动脉粥样硬化未干预病变斑块易损机制的实验及临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     近年来,经皮冠状动脉介入术(PCI)治疗冠心病在我国迅速普及。据卫生部统计,2011年中国大陆PCI量已达332992例以上。然而,PCI术后不良心血.管事件(MACE)的高发生率,严重影响了冠心病介入患者预后及生活质量。因此,如何减少PCI术后MACE成为研究热点。研究认为PCI术后MACE产生不仅仅来自支架内再狄窄和/或血栓形成等,非靶病变斑块稳态的改变导致斑块进展和/或破裂引起越来越多关注。非靶病变又被称为未干预病变或临界病变,是指冠状动脉造影直径法测量狭窄程度为50%-70%的病变。因其狭窄程度较轻一般不引起心肌缺血,但非靶病变(临界病变)多属于不稳定斑块,易于破裂,导致心脏急性事件。临床研究发现PcI术后1年内高达12.4%MACE源目非靶病变,且在随后的4年内以每年6.3%速度递增。Stone等研究发现非靶病变进展多发生于狭窄程度较轻但具有易损性的斑块,且PCI术是非靶病变进展的独立预测因素,因此,推测PCI术可能会加速非靶病变易损斑块的进展。这一推论得到同类研究的证实。XU等通过冠脉造影发现冠脉介入术后8.5个月内43.7%的冠心病患者非靶病变斑块的迅速进展,基线炎症水平是其独立预测的重要因素。Nakachi等研究发现,不仅仅基线炎症与非靶病变斑块进展有关,PCI术后炎症加重也是非靶病变进展迅速的预测因素。因此,临床研究认为炎症在非靶病变斑块进展中起重要作用,但缺乏具体机制的基础研究。虽然临床研究证实他汀治疗能在一定程度上减轻非靶病变的进展,但仍有接近1/3的病人在长期随访中出现非靶病变进展的临床事件。因此,有必要进一步研究PCI术后非靶病变斑块进展机制并寻求更有效的措施。
     研究证实冠状血管成形术后炎症及氧化应激明显增加,并且支架置入术后炎症及氧化应激明显强于单纯球囊扩张术,原因可能归于异物置入、炎症及伴随氧化型低密度脂蛋白(oxLDL)增加。BRUNETTI等发现急性冠脉综合征(ACS)PCI术后24小时炎症因子(IL-10,TNF-α,IL-18,IL-2及IFN γ)释放明显增加,且炎症反应与冠状动脉病变类型和复杂程序密切相关。Aggarwal等发现PCI术后1小时检测到白细胞介素-6(IL-6)增加,推测IL-6升高可能是PCI术后炎症反应的始动因素。Segev研究证实IL-6于PCI术后24小时达峰,7天回落至基线水平。动物研究证实动脉损伤可导致动物体内活性氧(ROS)水平增加及氧化应激反应。升高ROS从球囊损伤后24小时持续至14天,ROS的来源可能是由渗入受损血管的巨噬细胞被激活产生,为oxLDL的形成提供了条件。不论其来源,ROS水平增加及氧化应激反应产生很大的不利影响,诱导细胞功能障碍和影响损伤动脉愈合。有研究认为介入治疗引起的氧化应激反应与体内血管紧张素Ⅱ(Ang Ⅱ)水平升高及血管内皮对Ang Ⅱ反应性增加有关,Ang Ⅱ能通过激活NADPH氧化酶诱导氧化应激,并且该作用与CD36信号通路有关。
     CD36是近年来备受关注的细胞膜蛋白分子。CD36属于B族清道夫受体家族的一员,广泛分布于血小板、巨核细胞、单核细胞、微血管内皮细胞、平滑肌细胞和心肌细胞等。研究表明炎症因子能上调单核巨噬细胞CD36表达。在糖耐量异常患者中IL-6能使sCD36浓度增加18%,机制可能与IL-6激活巨噬细胞从而导致其CD36表达增加。Keidar等研究认为IL-6类似于Ang日,能剂量依赖性增加CD36表达及巨噬细胞吞噬ox-LDL。另外,有体外研究发现IL-6刺激人脑毛细血管内皮细胞导致细胞内CD36蛋白的表达显着增加。
     Ox-LDL是体内氧化应激的产物,其通过与血管内皮细胞相应受体结合,诱导内皮细胞活化及损伤,致使内皮细胞表达粘附分子,诱导单核细胞粘附聚集并向内皮下迁移并分化成巨噬细胞。在巨噬细胞,CD36是oxLDI高亲和力受体,约占oxLDL结合受体的50%,是介导oxLDL进入血管内皮下主要受体。OxLDL进入内皮下后能反馈性上调循环中单核细胞表达CD36,导致巨噬细胞激活,泡沫细胞形成,致炎性因子释放及体内调节性免疫激活。Martin-Fuentes等通过体外分离和培养人单核-巨噬细胞,发现oxLDL刺激1小时后高反应性单核巨噬细胞即可高表达CD36,并且炎症因子IL-1β及IL-8表达明显增加。
     氧化应激反应能调节CD36表达,并且主要通过ox LDL及应激性高血糖途径完成。研究证实oxLDL体外刺激巨噬细胞4小时能上调CD36表达高达6倍,并且该作用持续24小时。研究发现应激性高糖能通过增加CD36mRNA转录效率而上调体外单核巨噬细胞表达CD36, Griffin等研究发现长时间暴露在高糖环境中巨噬细胞CD36的表达增加了5倍,主要原因是高糖刺激CD36mRNA的翻译效率增加。研究还发现血糖正常者高糖负荷2小时后单核细胞CD36表达明显增加,但该现象却没有发生于2型糖尿病患者,可能高糖刺激下迅速增加的CD36表达依赖于新CD36mRNA合成,并且有证据表明CD36蛋白储存于细胞内池并迅速转移至细胞表面。因此,高糖刺激增加的CD36mRNA转录效率出现在急性血糖波动而非慢性高血糖。另外,研究证实动脉粥样硬化(AS)斑块内,巨噬细胞能表达大量丰富的CD36蛋白,因此支架置入后循环CD36蛋白水平升高部分原因可能来自斑块内CD36释放。综合目前研究,我们不难看出炎症因子IL-6、ox-LDL及应激性高血糖均能够明显上调CD36信号蛋白表达。但是支架置入术后的炎症及氧化应激反应能否通过上调CD36蛋白表达影响非靶病变斑块易损及进展,目前尚不清楚。针对这一问题,我们在本研究通过构建AS支架置入且有非靶病变的动物模型,观察支架置入后炎症及氧化应激反应及其对CD36蛋白表达影响,分析了CD36蛋白表达与非靶病变进展关系,从而探讨支架置入后非靶病变易损机制及CD36信号通路作用,为进一步研究打下基础。
     研究目的
     (1)通过构建AS支架置入且有未干预的非靶病变动物模型,检测支架置入术对非靶病变稳定性及斑块进展的影响,探讨支架置入术后非靶病变易损及进展加速的机制。
     (2)探讨支架置入术后炎症、氧化应激及CD36表达变化以及其与非靶病变易损和进展加速的关系。
     研究方法
     1.支架置入AS模型的建立
     本实验室以往的研究发现,短期高胆固醇喂养所形成的家兔AS斑块均为稳定和较小的斑块,故本课题组采用大直径球囊损伤腹主动脉内皮+高胆固醇(1%)饲料喂养的方法,可造成负荷较大且分布较广的斑块。选择雄性纯种新西兰兔20只分成A组(15只)和B组(5只)。A组高脂饲料(1%胆固醇)喂养2周后,进行腹主动脉球囊拉伤术。B组单纯高脂饲料(1%胆固醇)。10周末A组行腹主动脉造影,根据实验方案选择腹主动脉上段及下段均有明显斑块的实验兔11只,随机分为A1组(支架置入组)和A2组(球囊损伤组),其中A1组实验兔支架置入术前因麻醉死亡1只被剔除,最终每组各5只。A1组兔进行腹主动脉造影及JVUS检查。选择合适部位(腹主动脉下段斑块最明显的部位)并置入金属裸支架(BMS,北京Partner公司惠赐),支架型号为3.0mm×12mm,以16~20个大气压释放支架,之后再行IVUS(?)检查。支架释放后1小时通过耳中动脉抽血4ml,留样待检。所有实验兔继续高脂饲料喂养于14周处死。
     2.血管内超声检查:支架置入前后及动物处死前行IVUS(?)检查。血管内超声的测量指标:病变部位及参考部位的血管外弹力膜面积(EEMA)、管腔面积(LA)、斑块面积(PA)、斑块负荷(PB)、斑块最厚处直径(Dmax)及其对侧斑块最薄处直径(Dmin)。(?)按照公式计算斑块偏心指数(EI):EI=(Dmax-Dmin)/Dmax:血管重构指数(PI):重构指数即狭窄处EEMA/参考血管近远端EEMA平均值,参考血管采用的是原位IVUS(?)成像的斑块远端和近端5mm处相对正常的血管截面。正性重构:RI>1.05;负性重构:RI<0.95:RI值位于0.95与1.05之间的为无重构。
     3.血脂及血糖测定
     第10周、11周及动物处死前由兔耳中动脉抽取4mL动脉血标本,自凝后留取血清分装于Eppendorf管中,于-80℃冰箱中冻存,以氧化酶法检测总胆固醇(TC)、总甘油三酯(TG)、低密度脂蛋白(LDL-L)、高密度脂蛋白(HDL-L)等指标。单位以mmol/l表示。
     4.ELISA检查
     第10周(支架置入前)、术后1小时、术后24小时、第11周(术后1周)及动物处死前(术后4周)分别由兔耳中动脉抽取4mL动脉血标本,自凝后留取血清分装于Eppendor(?)管中,于-80℃冰箱中冻存,以氧化酶法检测血糖(Glu)浓度,采用ELISA(?)测定血清高敏C反应蛋白(hs-CRP)、白细胞介素(IL)-6、氧化型低密度脂蛋白(oxLDL)、CD36蛋白的浓度。
