K_(ATP)通道在动脉粥样硬化斑块易损性中的作用及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     动脉粥样硬化(atherosclerosis, AS)是严重危害人类健康的疾病,其中易损斑块是急性冠脉综合征(acute coronary syndrome, ACS)以及脑血管疾病的基础病变,易损斑块发病机制和治疗靶点的探索成为当今医学发展的重大挑战。动脉粥样硬化斑块的主要细胞成分包括巨噬细胞、平滑肌细胞和内皮细胞。易损斑块的病理改变包括平滑肌细胞和胶原纤维含量减少,有大的脂质核,斑块内大量的巨噬细胞和淋巴细胞等炎性细胞浸润。
     越来越多的研究表明离子通道与血管功能密切相关,在动脉粥样硬化的发生发展过程中发挥重要作用。已有研究报道,内皮细胞钙离子通道、钾离子通道和氯离子通道在剪切力应激和炎症反应中具有调节作用;TRPC通道介导的血管平滑肌细胞、内皮细胞、单核/巨噬细胞和血小板功能失调参与了动脉粥样硬化的病理过程。由此可见,离子通道在动脉粥样硬化中的作用不容忽视。而且,钾离子通道是膜电位的重要组成部分,在维持细胞电稳态中具有重要作用,可以调节细胞内钙离子的浓度进而发挥对细胞功能的调节作用。
     三磷酸腺苷(Adenosine triphosphate, ATP)敏感的钾通道(KATP)是由四个孔道形成亚基-Kir6亚基和四个调节亚基-SUR亚基组成的八聚体蛋白。对细胞内腺苷酸变化敏感,是重要的代谢感受器,偶联细胞内代谢状态细胞膜电活动。近年来,KATP通道在糖尿病和心血管疾病中同时发挥的重要作用逐渐得到认可,作为几类不同药物的作用靶点,成为研究活跃的领域。现有的研究主要集中在以下几个方面:心脏功能的调节,包括缺血再灌注、心肌梗死、心肌重构、心衰、缺血预适应和应激的环境中心肌细胞KATP通道的调节作用;血管平滑肌细胞的KATP通道研究也很丰富,包括各种内源性和外源性血管舒缩物质的调节作用以及在高血压和感染的环境中的表达和功能的改变;同样的,血管内皮细胞的KATP通道也越来越受到重视,包括在内皮素和NO释放中的调节作用研究。但是,对于KATP通道在动脉粥样硬化中的作用却没有直接的报道。
     因此,本研究提出如下假说:KATP通道在动脉粥样硬化病变的病理生理过程中发挥重要作用,KATP通道可能成为治疗动脉粥样硬化的新靶点。
     目的
     1.建立动脉粥样硬化病变发展的动物模型;
     2.观察斑块平滑肌细胞、巨噬细胞、胶原纤维和脂质表达,评测斑块易损性;
     3.探讨KATP通道药物体内干预对动脉粥样硬化病变发展的影响。
     方法
     本研究以ApoE-/-小鼠80只为研究对象,9周龄始予高脂饮食,10周龄时(25-30g)行右侧颈动脉套管术;8周后,高分辨率小动物显微超声检测颈动脉斑块病变,随后,小鼠随机分为空白对照组,转染重组腺病毒载体Ad5-CMV.lacZ对照组和转染重组腺病毒载体Ad5-CMV.p53实验组,后两组分为转染后1天组、4天组和14天组,转染后4天组和14天组又分为格列苯脲(Glibenclamide)干预组和非干预组,给予相应处理。检测下列指标:
     1.血生化分析:血液标本收集,检测血糖(glucose, Glu)、谷丙转氨酶(glutamic pyruvic transaminase, GPT)谷草转氨酶(glutamic oxaloacetic transaminase, GOT)、甘油三酯(triglyceride, TG)、总胆固醇(total cholesterol, TC)含量;
     2. ApoE-/-小鼠取材,病理组织学检测:实验动物按照实验分组,分别于转染后0天、1天、4天和14天时处死,留取组织用于病理染色及分子生物学实验。苏木素-伊红(hematoxylin and eosin, HE)染色用以检测组织结构变化,油红O(Oil-red O)染色用以检测组织l脂质含量,天狼猩红(Sirius-red)染色用以检测组织胶原纤维含量,p53、SMC-α actin、MOMA-2的免疫组织化学染色分别用以检测组织p53的表达、平滑肌细胞和巨噬细胞的含量;
     3.计算斑块易损指数:易损指数=(MOMA-2阳性面积/斑块面积+脂质面积/斑块面积)/(SMC-α actin阳性面积/斑块面积+胶原纤维面积/斑块面积)。结果
     1.格列苯脲干预对ApoE-/-小鼠血生化及肝脏组织的影响
     格列苯脲灌胃后小鼠血糖、甘油三酯、总胆固醇、转氨酶水平以及肝脏组织结构没有明显变化(P>0.05)。
     2.ApoE-/-小鼠颈动脉套管手术及p53转染效率检测
     小鼠显微超声示右侧颈动脉套管及套管近心端斑块形成;转染后1天、4天、14天,p53表达在Ad5-CMV.p53转染组比Ad5-CMV.lacZ组明显增多(P<0.05)。
     3.ApoE-/-小鼠颈动脉粥样硬化斑块平滑肌细胞及胶原纤维染色
     斑块平滑肌细胞含量与胶原纤维含量变化趋势基本一致,在p53转染4天和14天组明显少于相应时间点的lacZ转染组(P<0.05)。
     4.ApoE-/-小鼠颈动脉粥样硬化斑块巨噬细胞及脂质染色
     斑块巨噬细胞含量与脂质含量变化趋势一致,在转染后4天和14天时,p53组显著高于相应时间点的lacZ组(P<0.05)。
     5.ApoE-/-小鼠格列苯脲体内干预稳定颈动脉粥样硬化斑块
     格列苯脲体内干预14天,在p53转染组巨噬细胞含量、脂质含量明显降低(P<0.05),斑块胶原成分显著增加(P<0.05),尽管平滑肌细胞含量无明显变化(P>0.05),但是斑块病变改善显著。
     6.斑块易损指数计算
     在转染后4天和14天时,p53组易损指数比lacZ显著升高,而且时间点愈后p53转染组的易损指数升高愈显著(P<0.05);在p53转染14天组,格列苯脲体内干预使易损指数明显下降(P<0.05)。
     结论
     1. ApoE-/-小鼠高脂饮食、颈动脉套管术后局部转染Ad5-CMV.p53诱导斑块易损指数增加;
     2.格列苯脲体内干预对Ad5-CMV.p53转染ApoE-/-小鼠血.生化及肝组织结构无明显影响;
     3. ApoE-/-小鼠格列笨脲体内干预改善p53转染诱导的颈动脉粥样硬化斑块病变。
     研究背景
     动脉粥样硬化(atherosclerosis,AS)与细胞膜离子通道关系密切。K+电流是细胞膜电位的主要组成部分,对于细胞功能至关重要。三磷酸腺苷(Adenosine triphosphate,ATP)敏感的钾通道(KATP)是细胞膜离子通道的重要组成部分,通过调节细胞内外钾离子浓度,在维持细胞膜电位、调节其他生物离子进出细胞和调市细胞功能中发挥不可替代的作用,而且是联系细胞电活动与细胞代谢的桥梁。缺血、缺氧、代谢性酸中毒等导致细胞内ADP/ATP升高时,KATP通道开放,细胞膜超极化,电压依赖性钙通道(voltage-dependent calcium channels,VDCCs)关闭,钙内流减少,细胞内[Ca2+]降低,介导缺血-再灌注损伤及心力衰竭中的心肌保护等作用。
     KATP,通道是一种异源八聚体复合物,四个Kir6.X亚基构成孔道形成亚基转运钾离子,四个SURs亚基组成调节亚基,根据细胞内ATP水平调节通道活性。Kir6.X存在Kir6.1和Kir6.2两个亚型;磺脲类受体SURs(sulfonylurea receptors)有SUR1和SUR2两种亚型,后者有两种主要的剪接体SUR2A和SUR2B,连接Kir6亚基构成功能性的K/ATP通道。KATP通道在多种组织农达,承载了重要的细胞功能,并且KATP通道的亚基组成具有组织特异性,在同时表达Kir6.1.Kir6.2亚基的细胞系,亚基常常以不同比例组成异源多聚体;相应地,不同组织中的KATP通道有不同的生理特性,也是特异性药物试剂作用于特定组织KATP通道以调节不同细胞功能的重要生理基础。例如,心肌细胞主要表达SUR2A/Kir6.2亚型,在缺血缺氧及其他应激的环境中发挥保护心肌细胞的重要作用;胰腺p细胞主要表达SUR1/Kir6.2亚型,可以调节胰岛素的分泌;SUR2B/Kir6.1主要在血管平滑肌细胞和内皮细胞表达,在调节血管张力、血管的舒缩和内皮保护中发挥重要作用。KATP通道是重要的代谢感受器,而动脉粥样硬化及炎症反应与细胞代谢密切相关。
     因此,本研究提出如下假说:KATP通道在动脉粥样硬化斑块的平滑肌细胞、内皮细胞和/或巨噬细胞中表达,与动脉粥样硬化斑块的易损性关系密切。
     目的
     1.检测KATP通道SUR1、SUR2A、SUR2B亚基和Kir6.1、Kir6.2亚基在动脉粥样硬化斑块的表达和分布;
     2.分析KATP通道亚基表达量和AS斑块成分含量、易损指数的相关性;
     3.探讨AS斑块平滑肌细胞、内皮细胞和巨噬细胞中KATP通道在病变发展过程中的作用。
     方法
     本研究以50只ApoE-/-小鼠为研究对象,9周龄始予高脂饮食,10周龄时(25-30g)行右侧颈动脉套管术;8周后,高分辨率小动物显微超声检测颈动脉斑块病变,随后,小鼠随机分为空白对照组,转染重组腺病毒载体Ad5-CMV.lacZ对照组和转染重组腺病毒载体Ad5-CMV.p53实验组,后两组分为转染后1天组、4天组和14天组,给予相应处理,分别于相应时间点处死小鼠,留取取标本,检测下列指标:
     1.病理组织学染色:HE染色检测组织形态结构的改变、油红O染色检测标本脂质含量、天狼猩红染色检测标本胶原含量;
     2. SMC-a actin和MOMA-2免疫组织化学染色:检测AS斑块平滑肌细胞和巨噬细胞含量;
     3. KATP通道亚基免疫组织化学染色:检测AS斑块KATP通道亚基SUR1、 SUR2A、SUR2B、Kir6.1和Kir6.2含量,观察各亚基在斑块平滑肌细胞、内皮细胞和巨噬细胞的表达分布情况;
     4.相关性分析:计算分析AS斑块成分含量、易损指数和KATP通道亚基SUR1、SUR2A、SUR2B、Kir6.1、Kir6.2表达的相关性;
     5.AS相关的KATP通道亚基和相应细胞的免疫荧光双标染色:观察AS斑块细胞和主要KATP通道亚型的共同定位表达;
