晶体中的化学键和结构—性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着功能材料研究的不断发展,人们越来越关注决定材料性能的内在因素。化学键方法是一种研究晶体结构与性能关系的重要手段,在功能材料的结构评价和性能预测以及新型材料的设计中具有广泛的应用价值。论文从晶体的微观特征入手,将化学键方法应用于硼酸盐晶体和氢键性质的研究当中。
     硼酸盐晶体具有优良的非线性光学(NLO)性质,这与其种类繁多的聚阴离子基团结构密切相关,化学键参数d_0能够反映中心阳离子在不同晶体结构框架中化学键合行为的微观差异,基于此观点,论文较系统地计算了758个硼酸盐晶体结构中B-O键的参数d_0。结果表明,基本结构单元(FBBs)的详细构型、含水与否以及卤素离子或其它阴离子基团的存在都会影响d_0值。于是针对不同类型的FBBs,分别推荐了合适的d_0参数。由于参数d_0与硼酸盐晶体的最大NLO张量系数之间具有协同的变化趋势,因此可以作为判断和预测硼酸盐NLO性质乃至设计新型硼酸盐晶体的有用参数。
     含水硼酸盐结构中存在着大量的氢键,对晶体的NLO性质具有重要的贡献。为了揭示氢键对材料性能的影响,充分发挥其作为功能键的作用,论文研究了含水硼酸盐晶体中的二中心O-H…O氢键。基于较强的O-H和较弱的H…O键是两种不同类型的键,具有不同的化学键参数d_0这一基本思想,从氢键的静电作用和几何构型出发,以两种不同的方法(即库仑定律和黄金比率),计算了O-H和H…O键的参数d_0,得到了参数d_0与相应键长的线性拟合函数,并用以调控晶体结构的堆积方式和改善晶体的电光性质,提出了该函数在含氢键的硼酸盐晶体设计中的应用模式。
     论文进一步将氢键的研究拓展到各种无机晶体的多中心O-H…O体系,构建了真实键合环境下氢键体系的势能函数。分别拟合了反映不同键长敏感性的多项式函数,用于计算O-H和H…O的键价,并通过评价中心氢原子、质子给予体和接受体氧原子的键价和,证实了函数的合理性。同时,细致分析了O-H和H…O键的相互作用能,也考察了力常数和振动频率与几何参数之间的关系。这种基于能量的氢键分析方法能够很容易地推广到其它同核体系,有望应用于异核体系的研究中。论文通过对复杂O-H…O作用的简化,计算了氢键的键价,阐述了氢键体系的微观特征,从能量角度定量地分析和认识了晶体中的氢键作用,也为如何有效运用氢键进行功能材料的设计提供了指导。
With the increasing development in the study of functional materials,more and more attentions are paid on the internal factors that determine materials properties.The chemical bond method provides an important tool for studying the relationship between the crystal structure and properties,which is widely applied to the structural evaluation and property prediction of functional materials,and even offers some valuable information for further materials design.On the basis of the microscopic characteristics of crystals,this thesis exploringly applies the chemical bond method to the study of borates and hydrogen bonds.
     Borates possess excellent nonlinear optical(NLO) properties,which are strongly related to their various structural configurations.The discrepancy of the chemical bonding parameters d_0 should not be ignored when investigating the microscopic structures of borate crystals, which reflects the chemical bonding behaviors of central cations in the crystallographic framework.Therefore,the parameters d_0 of B-O bonds were systematically calculated in the 758 investigated oxoborates.By considering the factors that influence the d_0 parameters, including the detailed configurations of borate fundamental building blocks(FBBs), anhydrous or hydrous,the interstitial halogen anions and the substitution of other anionic groups,more precise d_0 data were recommended for various kinds of FBBs.On the basis of the cooperative trend between the d_0 parameter of various FBBs and the calculated largest NLO tensor coefficient of different borates,d_0 values for the unique configuration of FBBs may serve as a useful parameter for pre-investigating the NLO properties of borates,and even for designing novel borate crystals.
     Hydrogen bonds widely exist in hydrated borates,and often have dominant NLO contributions to the total nonlinearity of crystals.Two-center O-H…O hydrogen bonds in hydrated borates were investigated,in order to reveal their effect on materials properties and further effectively utilize them as functional bonds.With the notion that the stronger O-H and the weaker H…O bonds are two different types of bonds and should have different chemical bonding parameters d_0,two different approaches,respectively basing on the electrostatic interaction(Coulomb's law) and geometric configuration(Golden ratio),were used to calculate d_0 values.The linear correlation between the parameter d_0 and the corresponding bond length was found,which can be employed in the structural design of borate crystals with hydrogen bonds by tuning the structural packing or modifying the electric and optical properties.
     With deeper studying of general systems beyond the limit of borates,the potential energy function that reflects the actual bonding environment was successfully constructed for a variety of homonuclear O-H…O hydrogen bonds in inorganic solids,including two-center, three-center and multicenter types.Two polynomial functions exhibiting different length sensitivities were respectively proposed for the bond valence calculation of O-H and H…O bonds,the validity of which was proved by evaluating the bond valence sums around not only the central H atoms but also the proton donor and acceptor O atoms in O-H…O systems.The interaction energies of O-H and H…O bonds were analyzed in detail,and the geometric parameters were also connected to the force constants and stretching frequencies of hydrogen bonds.This analysis method from the energy viewpoint can be readily extended to other systems of homonuclear hydrogen bonds,and may be hopefully applied in heteronuclear systems.Due to the simplification of complicated O-H…O interactions,the bond valences were calculated and then the microscopic interactions were studied in hydrogen bond systems. Therefore,this work may shed light on understanding the underlying nature of hydrogen bonds in the actual crystals on the basis of the quantitative analysis of energy,which may also give people some exciting advances to reasonably analyze and employ O-H…O hydrogen bonds in inorganic solids.
引文
[1]Pauling L.The principles determining the structure of complex ionic crystals.J.Am.Chem.Soc.,1929,51(4):1010-1026.
    [2]Brown I D.Bond valences—a simple structural model for inorganic chemistry.Chem.Soc.Rev.,1978,7(3):359-376.
    [3]Burdett J K.Chemical bonding in solids.Ch.6.New York:Oxford University Press,1995.
    [4]Donnay G,Allmann R.How to recognize O~(2-),OH~-,and H_2O in crystal structures determined by X-rays.Am.Mineral.,1970,55(5-6):1003-1015.
    [5]Brown I D,Shannon R D.Empirical bond-strength-bond-length curves for oxides.Acta Crystallogr.,Sect.A:Found.Crystallogr.,1973,29(3):266-282.
    [6]Brown I D,Altermatt D.Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database.Acta Crystallogr.,Sect.B:Struct.Sci.,1985,41(4):244-247.
    [7]Brese N E,O' Keeffe M.Bond-valence parameters for solids.Acta Crystallogr.,Sect.B:Struct.Sci.,1991,47(2):192-197.
    [8]Naskar J P,Hati S,Datta D.New bond-valence sum model.Acta Crystallogr.,Sect.B:Struct.Sci.,1997,53(6):885-894.
    [9]Mohri F.A new relation between bond valence and bond distance.Acta Crystallogr.,Sect.B:Struct.Sci.,2000,56(4):626-638.
    [10]邵美成.鲍林规则与键价理论.北京:高等教育出版社,1993.
    [11]Brown I D.Recent developments in the bond valence model of inorganic bonding.Phys.Chem.Miner.,1987,15(1):30-34.
    [12]Tytko K H.A bond model for polyoxometalate ions composed of MO_6 octahedra(MO_x polyhedra with x>4).Struct.Bonding,1999,93:67-127.
    [13]Brown l D.The chemical bond in inorganic chemistry.New York:Oxford University Press,2002.
    [14]Jansen L,Chandran L,Block R.On the concept of "bond valence sums" and its applicability in solid state chemistry and physics.J.Mol.Struct.(Theochem),1992,260:81-98.
    [15]Born M,Mayer J E.Zur gittertheorie der ionenkristalle.Z.Phys.,1932,75(1/2):1-18.
    [16]Preiser C,L(o|¨)sel J,Brown I D et al.Long-range Coulomb forces and localized bonds.Acta Crystallogr.,Sect.B:Struct.Sci.,1999,55(6):698-711.
    [17]Burdett J K,Hawthorne F C.An orbital approach to the theory of bond valence.Am.Mineral.,1993,78(9-10):884-892.
    [18] Urusov V S. Semi-empirical groundwork of the bond-valence model. Acta Crystallogr., Sect. B: Struct. Sci., 1995, 51 (5):641-649.
    
