长壁开采三顺槽围岩控制理论技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的主要能源,近年来,随着我国煤矿开采的深度不断增加,工作面顺槽围岩的支护问题显的越来越重要。工作面顺槽经历掘进、上区段工作面回采和下区段工作面回采,整个过程中围岩表现出特殊的非线性力学行为使得传统的岩体(石)力学理论与分析方法面临着新的挑战。长壁开采条件下三顺槽中间顺槽在下区段工作面开采后依然保留,相对于传统单、双顺槽回采存在围岩劣化更为严重,结构更不稳定等不利因素,巷道中二次应力场相互叠加、围岩力学性质劣化、围岩—支护结构性失稳是导致顺槽失稳、破坏的重要原因。因此,正确认识工作面回采过程中巷道围岩的物理性质、力学性质,建立合理的岩体本构关系和顺槽的力学结构模型,揭示二次应力场的叠加情况和围岩—支护相互作用机理显得非常重要。
     为了满足煤矿建设和安全生产的要求,推进科学技术在生产实践中的应用,本文围绕长壁开采工作面三顺槽稳定性控制问题,以亚美大宁煤矿104和105工作面之间的三顺槽为工程背景,在继承现有围岩控制、支护理论技术研究成果的基础上,系统地从围岩变形与破坏形式、岩体本构模型、三顺槽力学结构、围岩与支护作用机理、顺槽矿压特征五个方面形成了一个较完整的长壁开采三顺槽围岩稳定性分析控制方法。概括之,本文主要研究工作与获得的有益认识如下:
     1.不同的地质条件、不同的工程背景下,围岩的变形与破坏形式和机理不尽相同。本文详细的论述了顺槽在工作面回采中围岩破坏失稳形式,并对其破坏形式和机理进行了独有的分析,提出了新见解。
     2.针对目前弹塑性本构模型在模拟开挖空间围岩松动、破碎、破裂圈内围岩方面不理想的问题,从岩体宏观方向出发,提出了煤岩体进入塑性区后强度曲线在最大—最小主应力平面绕固定点旋转,与之对应的强度屈服面在主应力空间收缩膨胀的观点,并指出了根据三轴压缩试验曲线中任意两条确定强度参数变化的简便方法。利用岩体峰后强度参数随塑性应变变化予以描述岩体峰后本构关系,从而实现对松动、破碎、破裂区围岩的合理描述。并应用于数值计算。
     3.利用关键层理论、砌体梁理论和经典力学理论建立长壁开采三顺槽不同阶段时围岩的力学结构模型,并推导出了不同阶段支护力、煤柱宽度、煤岩力学特性之间的关系式,进而提出了维持顺槽结构稳定的条件
     4.利用建立的围岩力学结构模型分析煤柱的受力和物理力学状态,从而得出顺槽帮部和煤柱上的支撑压力分布特征。
     5.利用回采巷道围岩波动性支护理论分析顺槽支护结构变形和支护力之间的关系,提出了顺槽在工作面回采过程中的支护原则。
     6.将上述成果应用于亚美大宁煤矿104与105工作面间的三顺槽501、502、503的稳定性控制,利用理论公式对不同开采阶段中现场中顺槽的支护力进行计算,利用数值计算手段分析顺槽巷道的应力场分布和围岩破坏深度,最后通过现场观测验证其合理性。
Coal is China's major energy, recently, as the depth of coal mining increases, the support of surrounding rock is more and more important. Working surface roadway experience the excavation, mining on the section and under section, in the whole process, surrounding rock shows special nonlinear mechanical behavior, so the nonlinear traditional rock mass (rock) mechanics theory and analysis method will confront with new challenges. In addition, the deterioration of surrounding rock mechanics properties, the superposition secondary stress field, the superimposition and the instability of surrounding rock bolting structural are the important reasons leading to the instability and destruction of roadway. Therefore, understanding the physical properties and mechanical properties of the surrounding rock correctly, establishing the rational mechanical structure model of roadway and constitutive relation of rock mass, and finding the superposition situation of secondary stress and the interaction mechanism of rock and support are very important.