     5.组织病理学检查:非靶病变斑块定义为兔腹主动脉上段血管斑块组织,进行免疫组织化学染色观察巨噬细胞(RAM-11)、金属蛋白酶9(MMP9)、IL-6、CD36及肿瘤坏死因子a(TNF-α)在非靶病变斑块内局部表达。兔腹主动脉下段带支架血管段标本处理后甲醛浸泡并做好标记,送复旦大学附属中山医院行硬塑料包埋后,用硬组织切片机切片,每段血管切2片,根据SchwartZ等人描述的方法,Leica电脑微图象分析仪和NIKON显微镜加Scion Image微图象分析系统测定支架段血管切片的新生内膜厚度、面积。
     6.免疫印迹(Western blot):分别检测实验兔非靶病变斑块内IL-6、TNF-α、MMP-9及CD36蛋白质的表达。
     7.统计学分析:应用SPSS17.0软件进行统计学分析。计量资料用x±s表示,符合正态分布的采用t检验,不符合正态分布的采用非参数检验Mann-Whitney检验,用中位数M(5%-95%)表示,均采用两个独立样本t检验,组间比较采用配对t检验。多变量比较采用ANOVA分析,计数资料采用x。检验,用Spearman相关性分析来分析变量间的相关关系,P<0.05具有统计学意义。
     结果
     ①与对照组及球囊损伤组相比较,实验兔腹主动脉支架置入后1小时即可检测到炎症因子IL-6、ox-LDL及血糖明显升高;术后24小时儿-6水平达峰,术后7天及4周逐渐回落但仍然高于对照组及球囊损伤组;应激性高血糖峰值出现于术后24小时,术后7天回落至术前水平,与对照组无差异;oxLDL水平逐渐升高,持续至术后4周,并且明显高于对照组及球囊损伤组(P<0.05);
     ②支架置入后非靶病变斑块进展更加明显,表现为管腔面积(LA)明显减少(7.29±2.14vs9.89±2.28,P<0.05),斑块面积(10.42±4.43vs6.54±1.99,P<0.05)及负荷(57.42±9.29vs39.30±5.67,P<0.05)明显增加。且斑块多为偏心性斑块(EI>0.5),正性重构更为显著(1.14±0.29vs1.07±0.23,P<0.05):
     ③免疫组化检查结果显示:支架置入组非靶病变斑块内含有大量的MMP-9(41.48%±4.24)、IL-6(51.82%±5.05)、TNF-α(51.46%±6.47)蛋白的表达,球囊损伤组内膜的泡沫细胞及中膜的平滑肌细胞内亦有MMP-9(13.51%±1.15)、IL-6(24.70%±2.55)、TNF-α(19.07%±1.72)的表达,但表达的数量明显低于支架置入组(P<0.05)。与高脂喂养对照组(B组)比较,A组腹主动脉非靶病变斑块CD36及RAM-11表达的水平明显增加(P<0.01-0.05),且支架置入组(A1组)增加幅度明显高于无支架对照组(A2组)(P<0.05)。
     ④Western-blot检查结果显示:腹主动脉非靶病变斑块MMP-9、IL-6、TNF-α及CD36蛋白质表达呈现一致性,以对照组(B组)最少,其次为球囊损伤组(A2组),支架置入组(A1组)表达量最高。
     ⑤血清CD36于术后24小时开始升高,其升高水平与炎症及氧化应激反应呈现明显正相关,说明炎症及氧化应激反应能上调CD36蛋白表达;CD36持续性升高直至兔处死前(术后4周)并且处死前CD36水平与斑块负荷呈正相关,表明CD36信号蛋白是介导非靶病变斑块进展的因素。
     结论
     1.行支架置入且存在非靶病变的AS动物模型构建:采用大直径球囊损伤+高脂喂养建立了AS动物模型,通过IVUS (?)检测证实此模型斑块分布较广,斑块形态学上具有与人类相似的特点(脂质斑块为低回声,斑块的纤维帽较薄)。经股动脉于新西兰兔腹主动脉下段斑块明显处置入支架而未干预腹主动脉上段病变,成功解决了股动脉血管细、易痉挛及支架脱载等技术难点,成功构建支架置入且存在非靶病变的AS动物模型构建,为进一步实践研究打下基础。
     2.本研究结果证实兔腹主动脉支架置入术后体内炎症及氧化应激水平明显增加,并且上述反应要明显强于单纯球囊损伤术。
     3.本研究结果发现支架置入后能加述非靶病变斑块易损性进展,为临床研究提供了有力的佐证
     4.本研究初步结果揭示了支架置入术后通过炎症因子及氧化应激反应等途径上调CD36蛋白表达,并且CD36蛋白表达上调与非靶病变斑块进展密切相关,为进一步深入研究打下理论基础。
     背景
     动脉粥样硬化(AS)易损斑块蚀损或破裂继发血栓形成是急性冠脉综合征(ACS)发病的主要机制。早在上个世纪九十年代研究就发现大约70%的ACS罪犯病变血管狭窄为小于50%的临界病变,这部分人群同样存在猝死的风险。临界病变,又被称为中等程度狭窄,是指冠脉造影(CAG)显示冠状动脉病变直径狭窄为50%-70%的病变,因其狭窄程度较轻一般不引起心肌缺血,但临界病变多属于不稳定斑块,易于破裂,导致心脏急性事件。临界病变斑块易损性是导致ACS的始动因素。深入研究临界病变斑块易损性的发生机制,探讨如何早期识别动脉粥样硬化病变中的易损斑块,并能够采取有效措施稳定易损斑块,使其“钝化”,是防治ACS的重要方法。
     研究显示CD36与斑块不稳定性的发生和进展密切相关。CD36属于B族清道夫受体,是一种细胞表面单链糖蛋白,广泛存在于多种不同种类的细胞,如单核巨噬细胞、血小板、微血管内皮细胞、平滑肌细胞等,能黏附和吞噬氧化低密度脂蛋白(oxLDI)进入巨噬细胞,最终变成泡沫细胞,构成动脉粥样硬化斑块的核心。OxLDI能通过CD36和PKC途径激活巨噬细胞产生炎症反应。炎症反应是斑块易损性最重要的内在因素之一。另外,oxLDI与CD36(?)合能通过上调血管内皮或内膜产生趋化因子来调节单核细胞浸润。不规则趋化因子((?)ractalkine, FKN)足CX3C趋化因子亚家族的唯一成员,其受体CX3CR1主要表达在NK细胞、T细胞和单核细胞上,介导表达fractalkine细胞对上述细胞的趋化作用。研究表明,FKN/CX3CR1系统参与并促进动脉粥样硬化炎症反应过程。与此同时,体外研究也发现CD36缺乏的巨噬细胞对趋化因子CCL2的趋化反应明显减弱。这此研究一致表明CD36和趋化因子在调节单核巨噬细胞浸润血管壁以及斑块进展方面存在协同作用,然而目前这方而研究甚少,并且CD36和趋化因子结合能否在动脉粥样硬化的不同时期发挥作用目前尚不清楚。
     本研究选择临床确诊不稳定性心绞痛患者,根据CAG结果分为冠脉临界病变组和严重病变组两组,通过比较CD36以及趋化因子fractalkine水平和血管内超声(IVUS)测量的斑块负荷等关系,并进行2年随访,探讨血清CD36及fractalkine与不稳定性心绞痛患者冠状动脉狭窄及预后的关系。
     对象和方法
     1研究对象
     选择2010年1月-2010年6月在山东大学齐鲁医院胸痛中心病房住院治疗的确诊为不稳定性心绞痛并行CAG检查的患者。根据CAG结果将患者分为冠脉临界病变组(罪犯血管斑块占管腔直径狭窄≤70%,A组)及严重病变组(罪犯血管至少存在一处斑块占管腔直径狭窄>70%,B组),对所有患者行IVUS检查。同时选择年龄和性别匹配的健康体检者40人作为对照组,对照组排除心脏病史,体格检查、胸片、心电图及心脏超声均无异常结果。
     2方法
     2.1血液标本的采集入选患者在山东大学齐鲁医院胸痛中心病房入院即刻采血,对照组在山东大学齐鲁医院健康查体中心就诊时采血。无菌条件下采集外周静脉血5ml,3000转/分离心10分钟后,留取血清标本并做好编号及标记,冻存于-80℃冰箱中以备检测。
     2.2血清炎性因子的检测血清中CD36和fractalkine水平采用ELISA法严格按照说明书进行检测。
     2.3冠状动脉造影与血管内超声检查冠状动脉造影检查于我院心血管介入中心进行,采用荷兰飞利浦公司产V-3000型心血管造影仪。首先进行CAG检查确定冠状动脉病变血管支数、血管狭窄部位以及程度等。血管直径狭窄是以病变前或后相对正常管腔直径作参照,病变处管腔直径丢失的百分比来表示。对于血管直径狭窄≥50%的病变,采用血管内超声仪(IVUS,美国Boston scientific公司产iLab型)进行病变部位的检查。有意义斑块定义为IVUS显示斑块面积负荷≥50%。斑块间正常血管段距离≥5mm定义为两个斑块。常见的IVUS测量指标包括斑块最厚处直径(Dmax)及其对侧斑块最薄处直径(Dmin)、血管外弹力膜面积(FEMA)、斑块面积(PA)、管腔面积(LA)等。按照公式计算重构指数(RI)、斑块负荷(PB)和偏心指数(EI):EI=(Dmax-Dmin)/Dmax,RI-病变处EEMA/参考部位近端与远端EEMA平均值,PB=PA/EEMA×100%。由两名经验丰富的操作者(陈文强和李大庆)独立分析CAG及IVUS图像,结果达到一致者纳入本研究。结果存在争议时有研究者共同决定。
     2.4随访采用电话及门诊两种方式对患者进行2年随访,终点事件是主要不良心血管事件(MACE),包括死亡,再次心肌梗死,严重心绞痛(Canadian Cardiovascular Society,CCS分级≥Ⅲ级)及再次血运重建术等。所有失访患者最终从本研究中剔除。