    [19] Clark J R, Appleman D E, Papike J J. Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral. Soc. Amer. Spec. Pap., 1969, 2:31-50.
    
    [20] Zió(?)kowski J. New relation between ionic radii, bond length, and bond strength. J. Solid State Chem., 1985, 57 (3):269-290.
    
    [21] Valach F. A bond valence approach to the semicoordination of copper-oxygen and copper-nitrogen complexes. Polyhedron, 1999, 18 (5):699-706.
    
    [22] O' Keeffe M, Hyde B G. Stoichiometry and the structure and stability of inorganic solids. Nature, 1984, 309 (5967):411-414.
    
    [23] Palenik G J. Bond valence sums in coordination chemistry. The calculation of the oxidation state of samarium in complexes containing samarium bonded only to oxygen. Inorg. Chem., 2003, 42 (8):2725-2728.
    
    [24] Trzesowska A, Kruszynski R, Bartczak T J. New lanthanide-nitrogen bond-valence parameters. Acta Crystallogr., Sect. B: Struct. Sci., 2005, 61 (4):429-434.
    
    [25] Pannetier J, Basses-Alsina J, Rodriguez-Carvajal J et al. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature, 1990, 346 (6282):343-345.
    
    [26] McGibbon M M, Browning N D, Chisholm M F et al. Direct determination of grain boundary atomic structure in SrTiO_3. Science, 1994, 266 (5182):102-104.
    
    [27] Grinberg I, Cooper V R, Rappe A M. Relationship between local structure and phase transitions of a disordered solid solution. Nature, 2002, 419 (6910):909-911.
    
    [28] Whangbo M-H, Torardi C C. Hole density dependence of the critical temperature and coupling constant in the cuprate superconductors. Science, 1990, 249 (4973):1143-1146.
    
    [29] Browning N D, Buban J P, Moltaji H O et al. Investigating the structure-property relationships at grain boundaries in MgO using bond-valence pair potentials and multiple scattering analysis. J. Am. Ceram. Soc., 1999, 82 (2):366-372.
    
    [30] Hawthorne F C. Short-range order in amphiboles. A bond-valence approach. Can. Mineral., 1997, 35 (1):203-218.
    
    [31] Swenson J, Adams St. Application of the bond valence method to reverse Monte Carlo produced structural models of superionic glasses. Phys. Rev. B, 2001, 64 (2):024204.
    