     In order to meet the requirements of mine construction and safety production and promote science and technology application in practice, under the engineering background of the three roadway of working surface of 104 and 105# mining face in Yamei Daning coal mining, on the basis of research achievements of the existing surrounding rock control theory and support technology, this thesis focuses on three roadway of longwall mining face, formed a complete control method of the three roadway rock stability analysis in longwall mining, from five aspects such as:the surrounding rock mass deformation and failure modes, constitutive model, the mechanical structure of three roadway, the mechanism of rock and support, and the rock pressure characteristics of the roadway systematically, In sum, the main work and conclusion including:
     1. The deformation, failure form and mechanism of the surrounding rock are different under the different geological conditions and engineering background. This thesis discussed on the instability forms of rock destruction during roadway in the mining face driving, and makes special analysis on the damage form and mechanism.
     2. Aimed at the problem of surrounding rock loose, crushing, rock burst when elastic-plastic constitutive model simulating the excavation space, the thesis proposed the opinion that the yield surface contracts when the coal rock enter the plastic zone under low confining pressure and the yield surface expands when the coal rock enter the plastic zone under high confining pressure, and applying the theory that rock strength parameter after peak changed with strain to realize reasonable description of the loose, crushing, ruptured surrounding rock, and applied in numerical calculation.
     3. This thesis established three roadway surrounding rock mechanics structure model of different stages in longwall mining applying key strata theory, voussoir beam theory and classical mechanics theory, deduced the relations of supporting force, coal pillar width, and coal rock mechanics properties during the different stages, and put forward the conditions to maintain roadway structure stability.
     4. Applying the established rock mechanics structure model to analyses the pillar stress and physical-mechanical condition, and the stress distribution of the roadway sides and coal pillar is got.
     5. This thesis analyzed the relationship of roadway support structure deformation and supporting force by the theory of fluctuant equilibrium of in teraction between surrounding rock and support of roadway, and gives supporting principle in the process of extraction.
     6. The results are applied in three roadway 501,502 and 503# of the Yamei Daning coal mine 104 and 105 mine face, supporting force at different mining stage is calculated by theory formula, the stress distribution of roadway and the depth of the surrounding rock destruction are analyzed by numerical calculation method, and the feasibility can be verified through the field observation.
     There are 187 figures,10 tables and 91 references
引文
[1]杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1842-1853.
    [2]杨双锁,钱鸣高,康立勋等.巷道围岩控制的波动性平衡理论[J].太原理工大学学报,2001,32(4):339-343.
    [3]杨双锁.回采巷道围岩控制理论及锚固结构支护原理[M].北京:煤炭工业出版社,2004.
    [4]杨双锁.回采巷道围岩控制原理及锚固结构的适应性研究[博士学位论文][D].徐州:中国矿业大学,2001.
    [5]杨双锁,曹建平.锚杆受力演变机理及其与合理锚固长度的相关性[J].采矿与安全工程学报,2010,27(1):1-7.
    [6]杨双锁.巷道控制理论新观点[R].调兵山:中国煤炭学会,2010.
    [7]杨双锁,康立勋.锚杆作用机理及不同锚固方式的力学特性[J],太原理工大学学报,2003,34(5),540-543.
    [8]杨双锁,康立勋.煤矿巷道锚杆支护研究的总结与展望[J],太原理工大学学报,2002,33(4),375-381.
    [9]柴鑫.急倾斜煤层水平分段综放开采巷道支护技术研究[硕士学位论文][D].西安:西安科技大学,2009.
    [10]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下硐室群围岩稳定性分析[博士学位论文][D].武汉:中国科学院武汉岩土所,2007.
    [11]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2003.
    [12]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [13]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.
    [14]杨学堂,王飞.岩体本构模型研究方法及评价[J].岩土工程技术,2004,18(4):213-217.
    [15]俞茂宏.强度理论百年总结[J].力学进展,2004,(4):529-560.
    [16]L.V.Rabcewicz. The New Austrian tunneling method[J].Water Power,1965(4):19-24.
    [17]L.V.Rabcewicz. Stability of tunnels under rock load[J].Water Power,1969(1):225-273.
    [18]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [19]荆升国.高应力破碎软岩巷道棚-索协同支护围岩控制机理研究[博士学位论文][D].徐州:中国矿业大学,2009.
    [20]郑颖人等.地下工程锚喷支护设计指南[M],中国铁道出版社,1988.
    [21]王永岩.软岩巷道变形与压力分析控制及预测[D].阜新.辽宁工程技术大学,2001.6.