     2.5统计学分析:统计学分析应用SPSS17.0(?)软件进行。计量资料,符合正态分布的采用t检验,用x±s表示,不符合正态分布的采用非参数检验Mann-Whitney检验,用中位数M(5%-95%)表示,均采用两个独立样本t检验,组间比较采用配对t检验。多变量比较采用ANOVA分析,计数资料采用χ2检验,应用Kaplan-Meier曲线对比两组无事件生存率,P<0.05具有统计学意义。
     3.结果
     3.1.基线资料和血清生物标记物的比较
     初选不稳定性心绞痛患者134例,最终完成随访患者120例,根据冠脉造影结果分为两组,其中临界病变组80例,严重病变组40例。对照组40例健康查体者,3组基线资料和血清生物标记物结果列于表1。CD36以及趋化因子fractalkine水平在不稳定性心绞痛患者中明显升高,且严重病变组升高更明显。
     3.2两组患者冠状动脉影像学检查结果比较
     80例临界病变患者中,80%患者是1支血管病变,2支及以上血管病变仅占20%。严重狭窄病变组中90%患者是2支及以上血管病变,1支血管病变仅占10%,两组间比较统计学有显著差异。
     IVUS检测结果示临界病变组检出斑块97处,严重狭窄病变组共检出斑块96处。两组患者的病变部位斑块主要以偏心斑块为主。两组患者的RI均大于1.05,病变部位均呈现为正性重构。临界病变组主要为脂质斑块(73%vs48%,P<0.01),严重狭窄病变组钙化斑块和混合性斑块的比例高于临界病变组(P<0.05)。进一步结果显示严重狭窄病变组病变部位血管的EEMA. PA及PB明显大于临界病变组,两组比较均具有显著的统计学差异(P<0.05~0.01)。Spearman相关性分析结果显示血清CD36(r=0.4068,95%CI:0.24-0.55; P<0.01)和fractalkine(r=0.43,95%CI:0.27-0.57;P<0.01)水平均和IVUS测量斑块负荷(PB)呈显著性正相关。更重要的是,CD36和fractalkine之间相关性分析呈正相关(r=0.183,95%CI:-0.001-0.355;P=0.046)。
     3.3. IVUS指导临界病变介入治疗
     根据患者是否有典型的心绞痛症状,心电图或者动态心电图显示病变处于缺血靶血管,IVUS显示斑块负荷≥70%。符合上述标准的临界病变行冠脉介入治疗。80例临界病变组患者中有59例(73.75%)患者病变血管段有介入指征而行支架置入术,介入治疗组病变部位血管的EEMA、PA、PB、EI及RI明显大于非介入组(P<0.05~0.01),而LA明显小于非介入组(P<0.05)。而严重病变组有38例患者置入支架(95%vs73.75%,P<0.05),2例患者行心脏血管旁路移植术(CABG),支架置入89枚,人均2.3枚,显著高于临界病变组(77枚,0.96枚/人均,P<0.05),支架直径及长度两组间比较未见差异。
     3.4.随访
     随访2年,临界病变组有6例患者发生MACE,其中1例患者发生非靶血管心肌梗死并进行介入治疗,严重病变组有8例患者发生MACE,其中1例患者因非靶血管闭塞再次心肌梗死行介入治疗,1例患者因非靶病变进展引发严重心绞痛行PCI术。两组间对比严重心绞痛发生率有显著性差异(6.25%vs17.5%,P<0.05)。
     结论
     (1)本研究发现CD36、fractalkine能促进动脉粥样硬化斑块易损及进展,并且两者在致动脉粥样硬化斑块进展方面具有协同作用,这种作用不仅仅体现在动脉粥样硬化进展早期,而且在AS晚期仍然发挥重要作用。因此,临床上可以采用联合分析CD36、fractalkine作为判断冠状动脉斑块易损及预测其进展的指标。
     (2)IVUS在指导临界病变处理中要优于传统CAG。通过IVUS对冠状动脉临界病变进行充分评估后,选择性进行血运重建具有非常重要的临床价值。
     (3)本研究长期随访结果发现即使进行血运重建干预,不稳定性心绞痛患者中冠脉严重病变者仍有较高MACE发生率,特别是严重心绞痛的比例较高,需要进一步研究分析冠脉介入术后心血管事件发生机制并采取切实有效措施降低MACE发生率。
Background
     Percutaneous coronary intervention (PCI) has developed rapidly in China during the past30years, because the incidence of coronary artery disease(CAD),which has become the leading cause of death in China, has been increasing dramatically. According to the data from Health Statistic Yearbook of the China Ministry of Health, there were about3millions CAD patients performing PCI in2011.However, there were still too much patients who had recurrent cardiovascular events after PCI. A growing amount of clinical evidence has shown that clinical events after coronary stent deployment resulted from not only the restenosis of the target lesion, but also the progression of lesion remote from the site of stent deployment.With the introduction of drug-eluting stents, which were capable of reducing incidence of in-stent restenosis to5%~10%, targeting potentially unstable but non-target lesions has been postulated as an approach to reduce major adverse cardiac events(MACE). Although non-target-lesion events were less common than that of restenosis during the first year (12.4%versus18.3%), they dominated the events during years2through5(average annual hazard rate6.3%versus1.7%).Over the5-year follow-up, non-target-lesion events contributed46.4%to the overall events. This result was consistent with other studies of Stone and Nakachi,which suggested that most non-target lesions responsible for MACE during follow-up were angiographically mild but vulnerable at baseline.On multivariate analysis, nonculprit lesions associated with recurrent MACE were more likely to be characterized by:(1) a plaque burden of70%or greater;(2) a minimal luminal area of4.0mm2or less;(3) thin-cap fibroatheromas on the basis of intravascular ultrasonography(IVUS).And previous PCI has been one of the predictors of recurrent events.which means acceleration of atherosclerosis "natural" evolution after PCI. Clinical studies demonstrated that plasma CRP levels, regardless of pre-stent or post-stent,might be an independent predictor in evaluating the progression of non-target atherosclerotic lesion after stent implantment. The precise mechanisms underlying this process are still unknown.