    [32] Zió(?)kowski J, Dziembaj L. Empirical relationship between individual cation-oxygen bond length and bond energy in crystals and in molecules. J. Solid State Chem., 1985, 57 (3):291-299.
    [33]Clark-Baldwin K,Johnson A R,Chen Y W et al.The limitations of X-ray absorption spectroscopy for determining the structure of zinc sites in proteins,When is a tetrathiolate not a tetrathiolate? J.Am.Chem.Soc.,1998,120(33):8401-8409.
    [34]Xiang S,Short S A,Wolfenden R et al.Cytidine deaminase complexed to 3-deazacytidine:A "valence buffer" in zinc enzyme catalysis.Biochemistry,1996,35(5):1335-1341.
    [35]Xu D,Xue D,Ratajczak H.Morphology and structure studies of KDP and ADP crystallites in the water and ethanol solutions.J.Mol.Struct.,2005,740(1-3):37-45.
    [36]Xue D,He X.Dopant occupancy and structural stability of doped lithium niobate crystals.Phys.Rev.B,2006,73(6):064113.
    [37]Zhang X,Xue D.Bond energy prediction of Curie temperature of lithium niobate crystals.J.Phys.Chem.B,2007,111(10):2587-2590.
    [38]Zhang H,Li N,Li K et al.Structural stability and formability of ABO_3-type perovskite compounds.Acta Crystallogr.,Sect.B:Struct.Sci.,2007,63(6):812-818.
    [39]Li K,Wang X,Zhang F et al.Electronegativtiy identification of novel superhard materials.Phys.Rev.Lett.,2008,100(23):235504.
    [40]Chen C,Lin Z,Wang Z.The development of new borate-based UV nonlinear optical crystals.Appl.Phys.B:Lasers Opt.,2005,80(1):1-25.
    [41]张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社,1996.
    [42]Clark J R,Appleman D E.Pentaborate polyanion in the crystal structure of ulexite,NaCaB_5O_6(OH)_6·5H_2O.Science,1964,145(3638):1295-1296.
    [43]Giese Jr R F.Crystal structure of kernite,Na_2B_4O_6(OH)_2.3H_2O.Science,1966,154(3755):1453-1454.
    [44]Merlino S,Sartori F.Ammonioborite:New borate polyion and its structure.Science,1971,171(3969):377-379.
    [45]Filatov S K,Bubnova R S.Borate crystal chemistry.Phys.Chem.Glasses,2000,41(5):216-224.
    [46]Becker P.A contribution to borate crystal chemistry:Rules for the occurrence of polyborate anion types.Z.Kristallogr.,2001,216(3627):523-533.
    [47]Touboul M,Penin N,Nowogrocki G.Borates:A survey of main trends concerning crystal-chemistry,polymorphism and dehydration process of alkaline and pseudo-alkaline borates.Solid State Sci.,2003,5(10):1327-1342.
    [48]Huppertz H,Von der Eltz B.Multianvil high-pressure synthesis of Dy_4B_6O_(15):The first oxoborate with edge-sharing BO_4 tetrahedra.J.Am.Chem.Soc.,2002,124(32):9376-9377.
    [49]Burns P C,Grice J D,Hawthorne F C.Borate minerals.I.Polyhedral clusters and fundamental building blocks.Can.Mineral.,1995,33(5):1131-1151.
    [50]Gravereau P,Chaminade J P,Pechev S et al.Na_3La_9O_3(BO_3)_8,a new oxyborate in the ternary system Na_2O-La_2O_3-B_2O_3:Preparation and crystal structure.Solid State Sci.,2002,4(7):993-998.
    [51]Dewey Jr C F,Cook Jr W R,Hodgson R T et al.Frequency doubling in KB_5O_8·4H_2O and NH_4B_5O_8·4H_2O to 217.3 nm.Appl.Phys.Lett.,1975,26(12):714-716.
    [52]Chen C,Wu B,Jiang A et al.A new-type ultraviolet SHG crystal—β-BaB_2O_4.Sci.Sinica (China) Ser.B,1985,28(3):235-239.
    [53]Chen C,Wu Y,Jiang A et al.New nonlinear-optical crystal:LiB_3O_5.J.Opt.Soc.Am.B:Opt.Phys.,1989,6(4):616-621.
    [54]Batsanova L R,Egorov V A,Nikolaev A V.Beryllium fluoride borate.Dokl.Akad.Nauk SSSR,1968,178(6):1317-1319.
    [55]Chen C,Wang Y,Wu B et al.Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr_2Be_2B_2O_7.Nature,1995,373(6512):322-324.
    [56]Chen C,Ye N,Wu B et al.Design and synthesis of new nonlinear optical crystals.In:Sasaki T.Ed.Proceedings of international symposium on laser and nonlinear optical materials.Singapore:Oxford Graphic Printers,1997,325:103.
