form of nitrogen. Nat Mater, 2004, 3(8): 558-563.
    
    [162] Weihrich R, Eyert V, Matar S F. Structure and electronic properties of new model dinitride systems: A density-functional study of CN_2, SiN_2, and GeN_2. Chem Phys Lett, 2003,373(5-6): 636-641.
    
    [163] Iota V, Yoo C S, Klepeis J H, et al. Six-fold coordinated carbon dioxide Ⅵ. Nat Mater, 2007, 6(1): 34-38.
    
    [164] Lim A T L, Zheng J C, Feng Y P. Interesting electronic and structural properties of C3P4. Mater Sci Eng B, 2003,99(1-3): 527-530.
    
    [165] Liu Z Y, He J L, Yang J, et al. Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations. Phys Rev B, 2006,73(17): 172101.
    
    [166] Sanderson R T. Principles of electronegativity. Part Ⅰ. General nature. J Chem Educ, 1988, 65(2): 112-118.
    
    [167] Pearson R G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg Chem, 1988,27(4): 734-740.
    
    [168] Boyd R J, Markus G E. Electronegativities of the elements from a nonempirical electrostatic model. J Chem Phys, 1981,75(11): 5385-5388.
    
    [169] Suresh C H, Koga N. A molecular electrostatic potential bond critical point model for atomic and group electronegativities. J Am Chem Soc, 2002,124(8): 1790-1797.
    
    [170] Gao F M. Theoretical model of intrinsic hardness. Phys Rev B, 2006,73(13): 132104.
    
    [171] Brazhkin V V, Lyapin A G, Hemley R J. Harder than diamond: dreams and reality. Philos Mag A, 2002, 82(2): 231-253.
    
    [172] Kroke E, Schwarz M. Novel group 14 nitrides. Coor Chem Rev, 2004,248(5-6): 493-532.
    
    [173] Wang S W, Gudipati R, Rao A S, et al. First-principles calculations for the elastic properties of nanostructured superhard TiN/Si_xN_y superlattices. Appl Phys Lett, 2007, 91(8): 081916.
    
    [174] Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicone nitride. Nature, 1999, 400(6742): 340-342.
    
    [175] Zerr A, Miehe G, Riedel R. Synthesis of cubic zirconium and hafnium nitride having Th_3P_4 structure. Nat Mater, 2003,2(3): 185-189.
    
    [176] Kroll P. Assessment of the Hf-N, Zr-N and Ti-N phase diagrams at high pressures and temperatures: balancing between MN and M_3N_4 (M = Hf, Zr, Ti). J Phys: Condens Matter, 2004,16(14): S1235-S1244.
    [177] Teter D M. Low-compressibility carbon nitrides. Science, 1996,271(5245): 53-55.
    
    [178] Simunek, A. How to estimate hardness of crystals on a pocket calculator. Phys Rev B, 2007,75(17): 172108.
    
    [179] Huang M, Feng Y P. Theoretical prediction of the structure and properties of Sn_3N_4. J Appl Phys, 2004,96(7): 4015-4017.
    
    [180] Mattesini M, Ahuja R, Johansson B. Cubic Hf_3N_4 and Zr_3N_4: A class of hard materials. Phys Rev B, 2003,68(18): 184108.
    
    [181] Mori-Sanchez P, Marques M, Beltran A, et al. Origin of the low compressibility in hard nitride spinels. Phys Rev B, 2003,68(6): 064115.
    
    [182] Kroll P. Hafnium nitride with thorium phosphide structure: Physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys Rev Lett, 2003, 90(12): 125501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700