     Vascular injury following cardiovascular intervention,including balloon angioplasty and stenting, is associated with inflammation and oxidative stress,moreover, inflammation and oxidative stress might be more significantly after stenting than that after balloon angioplasty. Stent implantation leads to mechanical injury that induces local and systemic inflammation, which stimulates macrophage infiltration,vascular smooth muscle cell proliferation and extracellular matrix deposition. Vascular inflammation after PCI involves complex interactions between multiple vascular cell types and the cellular and molecular processes that control vascular injury responses of repair and vascular healing. Aggarwal reported that increase in IL-6could be detected1hour after PCI, and thus IL-6may be an early initiator of the systemic inflammatory response to stent deployment.Oxidative stress, regardless of the source, induces cellular dysfunction in endothelial and smooth muscle cells after arterial injury.
     As an membrane protein, CD36belongs to the class B scavenger receptor family. It is expressed on the surface of many cells of the cardiovascular system, including platelets, monocytes,smooth and skeletal muscle cells, microvascular endothelial cells and cardiomyocytes.The CD36protein has a 'hairpin-like' configuration, containing two transmembrane domains, one near the N-terminus and the other near the C-terminus, which are separated by a large, glycosylated extracellular loop. However, with the new knowledge of CD36ligands and the following signaling consequences, it becomes clear that the CD36protein acts in a receptor-type of manner and might be a signalling protein,which mediates signaling events involve activation of the pathways of mitogen-activated protein kinase (MAPK), nuclear factor κB (NFκB) and Rho kinase. In many cases, CD36ligandation causes a stress-like effect, enhancing defensive responses such as thrombus formation (platelets), production of inflammatory markers (endothelial cells, monocytes) and development of foam cells (macrophages)Studies confirmed that CD36is upregulated by cytokines IL-6、ox-LDL and stress hyperglycemia by signaling pathway involving protein kinase C and PPAR-y, mitogen-activated protein (MAP)kinase.However, whether inflammation and oxidative stress after stent deployment could affect the progression of non-target lesions through CD36signaling pathway is still unkown. The aim of the study was to investigate the effect of inflammation and oxidative stress after stent deployment on CD36and non-target lesions vulnerability in animal models.
     Methods
     1. Establishment animal models of the rabbit with vulnerable non-target plaques and stent deployment
     Twenty male New Zealand white rabbits were randomly grouped into two groups at2th week:group A (n=15), group B (n=5). Rabbits in group B were fed cholesterol-rich diet (a normal chow supplemented with1%cholesterol), while rabbits in group A were underwent larger balloon-induced abdominal aortic wall injury and then fed the cholesterol-rich diet. At10th week, according to the abdomimal aortic angiography,11rabbits with multiple plaques in upper and lower segments of abdominal aorta were selected and randomly divided into two subgroups:group A1was performed stent deployment according to clinical methods (n=6), A2was still fed the cholesterol-rich diet (n=5). One rabbit in group A1was dead before stenting due to anesthetic overdose.At the end of14th weeks, the rabbits in both group A, B were killed.
     2. Examining the features of vulnerable plaques:The rabbits' atheroslcerosis plaques in abdominal aorta were detected with intravascular ultrasound (IVUS). Plaque characteristic, plaque area and plaque distribution were examinated. The rabbits in group A1were taken the examination pre-and post-stenting at10th week, before being killed at14th week,while others were underwent the examination before being killed at14th week.
     3. Laboratory examinations:Blood samples were collected in different period to measure lipid profile and glucose. Using sandwich ELISA to quantify the amount of different inflammation mediators such as hs-CRP, IL-6,oxLDL and CD36.
     4. Histologic evaluation:The upper abdominal aorta was excised and examined by immunohistochemical stain of RAM-11(anti-rabbit macraphage), MMP-9, CD36, IL-6and TNF-α in local lesions,respectively.
     5. Western-blot:To examine the protein expression of MMP-9, CD36, IL-6and TNF-α in the upper abdominal aorta.
     6. Statistic analysis:Continuous variables are reported as mean±deviazione standard (SD) and have been compared using t test and ANOVA analysis, categorical variables by x2test. The relationship between variables was estimated by spearman analysis. For all analysis, a p value less than0.05was considered significant, using a statistical programme (spss version17.0).
     Results
     1. Compared with group B and group A2, cytokines IL-6、elevated oxidized LDL and blood glucose could be detected one hour after the rabbits abdominal aortic stenting. IL-6levels reached an earlier peak at24hours postprocedure, and then declined gradually at7days and4weeks, but still higher than that in group B and group A2; Hyperglycemia reached an earlier peak at24hours postprocedure, and then returned to baseline at7days, with no differences compared with group B and group A2; OxLDL level gradually increased, continuing to4weeks after stenting, and was significantly higher than that in group B and group A2(P<0.05)
     2. Intravascular ultrasound:External elastic membrance area (EEMA), plaque area (PA) and plaque burden of upper abdominal arterial lesions in group A1were significantly higher than those of group A2and group B (P<0.05).
     3. Histologic evaluation:Immunohistochemistry showed that the expression of RAM-11(anti-rabbit macraphage), MMP-9, IL-6, TNF-α, CD36in group A1were significantly higher than that in group A2and group B.
     4. Western blot:The expression of MMP-9, IL-6, TNF-a and CD36in group A1were significantly higher than that in group A2and group B (P<0.05).
     5. Serum CD36began to increase after24hours, and CD36level was positively correlated with elevated levels of inflammation and oxidative stress at24hours after stenting; CD36continued increasing until the rabbits were sacrificed (4weeks after stenting) and CD36levels and plaque burden before death was significantly positively correlated.
     Conclusions
     1. This study successfully constructed AS animal models stented with non-target lesions for further research.
     2. Inflammation and oxidative stress was more significant after stent deployment than that after balloon angioplasty.
     3. The results of our study demonstrated that the evolution of vulnerable non-target lesions acceleratd after PCI,which was in consistent with clinical studies.
     3. Preliminary results of this study found that inflammation, oxidative stress and CD36expression upregulating mediated non-target lesion plaque vulnerability and progression.
     Background
     Atherosclerosis is a chronic inflammatory disease in the artery wall leading to the development and progression of atherosclerotic lesions, which may obstruct the arterial lumen and/or eventually rupture and thrombose, causing acute coronary syndrome (ACS) of unstable angina, myocardial infarction, and sudden death. The risk of plaque disruption depends more on plaque composition and vulnerability (plaque type) than on degree of stenosis (plaque size). Thus, coronary occlusion and myocardial infarction most frequently evolve from mild to moderate stenoses (<70%stenosis at baseline).
     CD36, is a multi-ligand class B scavenger receptor expressed by monocytes/macrophages. It is a key player in atherosclerosis development through oxLDL binding and internalization, thereby leading to macrophage-derived foam cell formation and accumulation in atherosclerotic lesions. Stimulation by oxLDL induces the activation of the transcription factor NF-kB in macrophages through a mechanism that is dependent on CD36and PKC.
     Fractalkine (CX3CL1) is the only known member of the CX3C chemokine subfamily, and is expressed as both a soluble protein and as a membrane-bound protein on the surface of inflamed endothelium. Fractalkine has been associated with atherogenesis, and two specific mutations of the fractalkine receptor (CX3CR1) gene reduce the risk of future coronary events.
     A previous study comparing patients with unstable angina pectoris (UAP) and those with stable angina pectoris (SAP) showed that fractalkine independently enhanced the vulnerability of coronary atherosclerotic plaques.Oxidized LDL also regulates monocyte trafficking by upregulating chemokines such as CCL2within the intima and/or endothelial lining of arteries. A reduced chemotactic response of CD36-deficient macrophages towards the CCL2chemokine has been observed in vitro. This suggests that crosstalk between CD36and chemokines regulates mononuclear phagocyte trafficking to atherosclerotic lesions and influences plaque progression. However, few additional studies have looked more closely at the interaction of CD36and chemokines. The combined effect of CD36and chemokines at different stages of atherogenesis is still unknown.