    [57]Ye N,Zeng W,Jiang J et al.New nonlinear optical crystal K_2Al_2B_2O_7.J.Opt.Soc.Am.B:Opt.Phys.,2000,17(5):764-768.
    [58]张思远.复杂晶体的化学键研究.化学物理学报,1991,4(2):109-115.
    [59]Levine B F.Bond susceptibilities and ionicities in complex crystal structures.J.Chem.Phys.,1973,59(3):1463-1486.
    [60]Phillips J C.Ionicity of the chemical bond in crystals.Rev.Mod.Phys.,1970,42(4):317-356.
    [61]Van Vechten J A.Quantum dielectric theory of electronegativity in covalent systems.I.Electronic dielectric constant.Phys.Rev.,1969,182(3):891-905.
    [62]薛冬峰.晶体的化学键和非线性光学效应:(博士学位论文).长春:中国科学院长春应用化学研究所,1998.
    [63]Xue D,Betzler K,Hesse H.Dielectric properties of Ⅰ-Ⅲ-Ⅵ_2-type chalcopyrite semiconductors.Phys.Rev.B,2000,62(20):13546-13551.
    [64]Xue D,Betzler K,Hesse H et al.Nonlinear optical properties of borate crystals.Solid State Commun.,2000,114(1):21-25.
    [65]Xue D,Betzler K,Hesse H.Chemical-bond analysis of the nonlinear optical properties of the borate crystals LiB_3O_5,CsLiB_6O_(10),and CsB_3O_5.Appl.Phys.A:Mater.Sci.Process.,2002,74(6):779-782.
    [66]Chen C,Wu Y,Li R.The development of new NLO crystals in the borate series.J.Cryst.Growth,1990,99(1-4):790-798.
    [67]Fan Y,Eckardt R C,Byer R L et al.Barium borate optical parametric oscillator.IEEE J.Quantum Elect.,1989,25(6):1196-1199.
    [68]Lin S,Sun Z,Wu B et al.The nonlinear optical characteristics of a LiB_3O_5 crystal.J.Appl.Phys.,1990,67(2):634-638.
    [69]Velsko S P,Webb M,Davis L et al.Phase-matched harmonic generation in lithium triborate(LBO).IEEE J.Quantum Elect.,1991,27(9):2182-2192.
    [70]Wu Y,Sasaki T,Nakai S et al.CsB_3O_5:A new nonlinear optical crystal.Appl.Phys.Lett.,1993,62(21):2614-2615.
    [71]Chen C,Ye N,Lin J et al.Computer-assisted search for nonlinear optical crystals.Adv.Mater.,1999,11(13):1071-1078.
    [72]Mori Y,Kuroda I,Nakajima S et al.New nonlinear optical crystal:Cesium lithium borate.Appl.Phys.Lett.,1995,67(13):1818-1820.
    [73]Dewey H J.Second-harmonic generation in KB_5O_8·4H_2O from 217.1 to 315.0 nm.IEEE J.Quantum Elect.,1976,12(5):303-306.
    [74]吴以成,陈创天.使用基团理论计算KB_5O_8·4H_2O晶体的倍频系数.物理学报,1986,35(1):1-6.
    [75]Hellwig H,Liebertz J,Bohaty L.Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB_3O_6(BIBO).Solid State Commun.,1999,109(5):249-251.
    [76]薛冬峰,张思远.硼原子的键合形式对硼酸盐晶体非线性光学行为的影响.化学研究,1998,9(4):38-40.
    [77]Plachinda P A,Dolgikh V A,Yu S et al.Nonlinear-optical susceptibility of hilgardite-like borates M_2B_5O_9X(M=Pb,Ca,Sr,Ba;X=Cl,Br).Solid State Sci.,2005,7(10):1194-1200.
    [78]Crabtree R H.A new type of hydrogen bond.Science,1998,282(5396):2000-2001.
    [79]Janotti A,Van de Walle C G.Hydrogen multicentre bonds.Nat.Mater.,2007,6(1):44-47.
    [80]Moore T S,Winmill T F.The state of amines in aqueous solution.J.Chem.Soc.,Trans.,1912,101:1635-1676.
    [81]Latimer W M,Rodebush W H.Polarity and ionization from the standpoint of the Lewis theory of valence.J.Am.Chem.Soc.,1920,42(7):1419-1433.
    [82]Pauling L.The nature of the chemical bond.2nd edn.Ithaca:Cornell University Press,1948(1st edn,1939;3rd edn,1960).
    [83]Pimentel G C,McClellan A L.The hydrogen bond.San Francisco:W.H.Freeman and Co.Inc.,1960.
    [84]Lippert E.In:Schuster P,Zundel G,Sandorfy C.Eds.The hydrogen bond.Amsterdam:North-Holland,1976,1:3-22.
    [85]Vinogradov S N,Linell R H.Hydrogen bonding.New York:Van Norstrand Reinhold Co.,1971.
    [86] Zeegers-Huyskens Th, Huyskens P L, In: Huyskens P L, Luck W A P, Zeegers-Huyskens Th.Eds. Intermolecular forces—an introduction to modern methods and results. Berlin: Springer Verlag, 1991, 1.
    