     6. KATP通道亚基实时定量逆转录聚合酶连反应(RT-PCR)定量分析:RT-PCR检测ApoE-/-小鼠颈动脉KATP通道亚基SUR1、SUR2A、SUR2B、Kir6.1和Kir6.2的(?)nRNA表达。
     结果
     1.AS斑块KATP通道亚基免疫组织化学染色结果
     SUR2A和Kir6.2亚基阳性染色主要积聚在粥样硬化斑块肩部和脂质条纹等巨噬细胞聚集的部位,定量分析表明二者变化趋势基本一致,在p53转染4天组表达最高,显著高于lacZ转染4天组(P<0.05); SUR1亚基阳性染色在巨噬细胞密集的斑块肩部和脂质条纹区域,以及血管内膜内皮细胞表现突出,定量分析显示,SUR1亚基表达在p53转染4天组增长最为显著,明显多于lacZ转染4天组(P<0.05); Kir6.1亚基阳性染色在斑块肩部及脂质条纹巨噬细胞聚集的区域、血管内皮细胞、血管中膜及纤维帽平滑肌细胞较丰富的区域均有表现,在转染后1天和4天,p53处理组Kir6.1亚基表达均高于lacZ处理组(P<0.05);SUR2B亚基阳性染色主要分布在血管中膜及斑块纤维帽平滑肌细胞较集中的部位和血管内皮细胞,SUR2B亚基表达在p53转染4天组明显减少,显著少于lacZ转染4天组(P<0.05)。
     2. KATP通道亚基mRNA表达结果
     小鼠颈动脉RT-PCR结果显示,KATP通道SUR2A、Kir6.2和SUR1亚基mRNA表达在p53转染4天组增加最为显著,明显高于lacZ转染4天组(P<0.05);Kir6.1亚基在p53转染1天组表达高于lacZ转染1天组(P<0.05); SUR2B亚基在空白对照组表达水平最高(P<0.05)。
     3.AS斑块KATP通道染色与斑块负荷相关性分析结果
     KATP通道SUR2A亚基和Kir6.2亚基染色,与斑块易损指数正相关,与斑块巨噬细胞含量成正相关,与斑块平滑肌细胞含量负相关(P<0.05)。
     4.AS斑块MOMA-2与SUR2A、Kir6.2共表达
     免疫荧光双标染色显示,SUR2A亚基和MOMA-2共同定位表达于斑块内及血管壁粘附浸润的泡沫巨噬细胞,这些部位同样粘附聚集Kir6.2亚基和MOMA-2双染巨噬细胞。
     结论
     1. KATP通道亚基在AS斑块平滑肌细胞、内皮细胞以及巨噬细胞表达;
     2. KATP通道SUR2A、Kir6.2亚基与AS斑块负荷密切相关;
     3. KATP通道SUR2A/Kir6.2主要在斑块巨噬细胞表达。
     研究背景
     动脉粥样硬化斑块的主要细胞成分包括巨噬细胞、平滑肌细胞和内皮细胞。与血管平滑肌细胞和内皮细胞显著不同,巨噬细胞来源于循环中的单核细胞,是免疫系统炎症反应的重要组成部分,单核/巨噬细胞粘附、聚集、迁移和分泌炎症因子的功能贯穿动脉粥样硬化斑块的起始、发展和破裂的全过程。
     以往的研究发现,单核/巨噬细胞离子通道在动脉粥样硬化病变中发挥重要作用。单核/巨噬细胞TRPC通道通过调节细胞内钙离子浓度,介导细胞的氧化应激,加剧动脉粥样硬化病变:周围的细胞因子和细胞本身的功能状态能够调节单核细胞电压依赖性内向整流钾通道Kir (voltage-dependent inwardly rectifying potassium channels)和延迟外向整流钾通道Kdr (delayed outwardly rectifying potassium channels)诱导单核细胞的活化和分化;单核/巨噬细胞容量调节性氯离子通道(volume-regulated Cl channels)功能失调,促进巨噬细胞吞噬脂质,形成泡沫细胞。更重要的是,MCP-1和LPC通过调节氯离子通道和钙离子激活的钾通道可以促进单核细胞的迁移。单核细胞的迁移是动脉粥样硬化的始动环节,而大量泡沫细胞的形成是不稳定粥样斑块的重要标志。然而,ATP敏感钾通道(ATP-sensitive K+channels, KATP)在动脉粥样硬化中的作用至今鲜有报道。
     KATP,通道是异源八聚体蛋白复合物,由四个内向整流K+通道(inwardly rectifying potassium channel, Kir) Kir6.X亚基形成孔道,四四个ATP结合盒(ATP binding cassette, ABC)家族的磺脲类受体(sulfonylurea receptor, SUR)蛋白组成调节亚基。不同组织表达的KATP通道Kir6.X和SUR亚基不尽相同,Kir6.X包括Kir6.1和Kir6.2亚型,SUR包括SUR1、SUR2A和SUR2B亚型,因而呈现出组织特异性的生理学和病理生理学特征。有研究报道,KATP通道阻断剂格列苯脲能够抑制低氧血症和酸中毒时脂多糖(Lipopolysaccharide, LPS)诱导的促炎性细胞因子的释放。而单核/巨噬细胞的炎症反应在动脉粥样硬化病变的形成、发展以及晚期易损斑块破裂中扮演重要角色。LPS是单核/巨噬细胞的有效激活剂,与Toll样受体(TLRs)结合,主要通过NF-κB和MAPKs信号通路的激活,后者包括p38、JNK和ERK1/2信号转导途径,诱导TNF-α等促炎性细胞因子分泌。
     因此,我们提出下列假说:单核/巨噬细胞KATP通道在LPS诱导的细胞炎症反应中发挥作用,从而影响动脉粥样硬化病变的发生、发展;单核/巨噬细胞KATP通道通过NF-κB和MAPKs (ERK1/2、p38和JNK)信号转导通路调节细胞的炎症反应。
     目的
     1.观察LPS对巨噬细胞KATP通道和TNF-α表达的影响;
     2.探讨KATP通道对LPS诱导的巨噬细胞TNF-α表达的调节作用;
     3.揭示KATP通道对LPS诱导的巨噬细胞内NF-κB和MAPKs信号通路的影响。
     方法
     本研究以单核/巨噬细胞系RAW264.7细胞为研究对象,KATP通道开放剂吡那地尔或阻断剂格列苯脲预处理后予LPS刺激,采用实时定量聚合酶连反应(RT-PCR)和蛋白免疫印迹(western blot)等实验方法,检测:1.LPS (1μg/ml)处理RAW264.7细胞不同时间(0、2、4、8、24h)后,检测KATP通道各亚基(SUR1、SUR2A、SUR2B、Kir6.1、Kir6.2)和炎症因子TNF-α表达;
     2. KATP通道开放剂(吡那地尔,10μM)或阻断剂(格列苯脲,10μM)预处理后,检测LPS刺激RAW264.7细胞TNF-α的表达,检测不同刺激时间(15min、30min、1h、24h) NF-κB和MAPKs信号通路蛋白的磷酸化改变;
     3. NF-κB信号通路抑制剂预处理后,检测KATP通道各亚基的表达改变,检测KATP通道干预对RAW264.7细胞TNF-α表达的影响。
     结果
     1.LPS诱导RAW264.7细胞KATP通道亚基和TNF-α表达
     与空白对照组相比较,KATP通道SUR1、SUR2A、Kir6.1和Kir6.2亚基在LPS (1μg/ml)刺激细胞4小时后表达明显升高(P<0.05),同时,TNF-α表达显著增加(P<0.05),但是各组均未检测到SUR2B亚基mRNA的表达。
     2. KATP通道药物干预后RAW264.7细胞TNF-α表达和NF-κB、MAPKs蛋白磷酸化改变
     与LPS刺激4小时组相比较,KATP通道阻断剂格列苯脲(10μM)预处理后细胞TNF-α表达降低(P<0.05),开放剂吡那地尔(10μM)预处理后细胞TNF-α表达略增加(P<0.05)。
     与LPS刺激15分钟组相比较,格列苯脲(10μ,M)预处理后细胞p65、ERK1/2蛋白磷酸化水平下降(P<0.05),而吡那地尔(10μ,M)预处理对细胞p65、ERK1/2蛋白磷酸化水平影响没有统计学意义(P>0.05);格列苯脲和吡那地尔对p38蛋白磷酸化水平没有明显改变(P>0.05);与空白对照组相比较,LPS刺激15分钟、1小时或24小时JNK蛋白磷酸化无显著变化(P>0.05)。
     3. KATP通道位于RAW264.7细胞LPS诱导活化的NF-κB信号通路上游
     与LPS刺激4小时组相比较,NF-κB信号通路抑制剂PDTC(100μM)和DMFR(100μM)预处理显著降低RAW264.7细胞TNF-α的mRNA表达(P<0.05);KATP通道阻断剂格列苯脲(10μM)能够增强NF-κB抑制剂的作用(P<0.05),而开放剂吡那地尔(10μM)拮抗NF-κB抑制剂的作用(P<0.05)。
     与LPS刺激4小时组相比较,PDTC (100μM)和DMFR (100μM)预处理显著增加了RAW264.7细胞KATP通道SUR1、SUR2A、Kir6.1和Kir6.2亚基的表达(P<0.05)。
     结论
     1.LPS绣导巨噬细胞KATP通道表达:
     2.巨噬细胞KATP通道参与调节LPS诱导的炎症反应;
     3.巨噬细胞KATP通道通过NF-κB和ERK1/2信号转导通路调节细胞炎症反应。
Background
     Atherosclerosis is one of the most serious diseases detrimental to health and vulnerable plaques have been recognized as chief criminal of acute coronary syndrome (ACS) and cerebrovascular disorders. However, the pathogenesis and approach targets of atherosclerotic plaques are still unclear. The main cellular components in plaques include macrophages, smooth muscle cells and endothelial cells, while the decrease of smooth muscle cells and collagen fibers, and the increase of lipids and macrophages happened in vulnerable plaques.