     This study assessed atherosclerotic lesions in patients with UAP by intravascular ultrasound (IVUS) and then compared serum CD36and fractalkine levels in patients with intermediate and severe lesions. The objective was to determine if there are correlations between CD36and fractalkine levels, and the severity of coronary artery atherosclerosis assessed by IVUS.
     Methods and results
     Study population
     One hundred and twenty patients admitted for confirmed UAP and selective coronary angiography (CAG) were enrolled. A total of83men and37women, with a mean age of63.3±9.6years and range of49to82years, were divided into two groups according to the CAG results. Group A comprised80patients with intermediate lesions (lumen diameter stenosis50-70%) and group B included40patients with severe lesions (at least one lesion having lumen diameter stenosis>70%). The control group consisted of40healthy, age-and sex-matched subjects who visited the hospital for a routine physical check-up Blood Biomarker Measurements
     Blood samples were collected from every patient and control on admission to the hospital. Blood was collected by venipuncture into two foil-wrapped tubes containing5mL EDTA. The tubes were centrifuged for10minutes at3000rpm at4℃. Sera were transferred to2mL cryovials and stored at-80℃. Serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), fasting glucose, and troponin I were measured by enzymatic assays. Leucocytes counts were carried out. The levels of high-sensitivity C-reactive protein level (hs-CRP) were measured by an immunonephelometric assay on a BN ProSpec nephelometer (Dade Behring, Siemens Healthcare Diagnostics, Germany). Serum CD36and fractalkine levels were measured by a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer's protocol.
     Coronary Angiography
     All patients underwent CAG. The CAG images were analyzed using a Philips3000system. A coronary stenosis was defined as more than a50%decrease in vessel diameter compared with an adjacent normal segment. The number of stenotic lesions in each coronary artery was recorded.
     Intravascular Ultrasound Studies
     Three coronary IVUS assessments were carried out in all patients, as described previously. The following parameters were measured:external elastic membrane area (EEMA), lumen area (LA), plaque area (PA), plaque burden (PB), plaque eccentricity index (El), and remodeling index (RI). RI>1.05was regarded as positive remodeling,0.95-1.05as intermediate remodeling, and<0.95as negative remodeling. Coronary plaque composition was assessed visually according to plaque echogenicity. Two independent observers reviewed the IVUS images, and the final consensus values were used for data analysis.
     End Points
     The primary end points targeted major adverse cardiovascular events (MACE) that occurred in the two years after admission, including non-fatal myocardial re-infarction, severe angina pectoris (Canadian Cardiovascular Society, CCS grades≥Ⅲ), revascularization, and death. Follow-up was performed by office visits and/or telephone interviews.
     Statistical Analysis
     All statistical analyses were performed with the SPSS software package (version16.0; SPSS Inc., Chicago, IL, USA), and data are presented as mean±SEM. Comparison of continuous variables among multiple groups was performed by analysis of variance (ANOVA), and Chi-square analysis was used to compare categorical data. The correlations between two variables were assessed by Pearson or Spearman correlation analysis. Kaplan-Meier curves were calculated for the cumulative incidence of the primary end points in the two groups. The hazard ratios of end-point incidence were also calculated. A two-tailed P<0.05was considered statistically significant.
     Results
     Baseline Characteristics and Blood Biomarker Measurements
     There were no significant differences in age or gender among three groups. More patients with UAP had a history of hypertension, increased levels of LDL-C, troponin I, leucocytes, and hsCRP compared with controls (P<0.05). There were no significant differences in any of those parameters between group A and B. Serum CD36and fractalkine levels were significantly higher in UAP patients than controls. The differences in CD36and fractalkine levels in the two patient groups were also significant (P<0.05).
     CAG and IVUS Measurements
     The CAG studies identified a total of97coronary stenotic lesions with a lumen diameter stenosis of50-70%. Among these group A patients,80%had one-vessel coronary artery disease and18.75%had two-vessel disease. The remaining (group B) patients had a total of96coronary lesions. Of those lesions,5.2%had total occlusion and85.4%had a lumen diameter stenosis>70%. Each group B patient had at least one lesion with a lumen diameter stenosis>70%;10%had one-vessel disease,50%had two-vessel disease and40%had three-vessel disease.
     IVUS found that most atherosclerotic plaques in both groups were eccentric plaques with positive remodeling. Patients in the intermediate lesion group had softer lipid plaques (73%vs.48%, P<0.01), while patients in the severe lesion group had more calcified plaques and mixed plaques (P<0.05). Patients with severe lesions also had larger PA (P<0.01) and PB (P<0.05) than patients with intermediate lesions (Table2, Figure1). Spearman correlation analysis showed that both serum CD36(r=0.4068,95%CI:0.24-0.55; P<0.01) and fractalkine (r=0.43,95%CI:0.27-0.57; P<0.01) levels had a significant positive correlation with the PB of atherosclerotic lesions as measured by IVUS. Importantly, there was also a significant positive correlation between CD36and fractalkine levels (r=0.183,95%Cl:-0.001-0.355; P=0.046)(Figure2).
     More patients with severe lesions than with intermediate lesions underwent percutaneous coronary intervention (PCI)(95%vs.73.75%, P<0.05), and also received more stents per patient (2.3stents vs.1.3stents, P<0.05) in the severe lesion group. However, there were no significant differences in the diameter and length of stents that were placed in patients in the two groups (Table2).
     End Point Events
     During the two years of follow-up, primary end point events occurred in six patients (7.5%) in the intermediate lesions group and eight patients (20%) in the severe lesions group (P<0.05). A lower incidence of MACE was observed in the intermediate lesions group (HR:0.3118,95%CI:0.1013-0.9601; P=0.0424), mainly because of a lower risk of severe angina pectoris (6.25%vs.17.5%, P<0.05). There were no significant differences in risk of death, non-fatal myocardial infarction (MI), or revascularization between two groups (P>0.05). Three patients who returned for a clinically-driven re-PCI received a second CAG. The results showed two patients had plaque rupture, thrombosis of non-target vessels, and one experienced progression of non-target plaques.
     Conclusions
     In conclusion, CD36and fractalkine both promote, and might synergistically enhance, the progression of coronary atherosclerotic plaques. This study also showed that a higher incidence of MACE was observed in the severe lesion group during two years of follow-up.
引文
1. Amano T, Matsubara T, Uetani T, Kato M, Kato B, Yoshida T, Harada K, Kumagai S, Kunimura A, Shinbo Y, Ishii H, Murohara T.Lipid-rich plaques predict non-target-lesion ischemic events in patients undergoing percutaneous coronary intervention.Circ J.2011;75(1):157-66.
    2. Cutlip DE, Chhabra AG, Baim DS, Chauhan MS, Marulkar S, Massaro J, Bakhai A, Cohen DJ, Kuntz RE, Ho KK.Beyond restenosis:five-year clinical outcomes from second-generation coronary stent trials.Circulation. 2004;110(10):1226-30.
    3. Xu YL, Li JJ, Xu B, Zhu CG, Yang YJ, Chen JL, Qiao SB, Yuan JQ, Qin XW, Ma WH, Yao M, Liu HB, Wu YJ, Chen J, You SJ, Dai J, Xia R, Gao RL.Increased plasma C-reactive protein level predicts rapid progression of non-target atherosclerotic lesions in patients with stable angina after stenting.Chin Med J (Engl).2011;124(19):3022-9.
    4. Leon MB, Allocco DJ, Dawkins KD, Baim DS.Late clinical events after drug-eluting stents:the interplay between stent-related and natural history-driven events.JACC Cardiovasc Interv.2009;2(6):504-12.
    5. Imai K, Okura H, Kume T, Yamada R, Miyamoto Y, Kawamoto T, Neishi Y, Watanabe N, Toyota E, Yoshida K.C-reactive protein predicts non-target lesion revascularization and cardiac events following percutaneous coronary intervention in patients with angina pectoris.J Cardiol.2009;53(3):388-95.
    6. Yip HK, Hung WC, Yang CH, Chen YH, Cheng CI, Chen SM, Yeh KH.Serum concentrations of high-sensitivity C-reactive protein predict progressively obstructive lesions rather than late restenosis in patients with unstable angina undergoing coronary artery stenting.Circ J.2005;69(10):1202-7.
