Th17/Treg免疫平衡在特发性膜性肾病发病中的作用及环孢素A对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     特发性膜性肾病(IMN)是成人肾病综合征(NS)的常见病因之一。IMN的发病机制目前尚不完全清楚。来自人类和Heymann'肾炎的研究表明,它是一种B细胞活化、抗原抗体介导的器官特异的自身免疫疾病。动物实验证实,CD4+T细胞在Heymann1肾炎的发病中起到重要作用。CD4+辅助性T细胞(Th)是一类重要的免疫调节细胞,它对维持机体的免疫平衡发挥重要作用。传统观念将CD4+Th细胞分为Thl和Th2两类细胞亚群。近年来,人们发现另外两类新的Th细胞亚群,即调节性T细胞(Treg)和辅助T细胞17(Th17)。Treg和Th17细胞都来源于初始T细胞,两者的功能和分化过程相互对抗,它们在维持机体免疫平衡方面发挥重要作用,是对Thl/Th2免疫平衡理论的重要补充。Th17/Treg免疫失衡在炎症、感染、肿瘤、自身免疫性疾病等多种疾病状态中的报道已有不少,但在NS中的研究尚属少见。此外,环孢素A(CsA)是治疗IMN有效的药物。目前已有报道CsA治疗自身免疫性疾病和器官移植术后对Th17/Treg免疫平衡产生影响,并与临床疗效相关,但尚无CsA治疗IMN对Th17/Treg免疫平衡影响的相关报道。因此,本研究的目的就是要观察IMN患者Th17/Treg免疫平衡的变化,及CsA治疗IMN对Th17/Treg平衡的影响,探讨其与IMN发病机制及治疗反应和预后间的关系。
     方法
     选择49例临床和病理确诊为IMN,排除各种继发性肾脏疾病的患者为研究对象。28例性别、年龄匹配的健康人为对照组。以流式细胞仪检测外周血辅助T细胞亚群(Treg/Th17/Th1/Th2)、B细胞、T细胞亚群(CD3+、CD4+、CD8+)的计数和/或百分率。流式方法检测Treg表面CD127, CD39和CD73的表达率以Real-time RT-PCR方法检测外周血单个核细胞(PBMC)核转录因子Foxp3和RORyt的表达量。采用ELISA方法检测血浆中细胞因子的水平。体外共培养实验检测IMN患者和正常人外周血CD4+CD25+T细胞的抑制功能。分析Th细胞亚群与相关细胞因子、临床指标间的相关性。免疫组化方法检测肾组织Treg浸润和IL-17的表达。观察19例入组IMN患者经CsA联合糖皮质激素(简称激素)治疗后外周血Treg和Th17细胞及其他T、B淋巴细胞亚群百分率的变化。体外实验观察不同浓度CsA和甲基强的松龙(MP)及二者联合对正常人Treg和Th17细胞的作用。
     结果
     (1)IMN患者外周血Treg细胞百分率和血浆TGF-β1水平较正常对照显著降低,而Th2、Th17及B细胞百分率、血浆IL-23和IL-17水平显著升高(p<0.05)。核转录因子Foxp3和RORyt在PBMC中的表达量与Treg和Th17的百分率变化趋势相同。
     (2)IMN患者血浆TGF-β1与Treg百分率呈明显正相关(r=0.311,p=0.029),而IL-23与Th17百分率也呈明显正相关(r=0.347,p=0.014)
     (3)IMN患者外周血Treg表型改变特点:表面功能分子CD39表达率较正常对照显著降低(p<0.05)。但仍然保持CD25高表达和CD127低表达的特点,与对照组无差别。
     (4)与正常对照组比较,IMN患者外周血CD4+CD25+T细胞体外抑制CD4+CD25-效应T细胞增殖的能力减低,并且CD4+CD25+T细胞抑制B细胞分泌IgG的能力降低。
     (5)IMN患者外周血Th17/Treg比值与尿蛋白呈明显正相关(r=0.294,p=0.036)而与血清白蛋白呈明显负相关(r=-0.323,p=0.024)
     (6)根据患者随访6个月时尿蛋白是否达到部分缓解(小于3.5g/24h)将入选病例分为有效组和无效组两组比较,发现无效组治疗前尿蛋白水平、CD4/CD8比值、Th17/Treg比值显著高于有效组(p<0.05)
     (7)IMN患者肾组织弥漫表达IL-17,较正常肾组织明显升高(p<0.05)。正常肾组织内未观察到Foxp3+Treg浸润,而部分IMN患者肾间质灶状单个核细胞浸润的部位同时可见Foxp3+Treg细胞浸润,并且伴有肾间质Foxp3+Treg浸润的患者经治疗后绝大部分获得临床缓解。
     (8)CsA联合激素治疗IMN随着病情好转,外周血Th17/Treg比值和血浆TGF-β1水平逐渐恢复正常,B细胞和Th2百分率均显著降低。
     (9)体外CsA抑制TGF-β诱导Treg的分化和Th17的表达,并随剂量的增加作用增强。甲基强的松龙(MP)与CsA联合作用后,能增强CsA对Th17的抑制,而减轻其对Treg的抑制。
     结论
     IMN患者体内存在Th17/Treg免疫平衡异常,主要表现为外周血Treg细胞百分率和功能的降低,而Th17细胞的百分率和肾脏局部表达增高。IMN中Th2细胞辅助B细胞过度活化的过程中,Treg细胞的功能缺陷也可能起到一定作用。肾脏局部Treg细胞浸润与预后的关系值得进一步探讨。CsA治疗IMN随着病情好转,外周血Th17/Treg免疫失衡逐渐恢复。体外实验结果显示,激素联合CsA用药更有利于纠正Th17/Treg免疫失衡,但其具体机制尚需进一步探讨。
Background and Objective
     Idiopathic membranous nephropathy (IMN) is the leading cause of nephrotic syndrome in adults. However,the precise mechanisms involved in IMN have not been clear.Data from studies in human and Heymann nephritis indicated that, MN is a conceptually simple organ-specific autoimmune disease,which involve T and B lymphocytes dysfunction.CD4+T helper(Th) cells play important roles in regulation of autoimmunity in vivo. Traditionally, CD 4+Th cells had been divided into two types of subsets:type 1 and type2. Recently, regulatory T cells (Treg) cells and Thl7 cells have been described as two distinct subsets from Thl and Th2 cells.Treg and Th17 cells,both of which gerated from naive CD4+T cells, play opposite roles and restrain each other.The balance between Th17 and Treg may be important in the development/prevention of autoimmunity. It has been reported that Th17/Treg imbalance exists in inflammation, infection, tumour and autoimmue diseases.However, it is not clare wether it exisits in nephrotic syndrome,especial membranous nephropathy. In addition, cyclosporine A (CsA) is considered as an effective treatment with IMN.Several studies had been focused on the influence of immunosuppressive drugs on Th17/Treg balance in posttraplant patients, and the influence in IMN has not been investigated. So, the objective of this study was to evaluate whether the Th17/Treg balance was broken in IMN patients, and how CsA impacts the Thl7/Treg balance during treating IMN.