     Numerous studies have indicated that ion channels are related to vascular functions tightly and play an important role in the progression of atherosclerosis. It has been reported that the calcium channels, potassium channels and chloride channels in endothelial cells regulated the shear stress and inflammation; the disorders of vascular smooth muscle cells, endothelial cells, monocytes/macrophages and platelets induced by transient receptor potential canonical channels (TRPC) participated in the pathogenesis of atherosclerosis. So. the role of ion channels in atherosclerosis should never be neglected. Potassium channels contribute to the membrane potential, preserve the cellular electrical homeostasis and could affect the activities of other ions to regulate the cellular state.
     ATP-sensitive potassium channels (KATP channels) are heterooctameric complexes composed of Kir6.1or Kir6.2as pore forming subunits, and SUR1, SUR2A or SUR2B as regulatory subunits. KATP channels are sensitive to the change of intracellular ATP as important metabolic sensors, coupling metabolic state with electrical activity of cells. Recently, the role of KATP channels in both of diabetes and cardiovascular diseases has attracted more and more attention. The studies mainly concentrate on the following aspects:the regulation of cardiac functions, under ischemia-reperfusion, myocardial infarction, myocardial remolding, heart failure, ischemic preconditioning and stress; vascular response to various pharmacological or endogenous vasodilators and vasoconstrictors; regulation the effect of endothelium-derived relaxing factor (EDRF), such as nitric oxide (NO), hydrogen sulfide (H2S) and endothelin-1(ET-1). However, the role of KATP channels in atherosclerosis hasn't been investigated directly.
     Therefore, we put forward the hypothesis that KATP channels play an important role in the pathogenesis of atherosclerosis and represent the potential therapeutic target of atherosclerosis.
     Objective
     1. To establish animal models of progressive atherosclerosis;
     2. To evaluate the content of smooth muscle cells, macrophages, collagen fibers and lipids in plaques, and the vulnerable index of plaques;
     3. To investigate the interventional effects of modulators targeting to KATP channels on the progression of atherosclerosis.
     Methods
     We applied eighty ApoE-/-mice to study, with high-fat diet at9-week old and with right common carotid artery-collar placement at10-week old (about25-30g);8weeks later, right carotid plaques were detected by ultrasound biomicroscopic imaging system; and then we randomly divided the mice into Ad5-CMV.p53-treated group, Ad5-CMV.lacZ-treated group and blank control group and further divided the interventional group into the following three subgroups:1-day,4-day and14-day groups, with or without intervention of glibenclamide in vivo, followed by a series of experiments.
     1. Blood biochemical analysis:collect blood samples to detect the concentration of glucose (Glu), glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), triglyceride (TG) and total cholesterol (TC) in plasma.
     2. Tissue harvesting and morphological analysis:the mice were sacrificed0day,1day,4days or14days after transduction according to the assignment, respectively, and the tissue samples were carefully excised for pathological staining and molecular biological experiments. Hematoxylin and eosin (HE)staining was used to show the tissue structure, Oil-red O staining was used to detect the content of lipids, sirius-red staining was used to detect the content of collagen fibers, immunohistochemical staining of p53, SMC-a actin and MOMA-2was used to detect the content of p53protein, smooth muscle cells and macrophages, respectively.
     3. Calculation of vulnerable index:vulnerable index=(MOMA-2positive staining area/plaque area+lipids staining area/plaque area)/(SMC-a actin positive staining area/plaque area+collagen fibers staining area/plaque area).
     Results
     1. The effects of glibenclamide intervention on blood biochemistry and livers in ApoE-/-mice
     There were no substantial changes in the concentration of glucose (Glu), glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), triglyceride (TG) and total cholesterol (TC) in plasma, and hepatic structures of ApoE-/-mice after intragastric administration of glibenclamide in our experiment (all P>0.05).
     2. Identification of carotid collar placement and transduction of p53
     The right carotid arteries proximal to collars showed atherosclerotic plaques by ultrasound. Compared with that of control groups, the staining of p53was significantly increased in Ad5-CMV.p53-treated groups, including1,4,14-day subgroups, and the difference increased over time (all P<0.05).
     3. The staining of smooth muscle cells and collagen fibers in atherosclerotic plaques
     Compared to Ad5-CMV.lacZ-treated groups, the content of smooth muscle cells and collagen fibers in atherosclerotic plaques was decreased by Ad5-CMV.p53transduction after4days and14days (both P<0.05).
     4. The staining of macrophages and lipids in atherosclerotic plaques
     Compared to Ad5-CMV.lacZ-treated groups, the content of macrophages and lipids in atherosclerotic plaques was increased by Ad5-CMV.p53transduction after4days and14days (both P<0.05).
     5. Glibenclamide intervention stabilizing atherosclerotic plaques in vivo
     In Ad5-CMV.lacZ-treated-14days groups, the content of macrophages and lipids decreased obviously (both P<0.05), and the content of collagen fibers increased (P<0.05), while the content of smooth muscle cells was not different significantly after intervention of glibenclamide for14days in vivo.
     6. Calculation of vulnerable index
     The vulnerability index (VI), which was calculated as the ratio of macrophages and lipids content to SMCs and collagens content in atherosclerotic lesions to estimate the vulnerable possibility of plaques, was higher in p53-treated groups than that in control groups after4days and14days and the gap was widened over time (both P<0.05).
     Conclusions
     1. Transduction of Ad5-CMV.p53induced increased vulnerable index of plaques in ApoE-/-mice with high fat diet and collar placement;
     2. Glibenclamide intervention didn't affect the blood biochemistry and structure of livers obviously in ApoE-/-mice transfected with Ad5-CMV.p53;
     3. Glibenclamide ameliorated the progression of atherosclerosis induced by Ad5-CMV.p53transduction in vivo.
     Background
     Atherosclerosis (AS) is related to membrane ion channels closely. K+current is the primary component of membrane potential and vitally important to cellular functions. ATP sensitive potassium channels (KAtp) could regulate the concentration of K+and preserve membrane potential to modulate activities of other ions and the whole cell, and couple cellular metabolism with membrane potential. When the intracellular ADP/ATP is raised due to ischemia, hypoxia, metabolic acidosis and so on, KATP channels will open, the cell hyperpolarize, voltage-dependent calcium channels (VDCCs) close, calcium influx decrease and intracellular Ca2+reduce to mediate cardiac protection.
     KATP channel is a hetero-octamer complex of four pore forming subunits, inwardly rectifying potassium channels Kir6.X, and four regulatory subunits according to intracellular ATP concentration, sulfonylurea receptors (SURs), member of ATP binding cassette (ABC) superfamily. Kir6.X, including Kir6.1and Kir6.2, links with SURs, including SUR1, SUR2A and SUR2B, to constitute functional KATP channels. KATP channels exist in various tissues and carry an important cellular function with tissue specificity. In cells expressing Kir6.1and Kir6.2at the same time, the subunits often comprise heterogeneous polymers in a different proportion. Accordingly, KATP channels in different tissues exhibit different physiologic characteristics and response with specific reagents. For example, SUR2A/Kir6.2 subtype mainly expresses in myocardial cells and shows cardiac protection under conditions of ischemia, hypoxia and other stress; SUR1/Kir6.2subtype mainly expresses in pancreatic P cells to regulate secretion of insulin; SUR2B/Kir6.1mainly expresses in vascular smooth muscle cells and endothelial dcells and participate in vascular response to various pharmacological or endogenous vasodilators and vasoconstrictors. KATP channels are important metabolic sensors, while AS and inflammation are associated with metabolism closely.
     Therefore, we put forward the hypothesis that KATP channels express in vascular smooth muscle cells, endothelial cells and macrophages of atherosclerotic plaques, and should be correlated with vulnerability of plaques.
     Objective
     1. To detect the expression and distribution of SUR1, SUR2A, SUR2B, Kir6.1and Kir6.2subnuits in atherosclerotic plaques;
     2. To make correlation analysis between content of KATP subunits and vulnerability of plaques;
     3. To evaluate the effect of KATP channels in vascular smooth muscle cells, endothelial cells and macrophages on progression of atherosclerosis.
     Methods
     We applied fifty ApoE-/-mice to study, with high-fat diet at9-week old and with right common carotid artery-collar placement at10-week old (about25-30g);8weeks later, right carotid plaques were detected by ultrasound biomicroscopic imaging system; and then we randomly divided the mice into Ad5-CMV.p53-treated group, Ad5-CMV.lacZ-treated group and blank control group and further divided the interventional group into the following three subgroups:1-day,4-day and14-day groups, respectively, followed by a series of experiments.
     1. Morphological staining:Hematoxylin and eosin (HE) staining was used to show the tissue structure, sirius-red staining was used to detect the content of collagen fibers and Oil-red O staining was used to detect the content of lipids;
     2. SMC-a actin and MOMA-2staining:Immunohistochemical staining of SMC-a actin and MOMA-2was used to detect the content of smooth muscle cells and macrophages, respectively;
     3. KATP Subunits staining:Immunohistochemical staining of SUR1, SUR2A, SUR2B, Kir6.1and Kir6.2subnuits in AS plaques to investigate the expression and distribution of KATP channels in vascular smooth muscle cells, endothelial cells and macrophages;
     4. Correlation analysis:The content of smooth muscle cells, collagens, macrophages and lipids in plaques was evaluated, the vulnerable index was calculated as the ratio of macrophages and lipids content to SMCs and collagens content in atherosclerotic lesions, and then, we anlysed the correlation between AS components, vulnerable index and KATP Subunits;
     5. Immunofluorescence:Immunofluorescence double staining was used to detect the co-localization of atherosclerotic cells and KATP Subunits;
     6. RT-PCR quantitative analysis of KATP Subunits:The mRNA expression of SUR1, SUR2A, SUR2B, Kir6.1and Kir6.2subnuits in carotid arteries was detected by RT-PCR.
     Results
     1. The staining of KATP Subunits in atherosclerotic plaques
     Positive staining of SUR2A and Kir6.2subunits mainly accumulated in plaque shoulder and fatty streak with more macrophages, and quantitative analysis showed similar expressional tendency:SUR2A and Kir6.2expression was detected mostly in p53-treated4-day group and was higher than that of lacZ treated-control groups after1day and4days treatment (P<0.05). Positive staining of SUR1subunit mainly accumulated in plaque shoulder and fatty streak, as well as endothelial cells, and quantitative analysis showed that the staining was most markedly in p53-treated4-day group and was higher than that of control group (P<0.05). Positive staining of Kir6.1subunit distributed in plaque shoulder and fatty streak, as well as endothelial cells and smooth muscle cells, and quantitative analysis showed that the staining was higher in p53treated groups after1day and4days compared with that of lacZ treated groups (P<0.05). Positive staining of SUR2B subunit mainly accumulated in vascular smooth muscle cells and endothelial cells, and quantitative analysis showed that the staining was decreased in p53-treated4-day group compared with that of lacZ treated group (P<0.05).