    7. Nakachi T, Kosuge M, Hibi K, Ebina T, Hashiba K, Mitsuhashi T, Endo M, Umemura S, Kimura K.C-reactive protein elevation and rapid angiographic progression of nonculprit lesion in patients with non-ST-segment elevation acute coronary syndrome.Circ J.2008;72(12):1953-9.
    8. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW; PROSPECT Investigators.A prospective natural-history study of coronary atherosclerosis.N Engl J Med.2011;364(3):226-35.
    9. Brunetti ND, Munno I, Pellegrino PL, Ruggiero V, Corrcale M, Cuculo A, De Gennaro L, Campanale G, Mavilio G, Ziccardi L, Di Biase M.Inflammatory cytokine imbalance after coronary angioplasty:links with coronary atherosclerosis.J Interv Cardiol.2007;20(4):248-57.
    10. Toutouzas K, Drakopoulou M, Markou V, Karabelas I, Vaina S, Vavuranakis M. Tsiamis E, Tsioufis C, Androulakis A, Stefanadis C.Correlation of systemic inflammation with local inflammatory activity in non-culprit lesions: beneficial effect of statins.Int J Cardiol.2007;119(3):368-73.
    11. Roscnbaum MA, Miyazaki K, Graham LM.Hypercholcstcrolemia and oxidative stress inhibit endothelial cell healing after arterial injury.J Vasc Surg. 2012;55(2):489-96.
    12. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A.Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury.Arterioscler Thromb Vase Biol.2001;21(5):739-45.
    13. Nunes GL, Robinson K, Kalynych A, King SB 3rd, Sgoutas DS, Berk BC.Vitamins C and E inhibit O2- production in the pig coronary artery.Cireulation.1997;96(10):3593-601.
    14. Kawamoto R, Yamashita A, Nishihira K, Furukoji E, Hatakeyama K, Ishikawa T, Imamura T, Itabe H, Eto T, Asada Y.Different inflammatory response and oxidative stress in neointimal hyperplasia after balloon angioplasty and stent implantation in cholesterol-fed rabbits.Pathol Res Pract.2006;202(6):447-56.
    15. Gomes WJ, Buffolo E.Coronary stenting and inflammation:implications for further surgical and medical treatment.Ann Thorac Surg.2006;81(5):1918-25.
    16. Aggarwal A, Schneider DJ, Terrien EF, Gilbert KE, Dauerman HL.Increase in interleukin-6 in the first hour after coronary stenting:an early marker of the inflammatory response.J Thromb Thrombolysis.2003:15(1):25-31.
    17. Segev A, Kassam S, Buller CE, Lau HK, Sparkes JD, Connelly PW, Seidelin PH, Natarajan MK, Cohen EA, Strauss BH.Pre-procedural plasma levels of C-reactive protein and interleukin-6 do not predict late coronary angiographic restenosis after elective stenting.Eur Heart J.2004;25(12):1029-35.
    18. Berg K, Jynge P, Bjerve K, Skarra S, Basu S, Wiseth R.Oxidative stress and inflammatory response during and following coronary interventions for acute myocardial infarction.Free Radic Res.2005;39(6):629-36.
    19. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel WG.Angiotensin Ⅱ-induced superoxide anion generation in human vascular endothelial cells:role of membrane-bound NADH-/NADPH-oxidases.Cardiovasc Res.1999;44(1):215-22.
    20. Li RJ, Ji WQ, Pang JJ, Wang JL, Chen YG, Zhang Y.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome. Tohoku J Exp Med.2013;229(1): 45-51.
    21. Nergiz-Unal R, Rademakers T, Cosemans JM, Heemskerk JW.CD36 as a multiple-ligand signaling receptor in atherothrombosis.Cardiovasc Hematol Agents Med Chem.2011;9(1):42-55.
    22. Shoelson SE, Lee J, Goldfine AB.Inflammation and insulin resistance.J Clin Invest.2006; 116(7):1793-801.
    23. Handberg A, Lopez-Bermejo A, Bassols J, Vendrell J, Ricart W, Fernandez-Real JM.Circulating soluble CD36 is associated with glucose metabolism and interleukin-6 in glucose-intolerant men.Diab Vasc Dis Res. 2009;6(1):15-20.
    24. Keidar S, Heinrich R, Kaplan M, Hayek T, Aviram M.Angiotensin Ⅱ administration to atherosclerotic mice increases macrophage uptake of oxidized ldl:a possible role for interleukin-6.Arterioscler Thromb Vasc Biol. 2001;21(9):1464-9.
    25. Prudhomme JG, Sherman IW, Land KM, Moses AV, Stenglein S, Nelson JA.Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells.Int J Parasitol.1996;26(6):647-55.
    26. Mitra S, Deshmukh A, Sachdeva R, Lu J, Mehta JL.Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy.Am J Med Sci.2011;342(2):135-42.
    27. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K., Yoshikawa J, Becker AE.Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes.Circulation. 2001; 103(15):1955-60.
    28. Yamashita H, Ehara S, Yoshiyama M, Naruko T, Haze K, Shirai N, Sugama Y, Ikura Y, Ohsawa M, Itabe H, Kataoka T, Kobayashi Y, Becker AE, Yoshikawa J, Ueda M.Elevated plasma levels of oxidized low-density lipoprotein relate to the presence of angiographieally detected complex and thrombotic coronary artery lesion morphology in patients with unstable angina. Circ J. 2007;71(5):681-7.
    29. Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y, Ishigami M, Sakai N.Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients.Mol Cell Biochem. 2007;299(1-2):19-22.
    30. Martin-Fuentes P, Civeira F, Recalde D, Garcia-Otin AL, Jarauta E, Marzo I, Cenarro A.Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response.J Immunol.2007;179(5):3242-8.
    31. Han J, Hajjar DP, Febbraio M, Nicholson AC.Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36.J Biol Chem.1997;272(34):21654-9.
    32. Griffin E, Re A, Hamel N, Fu C, Bush H, McCaffrey T, Asch AS.A link between diabetes and atherosclerosis:Glucose regulates expression of CD36 at the level of translation.Nat Med.2001;7(7):840-6.
    33. Sampson MJ, Davies IR, Braschi S, Ivory K, Hughes DA.Increased expression of a scavenger receptor (CD36) in monocytes from subjects with Type 2 diabetes.Atherosclerosis.2003; 167(1):129-34.
    34. Nakata A, Nakagawa Y, Nishida M, Nozaki S, Miyagawa J, Nakagawa T, Tamura R, Matsumoto K, Kameda-Takemura K, Yamashita S, Matsuzawa Y.CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta.Arterioscler Thromb Vase Biol.1999; 19(5):1333-9.
    35. Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y, Ishigami M, Sakai N.Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients.Mol Cell Biochem. 2007;299(1-2):19-22.
    36. Janabi M, Yamashita S, Hirano K, Sakai N, Hiraoka H, Matsumoto K, Zhang Z, Nozaki S, Matsuzawa Y.Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients.Arterioscler Thromb Vase Biol.2000;20(8):1953-60.
    37. Lorenz E.TLR2 and TLR4 expression during bacterial infections.Curr Pharm Des.2006;12(32):4185-93.
    38. Han J, Ulevitch RJ.Limiting inflammatory responses during activation of innate immunity.Nat Immunol.2005;6(12):1198-205.
    39. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B.CD36 is a sensor of diacylglycerides.Nature.2005;433(7025):523-7.
    40. Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patterson AP, Eggerman TL.Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling.J Immunol.2008;181(10):7147-56.
    41. Monaco C, Gregan SM, Navin TJ, Foxwell BM, Davies AH, Feldmann M.Toll-like receptor-2 mediates inflammation and matrix degradation in human atherosclerosis.Circulation.2009;120(24):2462-9.
    42. Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, Chen J, Zhang R, Silverstein RL. Hazen SL.Nat Med.2007; 13(9):1086-95.Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.
    43. Zhao M, Liu Y, Wang X, New L, Han J, Brunk UT. Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL.APMIS.2002;110(6):458-68.
    44. Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ, Park HY.PPARgamma activation induces CD36 expression and stimulates foam cell like changes in rVSMCs.Prostaglandins Other Lipid Mediat.2006;80(3-4):165-74.
    45. Chen K, Febbraio M, Li W, Silverstein RL.A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein.Circ Res.2008; 102(12):1512-9.
    46. Assinger A, Schmid W, Eder S, Schmid D, Koller E, Volf I.Oxidation by hypochlorite converts protective HDL into a potent platelet agonist.FEBS Lett. 2008;582(5):778-84.