    [87] Steiner T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed., 2002, 41 (1):48-76.
    
    [88]Hobza P, Havlas Z. Blue-shifting hydrogen bonds. Chem. Rev., 2000, 100 (11): 4253-4264.
    
    [89] Bader R F W. Atoms in molecules: A quantum theory. Oxford: Oxford University Press, 1990.
    
    [90] Koch U, Popelier P L A. Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem., 1995, 99 (24):9747-9754.
    
    [91] Emsley J. Very strong hydrogen bonding. Chem. Soc. Rev., 1980, 9 (1):91-124.
    
    [92] Jeffrey G A. An introduction to hydrogen bonding. Oxford: Oxford University Press, 1997.
    
    [93] Gilli G, Gilli P. Towards an unified hydrogen-bond theory. J. Mol. Struct., 2000, 552 (1-3): 1-15.
    
    [94] Gilli P, Bertolasi V, Ferretti V et al. Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system by crystal structure correlation methods. J. Am. Chem. Soc., 1994, 116 (3): 909-915.
    
    [95] Grabowski S J. Hydrogen bonds with π and σ electrons as the multicenter proton acceptors: High level ab initio calculations. J. Phys. Chem. A, 2007, 111 (17):3387-3393.
    
    [96] Grabowski S J. Hydrogen bonding strength—measures based on geometric and topological parameters. J. Phys. Org. Chem., 2004, 17 (1): 18-31.
    
    [97] Grabowski S J. Ab initio calculations on conventional and unconventional hydrogen bonds-study of the hydrogen bond strength. J. Phys. Chem. A, 2001, 105 (47):10739-10746.
    
    [98] Grabowski S J, Krygowski T M. Estimation of the proton position and the energy of O-H…O bridges in crystals from X-ray diffraction data. Tetrahedron, 1998, 54 (21):5683-5694.
    
    [99] Popelier P L A. Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A, 1998, 102 (10):1873-1878.
    