     2. The mRNA expression of KATP subunits in carotid arteries
     At mRNA level, the expression of SUR2A, Kir6.2and SUR1subunits was higher in p53-treated group than that of control group after4-day treatment (P<0.05); the expression of Kir6.1subunit was higher in p53-treated group than that of control group after1-day treatment (P<0.05); and the largest value of SUR2B transtripts was found in blank control group (P<0.05).
     3. The correlation analysis between KATP subunits and plaque burden
     The expression of SUR2A and Kir6.2subunits in plaques was positively correlated with vulnerable index and the content of macrophages in plaques, and negatively correlated with the content of smooth muscle cells in plaques (all P<0.05).
     4. Co-localization of MOMA-2with SUR2A and Kir6.2subunits in plaques
     The result of immunofluorescence double staining showed that MOMA-2and SUR2A, as well as MOMA-2and Kir6.2, co-located at macrophages attached to vascular walls and within plaques.
     Conclusions
     1. KATP subunits expressed in smooth muscle cells, endothelial cells and macrophages of AS plaques;
     2. SUR2A and Kir6.2subunits were associated with plaque burden closely;
     3. The subtype of SUR2A/Kir6.2mainly located in macrophages of atherosclerotic plaques.
     Background
     Atherosclerotic plaques consist of macrophages, smooth muscle cells and endothelial cells. Differentiating from vascular smooth muscle cells and endothelial cells, macrophages derive from circular monocytes and contribute to immune inflammatory response. The activation of monocytes/macrophages is considered as the initiation of atherosclerosis and works through the whole process of atherosclerosis with accumulating, adhesion, migration and producing inflammatory cytokines.
     The previous studies have showed that ion channels expressed in monocytes/macrophages played an important role in atherosclerosis. Dysfunction of monocytes/macrophages mediated by TRPC (transient receptor potential canonical) channels was associated with the development of atherosclerosis; the changes of voltage-dependent inwardly rectifying potassium channels (Kir) and delayed outwardly rectifying potassium channels induced by inflammatory cytokines promoted the activation and differentiation of monocytes; disordered volume-regulated Cl channels promoted foam cell formation from macrophages in atherosclerosis; moreover, MCP-1and LPC regulated the chloride channels and calcium activated potassium channels to accelerate the migration of monocytes. The migration of monocytes initiates the process of atherosclerosis and the formation of considerable foam cells designates the vulnerable plaques. Whereas, KATP channels in monocytes/macrophages have drawn relatively a little attention.
     KATP channels are octamers of four pore forming subunits-inwardly rectifying potassium channel Kir6.X and four regulatory subunits-a member of ATP binding cassette (ABC) superfamily called sulfonylurea receptor (SUR). The former contains Kir6.1and Kir6.2subtypes, and the latter contains SUR1, SUR2A and SUR2B subtypes. They comprise various subtypes of KATP channels in different tissues with distinct physiologic and pathological properties. It has been reported that the blocker of KATP channels, glibenclamide, could inhibit the release of proinflammatory cytokines induced by Lipopolysaccharide (LPS) in condition of hypoxia and acidosis. The inflammation mediated by monocytes/macrophages play an important role in initiation and progression of atherosclerotic lesions. LPS, a typical bacterial pathogens known as most powerful activators of macrophages, could stimulate monocytes/macrophages to produce proinflammatory cytokines such as TNF-a by bounding with toll like receptors (TLRs) through two major signal transduction pathways:nuclear factor κB (NF-κB) proteins and mitogen-activated protein kinases (MAPKs), the latter including extracellular signal related kinase (ERK1/2), p38MAPK (p38) and c-Jun N-terminal kinase (JNK) pathways.
     Therefore, we put forward the hypothesis that KATP channels in monocytes/macrophages play an important role in inflammation to mediate the progression of atherosclerotic lesions and they work through NF-κB/MAPKs signal transduction pathways to regulate the inflammatory response.
     Objective
     1. To detect the expression of KATP subunits and TNF-a induced by LPS in macrophages;
     2. To explore the effect of KATP channels on the expression of TNF-a induced by LPS in macrophages;
     3. To investigate the the effect of KATP channels on NF-κB and MAPKs pathways induced by LPS in macrophages.
     Methods
     We used the cell line of mice monocytes/macrophages, RAW264.7cells, as the object of this study, pretreated with the opener or blocker of KATP channels, pinacidil or glibenclamide, followed by stimulation of LPS. And then we applied real time RT-PCR and western blotting to detect the role and mechanisms of KATP channels in macrophages.
     1. RAW264.7cells were treated with LPS (1μg/ml) for0,2,4,8or24h to detect the expression of SUR1, SUR2A, SUR2B, Kir6.1and Kir6.2subunits, as well as TNF-a.
     2. RAW264.7cells were pretreated with the opener or blocker of KATP channels, pinacidil (10μM) or glibenclamide (10μM), to detect the expression of TNF-a induced by LPS and the phosphorylation of NF-κB and MAPKs signal transduction proteins at various time (15min,30min,1h, and24h).
     3. After intervention with inhibitors of NF-κB, PDTC (100μM) or DMFR (100μM), the expression of KATP subunits and TNF-a inducted by LPS in macrophages was investigated.
     Results
     1. LPS induced the expression of KATP subunits and TNF-a in RAW264.7cells
     Compared with control group, the expression of SUR1, SUR2A, Kir6.1and Kir6.2subunits, as well as TNF-a, was increased in LPS (1μg/ml) treated RAW264.7cells for4h (all P<0.05). However, the expression of SUR2B subunit was not detected.
     2. The regulation of KATP channels in expression of TNF-a and phosphorylation of NF-κB and MAPKs signal proteins
     The blocker of KATP channels, glibenclamide (10κM). could reduce the expression of TNF-a induced by LPS in RAW264.7cells for4h. while the opener pinacidil (10λM) raised the expression slightly (both P<0.05). Moreover, glibenclamide decreased the phosphorylation of p65and ERK1/2induced by LPS for15min (both P<0.05), while the effect of pinacidil was not obvious (P>0.05).
     3. KATP channels located at upstream of NF-κB activated by LPS in RAW264.7 cells
     The inhibitors of NF-κB, PDTC (100μM) or DMFR (100μM), decreased the expression the TNF-a induced by LPS in RAW264.7cells obviously (P<0.05), and glibenclamide could enhance the effect of NF-κB inhibitors, while pinacidil antagonized their effect (P<0.05).
     PDTC (100μM) and DMFR (100μM) increased the expression of SUR1, SUR2A, Kir6.1and Kir6.2subunits induced by LPS in RAW264.7cells significantly (P<0.05).
     Conclusions
     1. LPS increased the expression of KATP channels in macrophages;
     2. KATP channels in macrophages participated in inflammatory response induced by LPS;
     3. KATP channels in macrophages regulated inflammation via NF-κB and ERK1/2pathways.
引文
1. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell.2011, 145:341-355.
    2. Kwon GP, Schroeder JL, Amar MJ, Remaley AT, Balaban RS. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation.2008,117:2919-2927.
    3. Weber C, Noels H. Atherosclerosis:current pathogenesis and therapeutic options. Nat Med.2011,17(11):1410-1422.
    4. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol.2010,10(1):36-46.
    5. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assess-merit strategies:Part I. Circulation.2003, 108(14):1664-1672.
    6. Yla-Herttuala S, Bentzon JF, Daemen M, et al. Stabilisation of atherosclerotic plaques. Position Paper of the European Society of Cardiology (ESC) Working Group of Atherosclerosis and Vascular Biology. Thromb Haemost.2011,106:1-19.
    7. Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol.2008, 586:5047-5061.
    8. Tliba O. Panettieri RA Jr. Noncontractile functions of airway smooth muscle cells in asthma. Annu Rev Physiol.2009,71:509-535.
    9. Cribbs LL. T-type Ca2+ channels in vascular smooth muscle:multiple functions. Cell Calcium.2006,40:221-230.
    10. Al-Shawaf E, Naylor J, Taylor H, Riches K, Milligan CJ, O'Regan D, Porter KE, Li J, Beech DJ. Acute stimulation of calcium-permeable TRPC5-containing channels by oxidized phospholipids. Arterioscler Thromb Vase Biol.2010,30(7):1453-1459.
    11. Colden-Stanfield M. Adhesion-dependent modulation of macrophage K+ channels. Adv Exp Med Biol.2010,674:81-94.
    12. Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv XF, Zhou JG, Guan YY. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis.2011,216(1):59-66.
    13. Schilling T, Eder C. Lysophosphatidylcholine- and MCP-1-induced chemotaxis of monocytes requires potassium channel activity. Pflugers Arch.2009,459(1):71-77.
    14. Cahalan MD. Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev.2009,231:59-87.
    15. Ha SJ, Kim W, Woo JS, Kim JB, Kim SJ, Kim WS, Kim MK, Cheng XW, Kim KS. Preventive effects of exenatide on endothelial dysfunction induced by ischemia-reperfusion injury via KATP channels. Arterioscler Thromb Vase Biol. 2012,32(2):474-480.
    16. Ichinomiya T, Cho S, Higashijima U, Matsumoto S, Maekawa T, Sumikawa K. High-dose fasudil preserves postconditioning against myocardial infarction under hyperglycemia in rats:role of mitochondrial KATP channels. Cardiovasc Diabetol. 2012,22:11-28.
    17. Sellitto AD, Al-Dadah AS, Schuessler RB, Nichols CG, Lawton JS. An open sarcolemmal adenosine triphosphate-sensitive potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation.2011,124(11 Suppl):S70-74.
    18. Nelson CP, Rainbow RD, Brignell JL, Perry MD, Willets JM, Davies NW, Standen NB, Challiss RA. Principal role of adenylyl cyclase 6 in K+ channel regulation and vasodilator signalling in vascular smooth muscle cells. Cardiovasc Res. 2011,91(4):694-702.
    19. Lader JM, Vasquez C, Bao L, Maass K, Qu J, Kefalogianni E, Fishman GI, Coetzee WA, Morley GE. Remodeling of atrial ATP-sensitive K+ channels in a model of salt-induced elevated blood pressure. Am J Physiol Heart Circ Physiol.2011,301(3):H964-974.
    20. Wang H, Long C, Duan Z, Shi C, Jia G, Zhang Y. A new ATP-sensitive potassium channel opener protects endothelial function in cultured aortic endothelial cells. Cardiovasc Res.2007,73:497-503.