    47. Ghosh A, Li W, Febbraio M, Espinola RG, McCrae KR, Cockrell E, Silverstein RL.Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice.J Clin Invest. 2008;118(5):1934-43.
    48. 仲琳,张运,张梅,季晓平,陈文强,姚桂平, 于士芳,张鹏飞.兔动脉粥样硬化易损斑块模型的建立.基础医学与临床.2005.25(4):370-374.
    49. Schwartz RS, Chronos NA, Virmani R.Preclinical restenosis models and drug-eluting stents:still important, still much to learn.J Am Coll Cardiol. 2004;44(7):1373-85.
    50. Muller DW, Ellis SG, Topol EJ.Experimental models of coronary artery restenosis.J Am Coll Cardiol.1992;19(2):418-32.
    51.邵娜,陈文强,李大庆,由倍安,安贵鹏,齐天军,徐福彪,胡晓波,杜金玲,杨敏,王晨,张运,陈玉国,李继福,口服雷帕霉素抑制支架内再 狭窄的血管内超声的实验研究.山东大学学报(医学版).2011.49(6):59-63.
    52. Weintraub WS, Spertus JA, Kolm P, Maron DJ, Zhang Z, Jurkovitz C, Zhang W, Hartigan PM, Lewis C, Veledar E, Bowen J, Dunbar SB, Deaton C, Kaufman S, O'Rourke RA, Goeree R, Barnett PG, Teo KK, Boden WE; COURAGE Trial Research Group, Mancini GB.Effect of PCI on quality of life in patients with stable coronary disease.N Engl J Med. 2008;359(7):677-87.
    53. Paroli M, Mariani P, Accapezzato D, D'Alessandro M, Di Russo C, Bifolco M, Sirinian MI, Fedele F, Bruno G, Sardella G.Modulation of tachykinin and cytokine release in patients with coronary disease undergoing percutaneous revascularization.Clin Immunol.2004;112(1):78-84.
    54. Aggarwal A, Blum A, Schneider DJ, Sobel BE, Dauerman HL.Soluble CD40 ligand is an early initiator of inflammation after coronary intervention.Coron Artery Dis.2004;15(8):471-5.
    55. Casscells W, Naghavi M, Willerson JT.Vulnerable atherosclerotic plaque:a multifocal disease.Circulation.2003;107(16):2072-5.
    56. Marx N, Neumann FJ, Ott I, Gawaz M, Koch W, Pinkau T, Schomig A.Induction of cytokine expression in leukocytes in acute myocardial infarction.J Am Coll Cardiol.1997;30(1):165-70.
    57. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR.Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.N Engl J Med.2002;347(20):1557-65.
    58. Zwaka TP, Hombach V, Torzewski J.C-reactive protein-mediated low density lipoprotein uptake by macrophages:implications for atherosclerosis.Circulation.2001; 103(9):1194-7.
    59. Torzewski J, Torzewski M, Bowyer DE, Frohlich M, Koenig W, Waltenberger J, Fitzsimmons C, Hombach V.C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries.Arterioscler Thromb Vase Biol. 1998;18(9):1386-92.
    60. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ.A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis.Circulation.2002; 106(8):913-9.
    61. Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S.New markers of inflammation and endothelial cell activation:Part Ⅰ.Circulation.2003; 108(16):1917-23.
    62. Schieffer B, Schieffer E, Hilfikcr-Kleiner D, Milfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W, Drexler H.Expression of angiotensin Ⅱ and interleukin 6 in human coronary atherosclerotic plaques:potential implications for inflammation and plaque instability.Circulation. 2000;101(12):1372-8.
    63. Yesner LM, Huh HY, Pearce SF,Silverstein RL.Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators.Arterioscler Thromb Vasc Biol.1996;16(8):1019-25.
    64. Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N.Oxidized low-density lipoprotein.Methods Mol Biol.2010;610:403-17.
    65. Silverstein RL.Inflammation, atherosclerosis, and arterial thrombosis:role of the scavenger receptor CD36.Cleve Clin J Med.2009;76 Suppl 2:S27-30.
    66. Mitra S, Deshmukh A, Sachdeva R, Lu J, Mehta JL.Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy.Am J Med Sci.2011;342(2):135-42.
    67. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R. Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE.Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes.Circulation. 2001;103(15):1955-60.
    68. Hansson GK, Libby P, Schonbeck U. Yan ZQ.Innate and adaptive immunity in the pathogenesis of atherosclerosis.Circ Res.2002;91 (4):281-91.
    69. Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM.Antagonistic effects of oxidized low density lipoprotein and alpha-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-gamma.J Biol Chem.2006;281(10):6489-97.
    70. Kavanagh IC, Symes CE, Renaudin P, Nova E, Mesa MD, Boukouvalas G, Leake DS, Yaqoob P.Degree of oxidation of low density lipoprotein affects expression of CD36 and PPARgamma, but not cytokine production, by human monocyte-macrophages.Atherosclerosis.2003;168(2):271-82.
    71. Peters W, Charo IF.Involvement of chemokine receptor 2 and its ligand, monocyte chemoattractant protein-1, in the development of atherosclerosis: lessons from knockout mice.Curr Opin Lipidol.2001;12(2):175-80.
    72. Sukovich DA, Kauser K, Shirley FD, DelVecchio V, Halks-Miller M, Rubanyi GM. Expression of interleukin-6 in atherosclerotic lesions of male ApoE-knockout mice:inhibition by 17beta-estradiol.Arterioscler Thromb Vase Biol.1998;18(9):1498-505.
    73. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M.Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice.Atherosclerosis. 2005;180(1):11-7.
    74. de Nooijer R, Verkleij CJ, von der Thusen JH, Jukema JW, van der Wall EE, van Berkel TJ, Baker AH, Biessen EA.Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis.Arterioscler Thromb Vasc Biol. 2006;26(2):340-6.
    75. Gough PJ, Gomez IG, Wille PT, Raines EW.Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice.J Clin Invest. 2006; 116(1):59-69.
    76. Keaney JF Jr.Oxidative stress and the vascular wall:NADPH oxidases take center stage.Circulation.2005;112(17):2585-8.
    77. Martin CA, Longman E, Wooding C, Hoosdally SJ, Ali S, Aitman TJ, Gutmann DA, Freemont PS, Byrne B, Linton KJ.Cd36, a class B scavenger receptor, functions as a monomer to bind acetylated and oxidized low-density lipoproteins.Protein Sci.2007; 16(11):2531-41.
    78. Sun B, Boyanovsky BB, Connelly MA, Shridas P, van der Westhuyzcn DR, Webb NR.Distinct mechanisms for OxLDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI.J Lipid Res. 2007;48(12):2560-70.
    79. Thorne RF, Mhaidat NM, Ralston KJ, Burns GF.CD36 is a receptor for oxidized high density lipoprotein:implications for the development of atherosclerosis.FEBS Lett.2007;581(6):1227-32.
    80. Collins RF, Touret N, Kuwata II, Tandon NN. Grinstein S, Trimble WS.Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis.J Biol Chem. 2009;284(44):30288-97.
    81. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, Sharma K, Silverstein RL.Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.J Clin Invest. 2000; 105(8):1049-56.
    82. Febbraio M, Guy E, Silverstein RL.Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis.Arterioscler Thromb Vase Biol.2004;24(12):2333-8.
    83. Harb D, Bujold K, Febbraio M, Sirois MG, Ong H, Marleau S.The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation.Cardiovasc Res. 2009;83(1):42-51.
    84. Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW.Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice.J Clin Invest.2005; 115(8):2192-201.
    85. Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, Febbraio M.Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A Ⅰ/Ⅱ.Cardiovasc Res.2008;78(1):185-96.
    86. Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, Chen J, Zhang R, Silverstein RL, Hazen SL.Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.Nat Med.2007; 13(9):1086-95.
    87. Silverstein RL.Inflammation, atherosclerosis, and arterial thrombosis:role of the scavenger receptor CD36.Cleve Clin J Med.2009;76 Suppl 2:S27-30.
    88. Osmancik PP, Bednar F, Pavkova L, Tousek P, Stros P, Jirasek K.Higher platelet activity is present in patients with restenosis after percutaneous coronary intervention compared with patients with an occlusion of coronary artery bypass graft.Blood Coagul Fibrinolysis.2008;19(8):807-12.
    89. Takahashi Y, Fuda H, Yanai H, Akita H, Shuping H, Chiba H, Matsuno K.Significance of membrane glycoproteins in platelet interaction with oxidized low-density lipoprotein.Semin Thromb Hemost.1998;24(3):251-3.