    [22]陆家梁.软岩巷道支护原则及支护方法[J],软岩工程,1990,3:20-24.
    [23]郑雨天.关于软岩巷道地压与支护的基本观点[c],软岩巷道掘进与支护论文集,1985,(5)
    [24]董方庭.巷道围岩松动圈支护理论及应用技术[M],北京:北京煤炭工业出版社,2001.
    [25]何满潮等.软岩工程力学[M],科学出版社,2002.
    [26]方祖烈.拉压域特征及主次承载区的维护理论[M],世纪之交软岩工程技术现状与展望,煤炭工业出版社,1999.
    [27]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J],煤炭学报,2001.2,VOL26.NO.1.
    [28]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [29]温克珩.深井综放面沿空掘巷窄煤柱破坏规律及其控制机理研究[博士学位论文][D].西安:西安科技大学,2009.
    [30]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [31]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析fM],北京:中国矿业大学出版社,2005.
    [32]贾喜荣.岩石力学与岩层控制[M],徐州:中国矿业大学出版社,2010.
    [33]Ge X R, Zhou B H and L iuM G. Investigations into po st2failure behaviour of rock and numerical simulation method. In:P roceedings, International Sympo sium of ComputerM ethods in Rock M echanics and Engineering. Xian, China:1993,689-691.
    [34]郑宏,葛修润,李焯芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报,1997,16(1):8-21.
    [35]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [36]J. A. Hudson, J. P. Harrison ENGINEERING ROCK MECHANICS [M]. London:Pergamon Press, 1997.
    [37]周维垣.高等岩石力学[M].北京:中国水利水电出版社,1990.
    [38]王建军.岩石破坏德鲁克—普拉格准则的探讨[J].建筑与工程,2009,(7):294.
    [39]冯夏庭.大型地下洞室群稳定性的动态反馈分析与调控方法[R].太原:中国青年岩石力学学会,2009.
    [40]张帆.三峡花岗岩力学特性与本构关系研究[硕士学位论文][D].武汉:中国科学院武汉岩土所,2003.
    [41]卢允德,葛修润,蒋宇等.大理岩常规三轴压缩全过程试验和本构方程研究[J].岩石力学与程学报,2004,23(15):2489-2493.
    [42]徐松林,吴文,王广印等.大理岩常规三轴压缩全过程试验和本构方程研究[J].岩石力学与工程学报,2001,20(6):763-767.
    [43]林卓英,吴玉山,关玲琍.岩石在三轴压缩下脆—延性转化的研究[J],岩土力学,1992,13(2,3),45-53.
    [44]等小亮.三轴压缩下大理岩应力—应变全过程中力学特性及内时本构关系研究[硕士学位论文][D].武汉:中国科学院武汉岩土所,1991.
    [45]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].岩石力学与工程学报,2007,24(1):135-142.
    [46]王贵荣,任建喜.基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版),2006,26(6):48-51.
    [47]龙明庆.岩石试验的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.
    [48]杨永杰,宋扬,陈绍杰.大理岩三轴压缩变形破坏与能量特征研究[J].岩石力学与工程学报,2006,31(2):150-153.
    [49]刘波,韩彦辉.FLAC原理、实例于应用指南[M].北京:人民交通出版社,2005.
    [50]Itasca Consulting Group, Inc. USA. FLAC3D [M]. Fast Lagranginan Analysis of Continua in 3 Dimensions, version 3.0, User's Manual.
    [51]陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [52]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学与工程学报,2008,27(1):144-152.
    [53]柏建彪.综放沿空掘巷围岩稳定性原理及控制技术研究[博士学位论文][D].徐州:中国矿业大学,2002.
    [54]Itasca Consulting Group,Inc.UDEC User Manuals,version 4.0,Minneapolis,Minnesota,2005,5.
    [55]吴家龙.弹塑力学[M].北京:高等教育出版社,2001.
    [56]李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2004.
    [57]Hoek, E. and Brown, E.T.1980. Empirical strength criterion for rock masses. J. Geotech. Engng Div., ASCE 106 (GT9),1013-1035.
    [58]Rocscience Inc. RocLab [M] RocLab User's Guide,2002.
    [59]E.Hook, E.T.Brown. Rock Mechanics For Underground Mining [M].
    [60]胡海浪,黄秋枫. Hoke-Brown强度准则中m,s取值对岩体强度影响研究[J].灾害与防治工程,2007,(2):31-37.