    21. Gao S, Long CL, Wang RH, Wang H. K(ATP) activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovasc Res.2009.83:444-456.
    22. Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadan-Diehl C, Goldberg IJ. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res.2007, 100(10):1415-1427.
    23. Borst O, Ochmann C, Schonberger T, Jacoby C, Stellos K, Seizer P. Flogel U, Lang F, Gawaz M. Methods employed for induction and analysis of experimental myocardial infarction in mice. Cell Physiol Biochem.2011,28:1-12.
    24. Waqar AB, Koike T, Yu Y, Inoue T, Aoki T, Liu E, Fan J. High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis.2010,213(1):148-155.
    25. Ohashi M, Runge MS, Faraci FM, Heistad DD. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler Thromb Vase Biol.2006, 26(10):2331-2336.
    26. Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vase Biol.2004,24(6):1006-1014.
    27. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell.1992, 71(2):343-353.
    28. Lee MY, Li H, Xiao Y, Zhou Z, Xu A, Vanhoutte PM. Chronic administration of BMS309403 improves endothelial function in apolipoprotein Edeficient mice and in cultured human endothelial cells. Br J Pharmacol.2011,162(7):1564-1576.
    29. Surra JC, Guillen N, Arbones-Mainar JM, Barranquero C, Navarro MA, Arnal C, Orman I, Segovia JC, Osada J. Sex as a profound modifier of atherosclerotic lesion development in apolipoprotein E-deficient mice with different genetic backgrounds. J Atheroscler Thromb.2010,17(7):712-721.
    30. Smith DD, Tan X, Tawfik O, Milne G, Stechschulte DJ, Dileepan KN. Increased aortic atherosclerotic plaque development in female apolipoprotein E-null mice is associated with elevated thromboxane A2 and decreased prostacyclin production. J Physiol Pharmacol.2010,61(3):309-316.
    31. Coleman R, Hayek T, Keidar S, Aviram M. A mouse model for human atherosclerosis:long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem.2006,108(6):415-424.
    32. Yamashita T, Kawashima S, Ozaki M, Namiki M, Shinohara M, Inoue N, Hirata K, Umetani K, Yokoyama M. In vivo angiographic detection of vascular lesions in apolipoprotein E-knockout mice using a synchrotron radiation microangiography system. Circ J.2002,66(11):1057-1059.
    33. Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis:lessons from mouse models. Nat Rev Immunol.2008, 8:802-815.
    34. Shemesh S. Kamari Y, Shaish A, Olteanu S, Kandel-Kfir M. Almog T, Grosskopf I, Apte RN, Harats D. Interleukin-1 receptor type-1 in nonhematopoietic cells is the target for the pro-atherogenic effects of interleukin-1 in apoE-deficient mice. Atherosclerosis.2012,222(2):329-336.
    35. Johansson ME, Hagg U, Wikstrom J, Wickman A, Bergstrom G, Gan LM. Haemodynamically significant plaque formation and regional endothelial dysfunction in cholesterol-fed ApoE-/-mice. Clin Sci (Lond).2005,108(6):531-538.
    36. Chiba T, Ikeda M, Umegaki K, Tomita T. Estrogen-dependent activation of neutral cholesterol ester hydrolase underlying gender difference of atherogenesis in apoE(-/-) mice. Atherosclerosis.2011,219(2):545-551.
    37. Freudenberger T, Oppermann M, Heim HK, Mayer P, Kojda G, Schror K, Fischer JW. Proatherogenic effects of estradiol in a model of accelerated atherosclerosis in ovariectomized ApoE-deficient mice. Basic Res Cardiol.2010,105(4):479-486.
    38. Perez-Lopez FR, Larrad-Mur L, Kallen A, Chedraui P, Taylor HS. Gender differences in cardiovascular disease:hormonal and biochemical influences. Reprod Sci.2010,17(6):511-531.
    39. Thomas CM, Smart EJ. Gender as a regulator of atherosclerosis in murine models. Curr Drug Targets.2007,8:1172-1180.
    40. J Suo, DE Ferrara, D Sorescu, RE Guldberg, WR Taylor, DP Giddens. Hemodynamic shear stresses in mouse aortas:implications for atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology.2007,27(2):346-351.
    41. Y Huo, X Guo, GS Kassab. The flow field along the entire length of mouse aorta and primary branches. Annals of Biomedical Engineering.2008,36(5):685-699.
    42. Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL. Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest.1998,101:1225-1232.
    43. Lardenoye JH, Delsing DJ, de Vries MR. Deckers MM, Princen HM. Havekes LM, van Hinsbergh VW, van Bockel JH, Quax PH. Accelerated atherosclerosis by placement of a perivascular cuff and a cholesterolrich diet in apoE*3 Leiden transgenic mice. Circ Res.2000,87:248-253.
    44. de Nooijer R, Verkleij CJ, von der Thusen JH, Jukema JW, van der Wall EE, van Berkel TJ, Baker AH, Biessen EA. Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vase Biol.2006,26:340-346.
    45. von der Thusen JH. TJ van Berkel, EA Biessen. Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-defi cient mice. Circulation.2001,103:1164-1170.
    46. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation.2006,113:2744-2753.
    47. Ni M, Wang Y, Zhang M, Zhang PF, Ding SF, Liu CX, Liu XL, Zhao YX, Zhang Y. Atherosclerotic plaque disruption induced by stress and lipopolysaccharide in apolipoprotein E knockout mice. Am J Physiol Heart Circ Physiol.2009, 296:H1598-1606.
    48. Baetta R, Silva F, Comparato C, Uzzo M, Eberini I, Bellosta S, Donetti E, Corsini A. Peri vascular carotid collar placement induces neointima formation and outward arterial remodeling in mice independent of apolipoprotein E deficiency or Western-type diet feeding. Atherosclerosis.2007,195:e112-124.
    49. Egashira K, Zhao Q, Kataoka C, Ohtani K, Usui M, Charo IF, Nishida K, Inoue S, Katoh M, Ichiki T, Takeshita A. Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys. Circ Res.2002,90:1167-1172.
    50. Bot I, von der Thusen JH, Donners MM, Lucas A, Fekkes ML, de Jager SC, Kuiper J, Daemen MJ, van Berkel TJ, Heeneman S, Biessen EA. Serine protease inhibitor serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in apoE-/- mice. Circ Res.2003,93:464-471.
    51. Watanabe M, Sangawa A, Sasaki Y, Yamashita M, Tanaka-Shintani M, Shintaku M, Ishikawa Y. Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J Atheroscler Thromb.2007, 14:325-331.
    52. Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways. Physiol Rev.2006,86:515-581.
    53. Mercer J, Figg N, Stoneman V, Braganza D. Bennett MR. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ Res.2005,96(6):667-674.
    54. Mercer J, Bennett M. The role of p53 in atherosclerosis. Cell Cycle.2006, 5(17):1907-1909.
    55. Yuan XM, Osman E, Miah S, Zadeh SN, Xu L, Forssell C, Li W. p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis.2010,210(2):392-399.
    56. von der Thusen JH, van Vlijmen BJ, Hoeben RC, Kockx MM, Havekes LM, van Berkel TJ, Biessen EA. Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53. Circulation.2002, 105(17):2064-2070.
    57. Xu Q. The impact of progenitor cells in atherosclerosis. Nat Clin Pract Cardiovasc Med.2006,3:94-101.
    58. Sata M. Role of circulating vascular progenitors in angiogenesis, vascular healing, and pulmonary hypertension:lessons from animal models. Arterioscler Thromb Vase Biol.2006,26:1008-1014.
    59. Schafer K, Schroeter MR, Dellas C, Puls M, Nitsche M, Weiss E, Hasenfuss G, Konstantinides SV. Plasminogen activator inhibitor-1 from bone marrow-derived cells suppresses neointimal formation after vascular injury in mice. Arterioscler Thromb Vase Biol.2006,26:1254-1259.
    60. Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res.2003, 93:783-790.
    61. Massberg S, Konrad I, Schurzinger K, Lorenz M, Schneider S, Zohlnhoefer D, Hoppe K, Schiemann M, Kennerknecht E, Sauer S, Schulz C, Kerstan S, Rudelius M, Seidl S, Sorge F, Langer H, Peluso M, Goyal P, Vestweber D, Emambokus NR, Busch DH, Frampton J, Gawaz M. Platelets secrete stromal cell-derived factor lalpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med.2006,203:1221-1233.
    62. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol.2010,30:1282-1292.
    63. Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res.2009,50(Suppl):S352-357.
    64. SY Choi, GS Mintz. What have we learned about plaque rupture in acute coronary syndromes?. Current Cardiology Reports.2010,12(4):338-343.
    65. Libby P, Aikawa M. Stabilization of atherosclerotic plaques:New mechanisms and clinical targets. Nature Medicine.2002.8:1257-1262.
    66. E Galkina, K Ley. Leukocyte influx in atherosclerosis. Current Drug Targets. 2007.8(12):1239-1248.
    67. E Galkina. K Ley. Immune and inflammatory mechanisms of atherosclerosis. Annual Review of Immunology.2009,27:165-197.
    68. RRS Packard, P Libby. Inflammation in atherosclerosis:from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry.2008,54(1):24-38.
    69. Tabas I, Tall A, Accili D. The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circulation Research.2010, 106(1):58-67.
    70. JJ Boyle, PLWeissberg, MR Bennett. Tumor necrosis factor-α promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology.2003, 23(9):1553-1558.
    71. PJ Gough, IG Gomez, PT Wille, EW Raines. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. Journal of Clinical Investigation.2006,116(1):59-69.
    72. Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation Research.2010,107(7):839-850.
    73. Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R, Tabas I. Cholesterol induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. Journal of Cell Biology.2005, 171(1):61-73.
    74. Lin HL, Xu XS, Lu HX, Zhang L, Li CJ, Tang MX, Sun HW, Liu Y, Zhang Y. Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques. J Mol Cell Cardiol.2007,43(3):272-280.
    75. Chen WQ, Zhong L, Zhang L, Ji XP, Zhang M, Zhao YX, Zhang C, Zhang Y. Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br J Pharmacol.2009,156(6):941-951.
    76. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998,78:227-245.
    77. Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC. Ashcroft FM.3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J.2005,24:4166-4175.
    78. Park S, Terzic A. Quaternary structure of KATP channel SUR2a nucleotide binding domains resolved by synchrotron radiation X-ray scattering. J Struct Biol. 2010,169(2):243-251.
    79. Vivaudou M, Moreau CJ, Terzic A. Structure and function of ATP-sensitive K+ channels. In:Kew J, Davies C (eds) Ion channels:from structure to function,1 st edn. Oxford University Press, Oxford.2009, pp454-473.