    [100] Popelier P L A, Logothetis G. Characterization of an agostic bond on the basis of the electron density. J. Organomet. Chem., 1998, 555 (1):101-111.
    
    [101] Gonz(?)lez L, Mó O, Y(?)(n|~)ez M et al. Very strong hydrogen bonds in neutral molecules: The phosphinic acid dimers. J. Chem. Phys., 1998, 109 (7):2685-2693.
    
    [102] Rozas I, Alkorta I, Elguero J. Behavior of ylides containing N, 0, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc., 2000, 122 (45): 11154-11161.
    
    [103] Abramov Y A. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution. Acta Crystallogr., Sect. A: Found. Crystallogr., 1997, 53 (3):264-272.
    [104] Gilli G, Bellucci F, Ferretti V et al. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J. Am. Chem. Soc., 1989, 111 (3):1023-1028.
    
    [105] Kollman P A, Allen L C. The theory of the hydrogen bond. Chem. Rev., 1972, 72 (3): 283-303.
    
    [106] Bader R F W. A model for the hydrogen bond and proton transfer reactions. Can. J. Chem. /Rev. Can. Chim., 1964, 42 (8):1822-1834.
    
    [107] Coulson C A. The hydrogen bond—a review of the present position. Research (London), 1957, 10:149-159.
    
    [108] Van Duijneveldt F B, Murrell J N. Some calculations on the hydrogen bond. J. Chem. Phys., 1967, 46 (5):1759-1767.
    
    [109] Kollman P A, Allen L C. An SCF partitioning scheme for the hydrogen bond. Theor. Chim. Acta, 1970, 18 (4):399-403.
    
    [110] Dreyfus M, Pullman A. A non-empirical study of the hydrogen bond between peptide units. Theor. Chim. Acta, 1970, 19 (1):20-37.
    
    [111] Morokuma K, Pedersen L. Molecular-orbital studies of hydrogen bonds. An ab initio calculation for dimeric H_2O. J. Chem. Phys., 1968, 48 (7):3275-3282.
    
    [112] Umeyama H, Morokuma K. The origin of hydrogen bonding. An energy decomposition study. J. Am. Chem. Soc., 1977, 99 (5): 1316-1332.
    
    [113] Kitaura K, Morokuma K. A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int. J. Quantum Chem., 1976, 10 (2):325-340.
    
    [114] Bertolasi V, Gilli P, Ferretti V et al. Evidence for resonance-assisted hydrogen bonding. 2. Intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3-diaryl-1,3-propanedione enols. J. Am. Chem. Soc., 1991, 113 (13):4917-4925.
    
    [115] S(?)rensen J, Clausen H F, Poulsen R D et al. Short strong hydrogen bonds in 2-acetyl-1,8-dihydroxy-3,6-dimethylnaphthalene: An outlier to current hydrogen bonding theory? J. Phys. Chem. A, 2007, 111 (2):345-351.
    
    [116] Pimentel G C. The bonding of trihalide and bifluoride ions by the molecular orbital method. J. Chem. Phys., 1951, 19 (4):446-448.
    
    [117] Paoloni L. Nature of the hydrogen bond. J. Chem. Phys., 1959, 30 (4):1045-1058.
    
    [118] Kollman P A, Allen L C. Theory of the strong hydrogen bond. Ab initio calculations on HF_2~- and H_5O_2~+. J. Am. Chem. Soc., 1970, 92 (21) :6101-6107.
    
    [119] Mohri F. Molecular orbital study of the bond-valence sum rule using Lewis-electron pair theory. Acta Crystallogr., Sect. B: Struct. Sci., 2003, 59 (2):190-208.
    
    [120] Okada T, Fueno T. Electronic population analysis based on the electron pair concept. Bull. Chem. Soc. Jpn., 1976, 49 (6):1524-1530.
    [121] Mohri F. Molecular orbital study of bond-valence sum rule for hydrogen bond systems using Lewis-electron pair theory. J. Mol. Struct. (Theochem), 2005, 756 (1-3):25-33.
    
    [122] Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 92 (9):5397-5403.
    
    [123] Fuster F, Silvi B. Does the topological approach characterize the hydrogen bond? Theor. Chem. Acc., 2000, 104 (1): 13-21.
    
    [124] Krokidis X, Goncalves V, Savin A et al. How malonaldehyde bonds change during proton transfer. J. Phys. Chem. A, 1998, 102 (26):5065-5073.
    
    [125] Pacios L F. Topological descriptors of the electron density and the electron localization function in hydrogen bond dimers at short intermonomer distances. J. Phys. Chem. A, 2004, 108 (7):1177-1188.
    