    [61]宋恒,曹平.对Hoke-Brown强度准则的改进及工程应用[J].有色矿冶,2008,(3):6-10.
    [62]朱永生.岩石力学数值计算技术[R].北京:中国科学院计算所教育中心,2010.
    [63]尤明庆.岩石试样的变形破坏和Coulomb强度准则[R].焦作:采矿与安全工程学报,2009.
    [64]龙驭球,包世华.结构力学(第二版)[M].北京:高等教育出版社,2006.
    [65]王勖成.有限单元法[M].北京:清华大学出版社,2002.
    [66]杨桂通.弹塑性动力学基础[M].北京:科学出版社,2008.
    [67]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [68]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [69]哈尔滨工业大学理论力学教研室.理论力学(第六版)[M].北京:高等教育出版社,2008.
    [70]黄克智,薛明德,陆明万.张量分析(第二版)[M].北京:清华大学出版社,2003.
    [71]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2),135-139.
    [72]QianMinggao, HeFulian, The Behavior of the main roof in longwall Minging, Weighting Span, Fracture and disturbance, Jou, of Mine, Metals & Fuels, June—July,1989,240-246.
    [73]Qian M G, He F L, Miao X X. The system of strata control around longwall Face in China[J].In: Guo Yuguang, Tad S Golosinski, eds. Mining Seience and Technology. Rotterdam:A A Balkema, 1996.
    [74]宋建波等.岩体经验强度准则及其在地质工L程中的应用[M],北京:地质出版社,2002.
    [75]Mingqing You. Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses[J], International Journal of Rock Mechanics & Mining Sciences,2010,47:195-204.
    [76]Denise Bernaud, Samir Maghous, Patrick de Buhan. A numerical approach for design of bolt-supported tunnels regarded as homogenized structures[J]. Tunnelling and Underground Space Technology,2009,24:533-546.
    [77]Stephanie Feket, Mark Diederichs, Matthew Lato. Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels[J]. Tunnelling and Underground Space Technology,2010,25:614-628.
    [78]N. Halakatevakis, A.I.Sofianos. Strength of a blocky rock mass based on an extended plane of weakness theory[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47: 568-582.
    [79]Mao-Hong Yu, Yue-Wen Zan, Jian Zhao. AUnified Strength criterion for rock material[J]. International Journal of Rock Mechanics & Mining Sciences,2002,39:975-989.
    [80]Youn-Kyou Leea, S. Pietruszczak. Application of critical plane approach to the prediction of strength anisotropy in transversely isotropic rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2008,45:513-523.
    [81]卢允德,葛修润,蒋宇.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004,23(15):2489-2493.
    [82]谢和平,彭瑞东,鞠杨.我国六种岩石在高围压下的强度特性[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [83]尤明庆.岩样三轴压缩的破坏形式和Coulomb强度准则[J].地质力学学报,2002,8(2):179-185.
    [84]王学滨.软化模量对岩样全部变形特征的影响[J].岩土工程学报,2006,28(5):600-605.
    [85]X.P. Zhou, X.R. Bao, M.H. Yu. Triaxial stress state of cylindrical openings for rocks modeled by elastoplasticity and strength criterion[J], Theoretical and Applied Fracture Mechanics,2010,53:65 -73.
    [86]H. Saroglou, G. Tsiambaos. A modified Hoek-Brown failure criterion for anisotropic intact rock[J]. International Journal of Rock Mechanics & Mining Sciences,2008,45:223-234.
    [87]Xiao-Ping Zhou, Hai-Qing Yang, Yong-Xing Zhang. The effect of the intermediate principal stress on the ultimate bearing capacity of a foundation on rock masses[J]. Computers and Geotechnics, 2009,36:861-870.
    [88]卢允德.岩石三轴压缩试验及线形软化本构模型研究[硕士学位论文][D].上海:上海交通大学,2003.
    [89]陈景涛.高地应力硬岩本构模型的研究与应用[博士学位论文][D].武汉:中国科学院武汉岩土所,2006.
    [90]胡云华.高应力下花岗岩力学特性试验及本构模型研究[博士学位论文][D].武汉:中国科学院武汉岩土所,2008.
    [91]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算[J].清华大学学报(自然科学版),1995,35(2):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700