    80. Dong K, Tang LQ, MacGregor GG, Leng Q, Hebert SC. Novel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces. EMBO J.2005, 24:1318-1329.
    81. Zingman LV, Alekseev AE, Bienengraeber M, Hodgson D, Karger AB, Dzeja PP, Terzic A. Signaling in channel/enzyme multimers:ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron.2001,31:233-245.
    82. Zingman LV, Hodgson DM, Bienengraeber M, Karger AB, Kathmann EC, Alekseev AE, Terzic A. Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels. J Biol Chem.2002,277:14206-14210.
    83. Winkler M, Stephan D, Bieger S, Kuhner P, Wolff F, Quast U. Testing the bipartite model of the sulfonylurea receptor binding site:binding of A-, B-, and A+ B-site ligands. J Pharmacol Exp Ther.2007,322:701-708.
    84. Proks P, Ashcroft FM. Modeling KATP channel gating and its regulation. Prog Biophys Mol Biol.2009,99:7-19.
    85. S Seino. Cell signalling in insulin secretion:the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia.2012,55:2096-2108.
    86. Ashcroft FM. ATP-sensitive K+ channels and disease:from molecule to malady. Am J Physiol Endocrinol Metab.2007,293:E880-889.
    87. Prost AL, Bloc A, Hussy N, Derand R, Vivaudou M. Zinc is both an intracellular and extracellular regulator of KATP channel function. J Physiol.2004.559:157-167.
    88. Miki T, Liss B, Minami K, Shiuchi T, Saraya A. Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci. 2001,4:507-512.
    89. Henquin JC. Regulation of insulin secretion:a matter of phase control and amplitude modulation. Diabetologia.2009,52:739-751.
    90. Nolan CJ. Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M. Fatty acid signaling in the β-cell and insulin secretion. Diabetes.2006,55(Supp12):S 16-23.
    91. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol.2003,81:133-176.
    92. Billman GE. The cardiac sarcolemmal ATP sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther.2008,120:54-70.
    93. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marban E, Nakaya H. Role of sarcolemmal KATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest.2002, 109:509-516.
    94. Gong B, Legault D, Miki T, Seino S, Renaud JM. KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle. Am J Physiol Cell Physiol.2003,285:C1464-1474.
    95. Matar W, Nosek TM, Wong D, Renaud J. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue. Am J Physiol Cell Physiol.2000,278:C404-416.
    96. Simard JM, Woo SK, Bhatta S, Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol.2008,8:42-49.
    1. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H. The intermediate-conductance calciumactivated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest.2008,118:3025-3037.
    2. Folgering JH, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honore E. Molecular basis of the mammalian pressure-sensitive ion channels:focus on vascular mechanotransduction. Prog Biophys Mol Biol.2008,97:180-195.
    3. Brakemeier S, Kersten A, Eichler I, Grgic I, Zakrzewicz A, Hopp H, Kohler R, Hoyer J. Shear stress-induced up-regulation of the intermediate-conductance Ca2+-activated K + channel in human endothelium. Cardiovasc Res.2003,60:488-496.
    4. Chatterjee S, Al-Mehdi AB, Levitan I, Stevens T, Fisher AB. Shear stress increases expression of a KATP channel in rat and bovine pulmonary vascular endothelial cells. Am J Physiol Cell Physiol.2003,285:C959-967.
    5. Wei Z, Manevich Y, Al-Mehdi AB, Chatterjee S, Fisher AB. Ca2+ flux through voltage gated channels with flow cessation in pulmonary microvascular endothelial cells. Microcirculation.2004,11:517-526.
    6. Kwan HY, Huang Y, Yao X. TRP channels in endothelial function and dysfunction. Biochim Biophys Acta.2007,1772:907-914.
    7. Yao X, Garland CJ. Recent developments in vascular endothelial cell transient receptor potential channels. Circ Res.2005,97:853-863.
    8. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem.2006,281:13588-13595.
    9. Chen WL, Huang XQ, Zhao LY, Li J, Chen JW, Xiao Y, Huang YY, Liu J, Wang GL, Guan YY. Involvement of kv1.5 protein in oxidative vascular endothelial cell injury. PLoS One.2012,7(11):e49758.
    10. Kohler R, Kaistha BP, Wulff H. Vascular KCa-channels as therapeutic targets in hypertension and restenosis disease. Expert Opin Ther Targets.2010,14:143-155.
    11. Beleznai T, Takano H, Hamill C, Yarova P, Douglas G. Channon K, Dora K. Enhanced K(+)-channel-mediated endothelium-dependent local and conducted dilation of small mesenteric arteries from ApoE(-/-) mice. Cardiovasc Res.2011, 92(2):199-208.
    12. Teramoto N. Physiological roles of ATP-sensitive K+ channels in smooth muscle. J. Physiol (Lond.).2006,572:617-624.
    13. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006,440(7083):470-476.
    14. Rong S, Cao Q, Liu M, Seo J, Jia L, Boudyguina E, Gebre AK, Colvin PL, Smith TL, Murphy RC, Mishra N, Parks JS. Macrophage 12/15 lipoxygenase expression increases plasma and hepatic lipid levels and exacerbates atherosclerosis. J Lipid Res. 2012,53(4):686-695.
    15. Michael A. Burke, R. Kannan Mutharasan, Hossein Ardehali. The Sulfonylurea Receptor, an Atypical ATP-Binding Cassette Protein, and Its Regulation of the KATP Channel. Circ Res.2008,102:164-176.
    16. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Progress in Biophysics and Molecular Biology.2003,81(2):133-176.
    17. Pountney DJ, Sun ZQ, Porter LM, Nitabach MN, Nakamura TY, Holmes D, Rosner E, Kaneko M, Manaris T, Holmes TC, Coetzee WA. Is the molecular composition of K(ATP) channels more complex than originally thought?. J Mol Cell Cardiol.2001,33(8):1541-1546.
    18. Noriyoshi Teramoto, Hai-Lei Zhu, Atsushi Shibata, Manami Aishima, Emma J Walsh, Masaya Nagao, William C Cole. ATP-sensitive K+ channels in pig urethral smooth muscle cells areheteromultimers of Kir6.1 and Kir6.2. Am J Physiol Renal Physiol.2009,296:107-117.
    19. Yamada K, Inagaki N. Neuroprotection by KATP channels. J Mol Cell. Cardiol. 2005,38:945-949.
    20. Lange M, Morelli A, Westphal M. Inhibition of potassium channels in critical illness. Curr Opin Anaesthesiol.2008.21:105-110.
    21. Yoshida H, Feig JE. Morrissey A. Ghiu IA, Artman M, Coetzee WA. KATP channels of primary human coronary artery endothelial cells consist of a heteromultimeric complex of Kir6.1, Kir6.2. and SUR2B subunits. J Mol Cell Cardiol. 2004.37:857-869.
    22. Heaps CL, Jeffery EC, Laine GA, Price EM, Bowles DK. Effects of exercise training and hypercholesterolemia on adenosine-activation of voltage-dependent Kt channels in coronary arterioles. J Appl Physiol.2008.105:1761-1771.
    23. Au AL, Seto SW, Chan SW, Chan MS, Kwan YW. Modulation by homocysteine of the iberiotoxin-sensitive, Ca2+-activated K+ channels of porcine coronary artery smooth muscle cells. Eur J Pharmacol.2006,546:109-1119.
    24. Heintz A, Damm M, Brand M, Koch T, Deussen A. Coronary flow regulation in mouse heart during hypercapnic acidosis:role of NO and its compensation during eNOS impairment. Cardiovasc Res.2008,77:188-196.
    25. Hyvelin JM, Gautier M, Lemaire MC, Bonnet P, Eder V. Adaptative modifications of right coronary myocytes voltage-gated K+ currents in rat with hypoxic pulmonary hypertension. Pflugers Arch.2009,457:721-730.
    26. Wickenden A. K+ channels as therapeutic drug targets. Pharmacol Ther.2002, 94:157-182.
    27. Ottolia M, Platano D, Qin N, Noceti F, Birnbaumer M, Toro L, Birnbaumer L, Stefani E, Olcese R. Functional coupling between human E-type Ca2+ channels and mu opioid receptors expressed in Xenopus oocytes. FEBS Lett.1998,427:96-102.
    28. Blanco-Rivero J, Gamallo C, Aras-Lopez R, Cobeno L, Cogolludo A, Perez-Vizcaino F, Ferrer M, Balfagon G. Decreased expression of aortic KIR6.1 and SUR2B in hypertension does not correlate with changes in the functional role of KATP channels. Eur J Pharmacol.2008,587:204-208.
    29. Cole WC, Malcolm T, Walsh MP, Light PE. Inhibition by protein kinase C of the K(NDP) subtype of vascular smooth muscle ATP sensitive potassium channel. Circ Res.2000,87:112-117.
    30. Cole WC, Clement-Chomienne O. ATP-sensitive K+ channels of vascular smooth muscle cells. J Cardiovasc Electrophysiol.2003,14:94-103.
    31. Farzaneh T, Tinker A. Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits. Cardiovasc Res. 2008,79:621-631.
    32. Fujita A, Kurachi Y. Molecular aspects of ATP-sensitive K+ channels in the cardiovascular systemand K+ channel openers. Pharmacol Ther.2000,85:39-53.
    33. Miura H, Wachtel RE, Loberiza FR Jr, Saito T, Miura M, Nicolosi AC, Gutterman DD. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res.2003,92:151-158.
    34. Morrissey A, Rosner E, Lanning J, Parachuru L, Dhar Chowdhury P, Han S, Lopez G, Tong X, Yoshida H, Nakamura TY, Artman M, Giblin JP, Tinker A, Coetzee WA. lmmunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol.2005,5(1):1.
    35. Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res.2006,98:682-689.
    36. Duncker DJ, Van Zon NS, Altman JD, Pavek TJ, Bache RJ. Role of KATP channels in coronary vasodilation during exercise. Circulation.1993,88:1245-1253.
    37. Brayden JE. Functional roles of KATP channels in vascular smooth muscle. Clin Exp Pharmacol Physiol.2002,29:312-316.
    38. Wellman GC, Quayle JM, Standen NB. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol.1998,507:117-129.
    39. Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP sensitive K+ channel. Circ Res.2004, 94:1359-1366.
    40. Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C. PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol.2007, 293:R1205-1214.
    41. Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev.1997,77:1165-1232.
    42. Gendron ME, Thorin E, Perrault LP. Loss of endothelial KATP channel-dependent, NO-mediated dilation of endocardial resistance coronary arteries in pigs with left ventricular hypertrophy. Br J Pharmacol.2004,143:285-291.