    [126] Alikhani M E, Fuster F, Silvi B. What can tell the topological analysis of ELF on hydrogen bonding? Struct. Chem., 2005, 16 (3):203-210.
    
    [127] Woutersen S, Emmerichs U, Bakker H J. Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure. Science, 1997, 278 (5338) :658-660.
    
    [128] Rini M, Magnes B-Z, Pines E et al. Real-time observation of bimodal proton transfer in acid-base pairs in water. Science, 2003, 301 (5631):349-352.
    
    [129] Marx D, Tuckerman M E, Hutter J et al. The nature of the hydrated excess proton in water. Nature, 1999, 397 (6720):601-604.
    
    [130] Smith J D, Cappa C D, Wilson K R et al. Energetics of hydrogen bond network rearrangements in liquid water. Science, 2004, 306 (5697):851-853.
    
    [131] Hammer N I, Shin J-W, Headrick J M et al. How do small water clusters bind an excess electron? Science, 2004, 306 (5696):675-679.
    
    [132] McGuire J A, Shen Y R. Ultrafast vibrational dynamics at water interfaces. Science, 2006, 313 (5795):1945-1948.
    
    [133] Feibelman P J. Partial dissociation of water on Ru(0001). Science, 2002, 295 (5552):99-102.
    
    [134] Hermann A, Schmidt W G, Schwerdtfeger P. Resolving the optical spectrum of water: Coordination and electrostatic effects. Phys. Rev. Lett., 2008, 100 (20):207403.
    
    [135] Fellers R S, Leforestier C, Braly L B et al. Spectroscopic determination of the water pair potential. Science, 1999, 284 (5416):945-948.
    
    [136] Bakker H J, Nienhuys H-K. Delocalization of protons in liquid water. Science, 2002, 297 (5581):587-590.
    
    [137] Bukowski R, Szalewicz K, Groenenboom G C et al. Predictions of the properties of water from first principles. Science, 2007, 315 (5816):1249-1252.
    [138] Sasaki T, Mori Y, Yoshimura M et al. Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng. : R: Rep., 2000, 30 (1-2):1-54.
    
    [139] Xue D, Ratajczak H. Effect of hydrogen bonds on physical properties of ammonium dihydrogenphosphate crystals. J. Mol. Struct. (Theochem), 2005, 716 (1-3):207-210.
    
    [140] Inorganic Crystal Structure Database (Fachinformationszentrum Karlsruhe, Germany, release 2004-1, version 1.3.3).
    
    [141] Hawthorne F C, Burns P C, Grice J D. The crystal chemistry of boron. Rev. Mineral., 1996, 33 (1):41-115.
    
    [142] Xue D, Zhang S. Structure and non-linear optical properties of β-barium borate. Acta Crystallogr., Sect. B: Struct. Sci., 1998, 54 (5):652-656.
    
    [143] Xue D, Zhang S. Calculation of the nonlinear optical coefficient of the NdAl_3(BO_3)_4 crystal. J. Phys. : Condens. Matter, 1996, 8 (12):1949-1956.
    
    [144] Xue D, Betzler K, Hesse H. Structural characteristics and second order nonlinear optical properties of borate crystals. Trends Opt. Photonics (TOPS), 2000, 34:542-547.
    
    [145] Scheiner S. Hydrogen bonding: A theoretical perspective. New York: Oxford University Press, 1997.
    
    [146] Desiraju G R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res., 2002, 35 (7):565-573.
    
    [147] Ratajczak H, Baran J, Barycki J et al. New hydrogen-bonded molecular crystals with nonlinear second-order optical properties. J. Mol. Struct., 2000, 555 (1-3):149-158.
    
    [148] Xue D, Zhang S. Effect of hydrogen bonds on optical nonlinearities of inorganic crystals. Chem. Phys. Lett., 1999, 301 (5-6):449-452.
    
    [149] Alig H, L(o|¨)sel J, Tr(o|¨)mel M. Zur kristallchemie der wasserstoff-sauerstoff-bindungen. Z. Kristallogr., 1994, 209 (1):18-21.
    
    [150] Steiner T, Saenger W. Lengthening of the covalent O-H bond in O-H…O hydrogen bonds re-examined from low-temperature neutron diffraction data of organic compounds. Acta Crystallogr., Sect. B: Struct. Sci., 1994, 50 (3):348-357.
    
    [151] Steiner T. Lengthening of the covalent X-H bond in heteronuclear hydrogen bonds quantified from organic and organometallic neutron crystal structures. J. Phys. Chem. A, 1998, 102 (35):7041-7052.
    