    90. Karper JC. Ewing MM, Jukema JW, Quax PH.Future potential biomarkers for postinterventional restenosis and accelerated atherosclerosis.Biomark Med. 2012;6(1):53-66.
    91. Murasaki K, Kawana M, Murasaki S, Tsurumi Y, Tanoue K, Hagiwara N, Kasanuki H.High P-selectin expression and low CD36 occupancy on circulating platelets are strong predictors of restenosis after coronary stenting in patients with coronary artery disease.Heart Vessels.2007;22(4):229-36.
    92. Englyst NA, Taube JM, Aitman TJ, Baglin TP, Byrne CD.A novel role for CD36 in VLDL-enhanced platelet activation.Diabetes.2003;52(5):1248-55.
    1. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657-671.
    2. Handberg A, Levin K, H(?)jlund K, et al. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma:a novel marker of insulin resistance. Circulation.2006; 114:1169-1176.
    3. Endemann G.,Stanton LW, Madden KS,et al. CD36 is a receptor for oxidized low density lipoprotein.J Biol Chem.1993;268:11811-11816.
    4. Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest.2000; 105:1049-1056.
    5. Nergiz-Unal R, Rademakers T, Cosemans JM, et al. CD36 as a multiple-ligand signaling receptor in atherothrombosis.Cardiovasc Hematol Agents Med Chem.2011;9:42-55.
    6. Lipsky RH, Eckert DM, Tang Y, et al. The carboxyl-terminal cytoplasmic domain of CD36 is required for oxidized low-density lipoprotein modulation of NF-kappaB activity by tumor necrosis factor-alpha.Recept Signal Transduct. 1997;7:1-11.
    7. Han CY, Park SY, Pak YK. Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized low-density lipoprotein.Biochem.1. 2000;350:829-837.
    8. Ross R.Atherosclerosis:an inflammatory disease.N Engl.1 Med.1999:340: 115-126.
    9. Bursill CA, Channon KM, Greaves DR. The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr Opin Lipidol.2004; 15:145-149.
    10. Zernecke A, Shagdarsuren E, Weber C. Chemokines in Atherosclerosis-an update. Arterioscler Thromb Vase Biol.2008; 28:1897-1908.
    11. Charo IF, Ransohoff RM. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N Engl J Med.2006; 354:610-621.
    12. Jones KL, Maguire JJ, Davenport AP. Chemokine receptor CCR5:From AIDS to atherosclerosis.Br J Pharmacol.2010; 162:1453-1469.
    13. Damas JK, Boullier A, Waehre T, et al. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arterioscler Thromb Vase Biol.2005; 25:2567-2572.
    14. Combadiere C, Potteaux S, Gao JL, et al.Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice.Circulation. 2003;107:1009-1016.
    15. McDermott DH, Fong AM, Yang Q, et al. Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest.2003; 111:1241-1250.
    16. Li J,Guo Y,Luan X,et al. Independent Roles of Monocyte Chemoattractant Protein-1, Regulated on Activation, Normal T-Cell Expressed and Secreted and Fractalkine in the Vulnerability of Coronary Atherosclerotic Plaques.Circ J. 2012;76:2167-2173.
    17. Boring L, Gosling J, Cleary M, et al. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis.Nature.1998; 394(6696):894-897.
    18. Dawson TC, Kuziel WA, Osahar TA, et al. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice.Atherosclerosis. 1999;143(1):205-211.
    19. Kuchibhotla S, Vanegas D, Kennedy DJ, et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A Ⅰ/Ⅱ.Cardiovasc Res.2008;78:185-196.
    20. Anderson JL, Adams CD, Antman EM, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. J Am Coll Cardiol.2007;50: el-e157.
    21. Thygesen K, Alpert JS, Jaffe AS, et al. Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial. Third universal definition of myocardial infarction.Eur Heart J.2012;33(20):2551-2567.
    22. Harb D, Bujold K, Febbraio M, et al. The role of the scavenger receptor CD36 in regulating mononuclear phagocyte trafficking to atherosclerotic lesions and vascular inflammation.cardiovasc res.2009;83:42-51.
    23. Keaney JF Jr. Oxidative stress and the vascular wall:NADPH oxidases take center stage.Circulation.2005:112(17):2585-2588.
    24. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr.2005:25:151-174.
    25. Parthasarathy S, Raghavamenon A, Garelnabi MO,et al. Oxidized low-density lipoprotein. Methods Mol Biol.2010; 610:403-417.
    26. Yamashita H, Ehara S, Yoshiyama M,et al.Elevated plasma levels of oxidized low-density lipoprotein relate to the presence of angiographically detected complex and thrombotic coronary artery lesion morphology in patients with unstable angina.Circ J.2007;71 (5):681-687.
    27. Sun B, Boyanovsky BB, Connelly MA,et al.Distinct mechanisms for OxLDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI.J Lipid Res.2007;48(12):2560-2570.
    28. Martin CA, Longman E, Wooding C,et al.Cd36, a class B scavenger receptor, functions as a monomer to bind acetylated and oxidized low-density lipoproteins.Protein Sci.2007; 16(11):2531-2541.
    29. Thorne RF, Mhaidat NM, Ralston KJ,et al.CD36 is a receptor for oxidized high density lipoprotein:implications for the development of atherosclerosis.FEBS Lett.2007;581(6):1227-1232.
    30. Febbraio M, Podrez EA, Smith JD,et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.Clin Invest.2000; 105:1049-1056.
    31. Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis.Arterioseler Thromb Vase Biol.2004;24:2333-2338.
    32. Collins RF, Touret N, Kuwata H,et al.Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis.J Biol Chem.2009; 284(44):30288-30297.
    33. Yamashita S, Hirano K, Kuwasako T,et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem.2007;299(1-2):19-22.
    34. Umehara H, Coda S, Imai T, et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol.2001;79(3):298-302.
    35. Yoneda O, Imai T, Inoue H, et al. Membane bound form of fractalkine induces IFN produetionn by NK cells:a role for 1111response. Eur J Immunol.2003;33(1):53-58.
    36. Moore KJ, Kunjathoor VV, Koehn SL,et al.Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice.J Clin Invest.2005; 115:2192-2201.
    37. Ge J, Chirillo F, Schwedtmann J, et al. Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Heart.1999; 81: 621-627.
    38. Birgelen CV, Klinkhart W, Mintz GS, et al. Plaque distribution and vascular remodeling of ruptured and non-ruptured coronary plaques in the same vessel:an intravascular ultrasound study in vivo. JAM Coll Cardiol.2001; 37:1864-1870.
    39.陈文强,张运,张梅等.不稳定斑块血管内超声特征的实验研究.中华超声影 像学杂志.2004;13(6):456-459.
    40. Nishioka T, Amanullah AM, Luo H, et al. Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity, comparison with stress myocardial perfusion imaging.J Am Coll Cardiol.1999; 33:1870-1878.
    41. Abizaid AS, Mintz GS. Mehran R, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings:importance of lumen dimensions.Circulation.1999; 100: 256-261.
    42. Magni V, Chieffo A, Colombo A, et al. Evaluation of intermediate coronary stenosis with intravascular ultrasound and fractional flow reserve:Its use and abuse. Catheter Cardiovasc Interv.2009;73:441-448.
    43. Schoenhagen P, Nagel E. Noninvasive assessment of coronary artery disease anatomy, physiology, and clinical outcome. JACC Cardiovasc Imaging. 2011;4(1):62-64.
    44. Amano T, Matsubara T, Uetani T,et al. Lipid-rich plaques predict non-target-lesion ischemic events in patients undergoing percutaneous coronary intervention. Circ J.2010;75(1):157-166.
    45. Cutlip DE, Chhabra AG, Baim DS, et al. Beyond restenosis:five-year clinical outcomes from second-generation coronary stent trials. Circulation.2004;110(10):1226-1230.
    46. Xu YL, Li JJ, Xu B, et al. Increased plasma C-reactive protein level predicts rapid progression of non-target atherosclerotic lesions in patients with stable angina after stenting. Chin Med J.2011;124(19):3022-3029.
    47. Leon MB, Allocco DJ, Dawkins KD, et al.Late Clinical Events After Drug-Eluting Stents(The Interplay Between Stent-Rclated and Natural History-Driven Events). J Am Coll Cardiol Intv.2009;2:504-512.
    48. Imai K, Okura H, Kume T, et al. C-reactive protein predicts non-target lesion revascularization and cardiac events following percutaneous coronary intervention in patients with angina pectoris. Journal of Cardiology.2009;53:388-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700