    43. Jiao J, Garg V, Yang B, Elton TS, Hu K. Protein kinase C-epsilon induces caveolin-dependent internalization of vascular adenosine 5'-triphosphate-sensitive K+ channels. Hypertension.2008,52:499-506.
    44. Ishizaki E, Fukumoto M, Puro DG. Functional KATP channels in the rat retinal microvasculature:topographical distribution, redox regulation, spermine modulation and diabetic alteration. J Physiol.2009.587:2233-2253.
    45. Ko EA, Han J, Jung ID, Park WS. Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res.2008.44:65-81.
    46. Zhuo ML, Huang Y, Liu DP, Liang CC. KATP channel:relation with cell metabolism and role in the cardiovascular system. Int J Biochem Cell Biol.2005, 37:751-764.
    47. Kawano H, Kawano T, Tanaka K, Eguchi S, Takahashi A, Nakaya Y, Oshita S. Effects of dopamine on ATP-sensitive potassium channels in porcine coronary artery smooth-muscle cells. J Cardiovasc Pharmacol.2008,51:196-201.
    48. Liu YH, Yan CD, Bian JS. Hydrogen sulfide:a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol.2011,58(6):560-569.
    49. Distrutti E, Cipriani S, Renga B, Mencarelli A, Migliorati M, Cianetti S, Fiorucci S. Molecular mechanism for H2S-induced activation of KATP channels. Antioxid Redox Signal.2010,12:1167-1178.
    50. Feletou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?. Br J Pharmacol.2009,156:545-562.
    51. Grgic I, Kaistha BP, Hoyer J, Kohler R. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses-relevance to cardiovascular pathologies and drug discovery. Br J Pharmacol.2009,157:509-526.
    52. Weston AH, Feletou M, Vanhoutte PM, Falck JR, Campbell WB, Edwards G. Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids. Br J Pharmacol.2005,145:775-784.
    53. Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AH. Mediators of bradykinin-induced vasorelaxation in human coronary microarteries. Hypertension. 2004,43:488-492.
    54. Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD. Voltage-dependent Kt channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol.2008, 294:H2371-2381.
    55. Matsushita S, Hyodo K, Imazuru T, Tokunaga C, Sato F, Enomoto Y, Hiramatsu Y, Sakakibara Y. The minimum coronary artery diameter in which coronary spasm can be identified by synchrotron radiation coronary angiography. Eur J Radiol.2008, 68:S84-88.
    56. Costa AD. Iptakalim:a new or just another KCO?. Cardiovasc Res.2009, 83:417-418.
    57. Gao S, Long CL, Wang RH, Wang H. KATP activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovasc Res.2009.83:444-456.
    58. Malester B. Tong X, Ghiu I, Kontogeorgis A, Gutstein DE. Xu J, Hendricks-Munoz KD, Coetzee WA. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium:effects on coronary flow and endothelin-1 secretion. FASEB J.2007,21:2162-2172.
    59. Hansson GK, Libby P. The immune response in atherosclerosis:a double-edged sword. Nat Rev Immunol.2006,6:508-519.
    60. Matsumoto T, Kobayashi T, Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem.2007,14:3209-3220.
    61. Parks BW, Gambill GP, Lusis AJ, Kabarowski JH. Loss of G2A promotes macrophage accumulation in atherosclerotic lesions of low density lipoprotein receptor-deficient mice. J Lipid Res.2005,46:1405-1415.
    62. Perozo E, Kloda A, Cortes DM, Martinac B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol.2002,9:696-703.
    63. Gerth A, Grosche J, Nieber K, Hauschildt S. Intracellular LPS inhibits the activity of potassium channels and fails to activate NF kappa B in human macrophages. J Cell Physiol.2005,202:442-452.
    64. Irvine E, Keblesh J, Liu J, Xiong H. Voltage-gated potassium channel modulation of neurotoxic activity in human immunodeficiency virus type-1 (HIV-1)-infected macrophages. J Neuroimmune Pharmacol.2007,2:265-269.
    65. Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C. Cells move when ions and water flow. Pflugers Arch.2007,453:421-432.
    66. Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G, Schiltz PM, Wepsic HT, Jadus MR. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. Lab Invest.2007,87:115-129.
    67. Villalonga N, Escalada A, Vicente R. Sanchez-Tillo E, Celada A, Solsona C, Felipe A. Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem BiophysRes Commun.2007,352:913-918.
    68. Judge SI, Lee JM, Bever CT Jr, Hoffman PM. Voltage-gated potassium channels in multiple sclerosis:overview and new implications for treatment of central nervous system inflammation and degeneration. J Rehabil Res Dev.2006.43:111-122.
    69. Schwab A. Wulf A. Schulz C. Kessler W, Nechyporuk-Zloy V, RomerM, Reinhardt J.Weinhold D, Dieterich P, Stock C, Hebert SC. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol.2006, 206:86-94.
    70. Vicente R, Escalada A, Coma M, Fuster G, Sanchez-Tillo E, Lopez-Iglesias C, Soler C, Solsona C, Celada A, Felipe A. Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem.2003, 278:46307-46320.
    71. Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, Mosley RL, Wang T, Volsky DJ, Xiong H. Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol.2009,4(1):47-59.
    72. Estes DJ, Memarsadeghi S, Lundy SK, Marti F, Mikol DD, Fox DA, Mayer M. High-Throughput Profiling of Ion Channel Activity in Primary Human Lymphocytes. Anal Chem.2008,80(10):3728-3735.
    73. Yasu T, Ikeda N, Ishizuka N, Matsuda E, Kawakami M, Kuroki M, Imai N, Ueba H, Fukuda S, Schmid-Schonbein GW, Saito M. Nicorandil and leukocyte activation. Journal of Cardiovascular Pharmacology.2002,40(5):684-692.
    74. Schmid D, Staudacher DL, Bueno R, Spieckermann PG, Moeslinger T. ATP-sensitive potassium channels expressed by human monocytes play a role in stasis-induced thrombogenesis via tissue factor pathway. Life Sci.2007, 80(11):989-998.
    75. Schmid D, Svoboda M, Sorgner A, Moravcevic I, Thalhammer T, Chiba P, Moslinger T. Glibenclamide reduces proinflammatory cytokines in an ex vivo model of human endotoxinaemia under hypoxaemic conditions. Life Sci.2011, 89(19-20):725-734.
    76. Mackenzie AB, Young MT, Adinolfi E, Surprenant A. Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. Journal of Biological Chemistry. 2005,280(40):33968-33976.
    77. Price GC, Thompson SA, Kam PC. Tissue factor and tissue factor pathway inhibitor. Anaesthesia.2004,59(5):483-492.
    78. Wang X, Wu J, Li L, Chen F, Wang R, Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circulation Research.2003, 92(11):1225-1232.
    79. Blouin CC, Page EL, Soucy GM, Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages:implication of hypoxiainducible factor lalpha. Blood.2004,103(3):1124-1130.
    1. Dahlof B. Cardiovascular disease risk factors:epidemiology and risk assessment. American Journal of Cardiology.2010,105(1Suppl):3A-9A.
    2. D M Lloyd-Jones. Cardiovascular risk prediction:basic concepts, current status, and future directions. Circulation.2010,121(15):1768-1777.
    3. C Mayerl, M Lukasser, R Sedivy, H Niederegger, R Seiler, G Wick. Atherosclerosis research from past to present-on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Archiv.2006, 449(1):96-103.
    4. E Galkina, K Ley. Leukocyte influx in atherosclerosis. Current Drug Targets.2007, 8(12):1239-1248.
    5. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol.2010,10(1):36-46.
    6. Al-Shawaf E, Naylor J, Taylor H, Riches K, Milligan CJ, O'Regan D, Porter KE, Li J, Beech DJ. Acute stimulation of calcium-permeable TRPC5-containing channels by oxidized phospholipids. Arterioscler Thromb Vase Biol.2010,30(7):1453-1459.
    7. Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv XF, Zhou JG, Guan YY. Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis.2011,216(1):59-66.
    8. Schilling T, Eder C. Lysophosphatidylcholine- and MCP-1-induced chemotaxis of monocytes requires potassium channel activity. Pflugers Arch.2009,459(1):71-77.
    9. Schmid D, Svoboda M, Sorgner A, Moravcevic I, Thalhammer T. Chiba P, Moslinger T. Glibenclamide reduces proinflammatory cytokines in an ex vivo model of human endotoxinaemia under hypoxaemic conditions. Life Sci.2011, 89(19-20):725-734.
    10. Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev.2008.28(4):483-544.
    11. Brown J, Wang H, Hajishengallis GN. Martin M. TLR-signaling networks:an integration of adaptor molecules, kinases, and cross-talk. J Dent Res.2011, 90(4):417-427.
    12. E Galkina. K Ley. Immune and inflammatory mechanisms of atherosclerosis. Annual Review of Immunology.2009.27:165-197.
    13. RRS Packard, P Libby. Inflammation in atherosclerosis:from vascular biology to biomarker discovery and risk prediction. Clinical Chemistry.2008,54(1):24-38.
    14. DR Wesemann, EN Benveniste. STAT-la and IFN-γ as modulators of TNF-a signaling in macrophages:regulation and functional implications of the TNF receptor 1:STAT-la complex. Journal of Immunology.2003,171(10):5313-5319.
    15. Dekker WK, Cheng C, Pasterkamp G, Duckers HJ. Toll like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis.2010,209(2):314-320.
    16. RZ Murray, JG Kay, DG Sangermani, JL Stow. A role for the phagosome in cytokine secretion. Science.2005,310:1492-1495.
    17. Karrasch T, Jobin C. NF-kappa B and the intestine:friend or foe?. Inflamm Bowel Dis.2008,14:114-124.
    18. Hayden MS, Ghosh S. Signaling to NF-kappa B. Genes Dev.2004,18:2195-2224.
    19. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell.2008, 132:344-362.
    20. Huang S, Zhao L, Kim K, Lee DS, Hwang DH. Inhibition of Nod2 signaling and target geneepression by curcumin. Mol Phamacol.2008,74:274-281.
    21. Liu J, Hong S, Feng Z, Xin Y, Wang Q, Fu J, Zhang C, Li G, Luo L, Yin Z. Regulation of lipopolysaccharideinduced inflammatory response by heat shock protein 27 in THP-1 cells. Cell Immunol.2010,264:127-134.
    22. Sanchez-Fidalgo S. Cpolysaccharide-induced inflammatory response by heat shock protein 27 in THP-1 cells. Cell Immunol.2010,264:127-134.