    [152] M(o|¨)rtel R, Lutz H D. Hydrogen bonds in solid hydroxides, a bond valence approach. J. Mol. Struct., 2003, 648 (3):171-176.
    
    [153] Grabowski S J. The bond valence model in analysing H-bonds of crystal structures. J. Mol. Struct., 2000, 552 (1-3): 153-157.
    
    [154] Mario L. The Golden ratio: The story of phi, the world's most astonishing number. New York: Broadway, 2002.
    [155] See: http://goldennumber.net; http://plus.maths.org/issue22/features/golden/;http://www.mcs.surrey.as.uk/personal/R.knott/Fibonacci/fibnat2.html.
    
    [156] Heyrovska R. The Golden ratio, ionic and atomic radii and bond lengths. Mol. Phys., 2005, 103 (6-8):877-882.
    
    [157] Zhang H, Zhang J, Zheng S et al. Two new potassium borates, K_4B_(10)O_(15)(OH)_4 with stepped chain and KB_5O_7(OH)_2·H_2O with double helical chain. Cryst. Growth Des., 2005, 5 (1):157-161.
    
    [158] Eustis S N, Radisic D, Bowen K H et al. Electron-driven acid-base chemistry: Proton transfer from hydrogen chloride to ammonia. Science, 2008, 319 (5865):936-939.
    
    [159] Kolano C, Helbing J, Kozinski M et al. Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy. Nature, 2006, 444 (7118):469-472.
    
    [160] Jeffrey G A, Maluszvnska H. The stereochemistry of the water molecules in the hydrates of small biological molecules. Acta Crystallogr., Sect. B: Struct. Sci., 1990, 46(4): 546-549.
    
    [161] Alig H, Tr(o|¨)mel M. Geometrische und chemische koordination. Z. Kristallogr., 1992, 201 (3-4):213-222.
    
    [162] McKinney P C, Barrow G M. Chemical bond. III. A one-dimensional theory of the energetics and ionic character of the hydrogen bond. J. Chem. Phys., 1959, 31 (2):294-299.
    
    [163] He Y, Xue D. Bond-energy study of photorefractive properties of doped lithium niobate crystals. J. Phys. Chem. C, 2007, 111(35):13238-13243.
    
    [164] Cornell W D, Cieplak P, Bayly C I et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 1995, 117(19):5179-5197.
    
    [165] Feynman R P. Forces in molecules. Phys. Rev., 1939, 56 (4):340-343.
    
    [166] Brown I D, Klages P, Skowron A. Influence of pressure on the lengths of chemical bonds. Acta Crystallogr., Sect. B: Struct. Sci., 2003, 59 (4):439-448.
    
    [167] Hay B P, Dixon D A, Bryan J C et al. Crystallographic evidence for oxygen acceptor directionality in oxyanion hydrogen bonds. J. Am. Chem. Soc., 2002, 124 (2): 182-183.
    
    [168] Pietrzak M, Shibl H F, Br(o|¨)ring M et al. ~1H/~2H NMR studies of geometric H/D isotope effects on the coupled hydrogen bonds in porphycene derivatives. J. Am. Chem. Soc., 2007, 129 (2):296-304.
    
    [169] Wang X, Liebau F. Influence of polyhedron distortions on calculated bond-valence sums for cations with one lone electron pair. Acta Crystallogr., Sect. B: Struct. Sci., 2007, 63 (2):216-228.
    
    [170] Jab(?)o(?)ski M, Kaczmarek A, Sadlej A J. Estimates of the energy of intramolecular hydrogen bonds. J. Phys. Chem. A, 2006, 110 (37):10890-10898.
    
    [171] Slater J C. The virial and molecular structure. J. Chem. Phys., 1933, 1 (10) :687-691.
    [172] Spackman M A. Hydrogen bond energetics from topological analysis of experimental electron densities: Recognising the importance of the promolecule. Chem. Phys. Lett., 1999, 301 (5-6):425-429.
    
    [173] Fecko C J, Eaves J D, Loparo J J et al. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301 (5640):1698-1702.
    
    [174] Bürgi H B, Dunitz J D. From crystal statics to chemical dynamics. Acc. Chem. Res., 1983, 16 (5):153-161.
    
    [175] Nakamoto K, Margoshes M, Rundle R E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc., 1955, 77 (24):6480-6486.
    
    [176] Libowitzky E. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatsh. Chem., 1999, 130 (8):1047-1059.
    
    [177] Lippincott E R, Schroeder R. One-dimensional model of the hydrogen bond. J. Chem. Phys., 1955, 23 (6):1099-1106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700