    23. Sheng KC, Pietersz GA, Tang CK, Ramsland PA, Apostolopoulos V. Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow. J Immunol.2010, 184:2863-2872.
    24. YV Bobryshev. Monocyte recruitment and foam cell formation in atherosclerosis. Micron.2006.37(3):208-222.
    25. J Mestas, K Ley. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in Cardiovascular Medicine.2008,18(6):228-232.
    26. K Ley, C Laudanna. MI Cybulsky, S Nourshargh. Getting to the site of inflammation:the leukocyte adhesion cascade updated. Nature Reviews Immunology. 2007,7(9):678-689.
    27. Tabas I. Consequences and therapeutic implications of inacrophage apoptosis in atherosclerosis:the importance of lesion stage and phagocytic efficiency. Arteriosclerosis. Thrombosis, and Vascular Biology.2005,25(11):2255-2264.
    28. Shibata N, Glass CK. Regulation of macrophage function in inflammation and atherosclerosis. J Lipid Res.2009, Supp150:S277-281.
    29. Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M, Feric NT, Koschinsky ML, Harkewicz R, Witztum JL, Tsimikas S, Golenbock D, Moore KJ, Tabas I. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab.2010, 12:467-482.
    30. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nature Medicine.2007, 13(11):1324-1332.
    31. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis.2005, 180:11-17.
    32. Clark IA. How TNF was recognized as a key mechanism of disease. Cytokine Growth Factor Rev.2007,18(3-4):335-343.
    33. Canault M, Peiretti F, Poggi M, Mueller C, Kopp F, Bonardo B, Bastelica D, Nicolay A, Alessi MC, Nalbone G. Progression of atherosclerosis in ApoE-deficient mice that express distinct molecular forms of TNF-alpha. Journal of Pathology.2008, 214(5):574-583.
    34. Liu J, Yang T, Liu Y, Zhang H, Wang K, Liu M, Chen G, Xiao X. Kriippel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages. FEBS Lett.2012,586(6):834-840.
    35. Shi NQ, Ye B, Makielski JC. Function and distribution of the SUR isoforms and splice variants. J Mol Cell Cardiol.2005,39:51-60.
    36. Repunte VP, Nakamura H, Fujita A. Horio Y, Findlay I, Pott L, Kurachi Y. Extracellular links in Kir subunits control the unitary conductance of SUR/Kir6.0 ion channels. EMBO J.1999,18:3317-3324.
    37. Li L, Wang J. Drain P. The 1182 region of k(ir)6.2 is closely associated with ligand binding in KATP channel inhibition by ATP. Biophys J.2000.79:841-852.
    38. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006,440:470-476.
    39. John SA, Weiss JN. Ribalet B. ATP sensitivity of ATP-sensitive K+ channels: role of the gamma phosphate group of ATP and the R50 residue of mouse Kir6.2. J Physiol.2005,568:931-940.
    40. Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J.2005,24:229-239.
    41. Enkvetchakul D, Jeliazkova I, Bhattacharyya J, Nichols CG. Control of inward rectifier K channel activity by lipid tethering of cytoplasmic domains. J Gen Physiol. 2007,130:329-334.
    42. Ribalet B, John SA, Xie LH, Weiss JN. ATP-sensitive K+ channels:regulation of bursting by the sulphonylurea receptor, PIP2 and regions of Kir6.2. J Physiol.2006, 571:303-317.
    43. Masia R, Nichols CG. Functional clustering of mutations in the dimer interface of the nucleotide binding folds of the sulfonylurea receptor. J Biol Chem.2008, 283:30322-30329.
    44. Babenko AP, Bryan J. Sur domains that associate with and gate KATP pores define a novel gatekeeper. J Biol Chem.2003,278:41577-41580.
    45. Lammens A, Schele A, Hopfner KP. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr Biol.2004, 14:1778-1782.
    46. Masia R, Enkvetchakul D, Nichols CG. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A. J Mol Cell Cardiol.2005,39:491-501.
    47. Mikhailov MV, Campbell JD, de Wet H, Shimomura K, Zadek B, Collins RF, Sansom MS, Ford RC, Ashcroft FM.3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J.2005,24:4166-4175.
    48. Hambrock A, Kayar T, Stumpp D, Osswald H. Effect of two amino acids in TM17 of sulfonylurea receptor SUR1 on the binding of ATP-sensitive K+ channel modulators. Diabetes.2004,53(Suppl3):S128-134.
    49. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, Coetzee WA, Nichols CG. Differential structure of atrial and ventricular KATP:atrial KATP channels require SUR1. Circ Res.2008,103:1458-1465.
    50. Mannhold R. KATP channel openers:structure-activity relationships and therapeutic potential. Med Res Rev.2004,24:213-266.
    51. Schmid D, Staudacher DL, Bueno R, Spieckermann PG, Moeslinger T. ATP-sensitive potassium channels expressed by human monocytes play a role in stasis-induced thrombogenesis via tissue factor pathway. Life Sci.2007, 80(11):989-998.
    52. Lohrke B, Derno M, Kriiger B, Viergutz T, Matthes H, Jentsch W. Expression of sulphonylurea receptors in bovine monocytes from animals with a different metabolic rate. Pflugers Arch.1997,434(6):712-720.
    53. Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol.2003,81(2):133-176.
    54. Aziz Q, Thomas A, Khambra T, Tinker A. Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel. Eur J Pharmacol.2010, 634(1-3):26-32.
    55. Kuo JH, Chen SJ, Shih CC, Lue WM, Wu CC. Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock. Shock. 2009,32(1):74-79.
    56. Ha SJ, Kim W, Woo JS, Kim JB, Kim SJ, Kim WS, Kim MK, Cheng XW, Kim KS. Preventive effects of exenatide on endothelial dysfunction induced by ischemia-reperfusion injury via KATP channels. Arterioscler Thromb Vase Biol. 2012,32(2):474-480.
    57. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res.2011,109(11):1259-1268.
    58. Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, Hendricks-Munoz KD, Coetzee WA. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium:effects on coronary flow and endothelin-1 secretion. FASEB J.2007,21(9):2162-2172.
    59. Shi W, Cui N, Wu Z, Yang Y, Zhang S, Gai H, Zhu D, Jiang C. Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-kappaB-dependent signaling. J Biol Chem. 2010,285(5):3021-3029.
    60. Collin S, Sennoun N, Dron AG. de la Bourdonnaye M, Montemont C, Asfar P, Lacolley P. Meziani F, Levy B. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock. Intensive Care Med.2011,37(5):861-869.
    61. Figura M, Chilton L, Liacini A. Viskovic MM, Phan V, Knight D, Millar TM, Patel K. Kubes P, Giles WR. Tibbies LA. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant.2009,9(4):687-696.
    62. Spiller F, Orrico MI, Nascimento DC, Czaikoski PG, Souto FO, Alves-Filho JC, Freitas A, Carlos D, Montenegro MF, Neto AF, Ferreira SH, Rossi MA, Hothersall JS, Assreuy J, Cunha FQ. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med.2010, 182(3):360-368.
    63. Dal-Secco D, Cunha TM, Freitas A, Alves-Filho JC, Souto FO, Fukada SY, Grespan R, Alencar NM, Neto AF, Rossi MA, Ferreira SH, Hothersall JS, Cunha FQ. Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization:role of ATP-sensitive potassium channels. J Immunol.2008,181(6):4287-4298.
    64. Pompermayer K, Souza DG, Lara GG, Silveira KD, Cassali GD, Andrade AA, Bonjardim CA, Passaglio KT, Assreuy J, Cunha FQ, Vieira MA, Teixeira MM. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int.2005,67(5):1785-1796.
    65. Eleftherianos I, Won S, Chtarbanova S, Squiban B, Ocorr K, Bodmer R, Beutler B, Hoffmann JA, Imler JL. ATP-sensitive potassium channel (K(ATP))-dependent regulation of cardiotropic viral infections. Proc Natl Acad Sci USA.2011, 108(29):12024-12029.
    66. Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med.2008, 12(5A):1559-1570.
    67. Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA.2000,97(5):2163-2167.
    68. Kenny EF, O'Neill LA. Signalling adaptors used by Toll-like receptors:an update. Cytokine.2008.43(3):342-349.
    69. Miggin SM, Palsson-McDermott E, Dunne A, Jefferies C, Pinteaux E, Banahan K, Murphy C, Moynagh P, Yamamoto M, Akira S. Rothwell N, Golenbock D, Fitzgerald KA. O'Neill LA. NF-kappaB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA.2007, 104(9):3372-3377.
    70. de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor (kappa) B signaling in atherogenesis. Arterioscler Thromb Vase Biol.2005,25:904-914.
    71. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004,430:694-699.
    72. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science.2001,293:1495-1499.
    73. Basak S, Shih VF, Hoffmann A. Generation and activation of multiple dimeric transcription factors within the NF-kappaB signaling system. Mol Cell Biol.2008, 28:3139-3150.
    74. Chen ZJ. Ubiquitin signaling in the NF-κB pathway. Nat Cell Biol.2005, 7:758-765.
    75. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKK alpha limits macrophage NF-kappa B activation and contributes to the resolution of inflammation. Nature. 2005,434:1138-1143.
    76. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene.2007,26:3100-3112.
    77. McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene.2007,26:3113-3121.
    78. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science.2000,287:664-666.
    79. Zarubin T. Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res.2005,15:11-18.
    80. Whitmarsh AJ. The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 2006,34:828-832.
    81. Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA. Flavonoids as anti-inflammatory agents:implications in cancer and cardiovascular disease. Inflamm Res.2009,58:537-552.
    82. Muslin AJ. MAPK signalling in cardiovascular health and disease:molecular mechanisms and therapeutic targets. Clin Sci (Lond).2008,115:203-218.
    83. Sprague AH. Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol.2009,78:539-552.
    84. Turrell HE, Rodrigo GC, Norman RI, Dickens M, Standen NB. Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol.2011,51(3):370-380.
    85. Strande JL, Widlansky ME, Tsopanoglou NE, Su J, Wang J, Hsu A, Routhu KV, Baker JE. Parstatin:a cryptic peptide involved in cardioprotection after ischaemia and reperfusion injury. Cardiovasc Res.2009,83(2):325-334.
    86. M Hayakawa, H Miyashita, I Sakamoto, M Kitagawa, H Tanaka, H.Yasuda, M Karin, K. Kikugawa. Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J.2003,22(13):3356-3366.
    87. Loewe R, Holnthoner W, Groger M, Pillinger M, Gruber F, Mechtcheriakova D, Hofer E, Wolff K, Petzelbauer P. Dimethyl fumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol.2002, 168(9):4781-4787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700