     Methods
     Fourty-nine patients, diagnosted IMN by renal biopsy and exluded potential secondary factors, were enrolled in this study.Twenty-eight age-and sex-matched healthy volunteers served as healthy controls(HC).The frequencies of peripheral Th cell subsets(Treg/Thl7/Thl/Th2),B cells and T cell subsets(CD3+,CD4+,CD8+)were evaluated in IMN patients and HC by flow cytometry.The expression of CD127,CD39 and CD73 were also evaluated by flow cytometry.The peripheral relative mRNA
     expression of key transcription factors for Treg and Th17, Foxp3 and RORyt,were determined by real-time RT-PCR assay. The concentrations of plasma cytokines were evaluated by ELISA. Proliferation assay were performed on isolated CD4+CD25+T cells and/or target lymphocytes.Correlations between CD4+Th subpopulations and plasma cytokines or clinical manifestations in IMN patients were analized.The infiltration of Treg cells and expression of IL-17 in renal tissue from HC and IMN patients were determined by immunohistochemical staining. Nineteen patients with IMN who received CsA plus corticosteroids treatment were evaluated the changes of peripheral Treg, Th17 and T, B subpopulations over six months. In addition, we observed the influence of diferent concentrations of CsA or/and Methylprednisolone (MP) on Treg and Thl7 cells in vitro.
     Results
     (1) Compared with healthy controls, the frequency of peripheral Treg cells and plasma TGF-β1 level decreased,while the frequencies of Th2,Th17, B lymphocytes and plasma IL-23, IL-17 levels increased significantly in IMN patients(p<0.05).The key transcription factors of Treg and Th17, Foxp3 and RORyt, had similar alterations in HC and IMN patients.
     (2) TGF-β1 concentrations were positively correlated with peripheral blood frequencies of Treg (r=0.311,p=0.029) and IL-23 concentrations were positively correlated with peripheral blood frequencies of Th17 (r=0.347,P=0.014) in IMN patients.
     (3) Alterations of Treg cell surface markers in IMN patients:the frequency of CD39 markly decreased, while the expression of CD25 and CD127 had no difference with controls.
     (4) The peripheral CD4+CD25+Treg cells from IMN patients exhibited a decreased inhibition of CD4+CD25-effect T cells proliferation and B cells secretion of IgG.
     (5) The Th17/Treg ratios increased along with increased proteinuria(r=0.294,P=0.036) and decreased albumin levels (r=-0.323,p=0.024) in patients with IMN.
     (6) Patients were divided into two groups based on the response to therapy after 6 months. Data showed that patients who have no response to treatment had a higher proteinuria level, CD4/CD8 ratio and Th17/Treg ratio than those who had good response to treatment.
     (7) IL-17 protein expression in the renal tissue of IMN patients increased significantly compared with that in control subjects (p<0.05). Infiltration of Treg cells was also detected in the renal tissue of IMN patients, while rare Treg cells had been seen in normal renal tissue. Treg cells allways located in renal interstitium along with other type of lymphocytes in IMN potients. The infiltration of Treg cells in renal interstitium also related to a higher clinical remmision in IMN patients.
     (8) IMN patients receiving CsA plus corticosteroids therapy showed a significant decrease of Th17/Treg ratio, peripheral frequencies of B cells and Th2 cells, as well as obvious increase of plasma TGF-β1 level along with the decrease of proteinuria level.
     (9) CsA inhibited the differentiation of Treg cells induced by TGF-β, as well as the IL-17 expressing T cells in vitro. In addition, MP could enhance the inhibition of Thl7 cells, and alleviate the inhibition of Treg cell differentiation by CsA.
     Conclusions
     Th17/Treg imbalance, charactered by enhanced peripheral and local Th17 function and weakened Treg function, existed in IMN patients. Altered function of Treg cells may contributed to activating of B cells by Th2 cytokines. The clinical meaning of infiltration of Treg cells in renal tissue deserved further studies in IMN patients. With the decrease of proteinuria, the peripheral Th17/Treg imbalance recovered after effective CsA plus corticosteroids therapy in IMN patients. MP plus CsA had more benefit to maintain Th17/Treg balance in vitro experiment of which the exact mechanisms need further explorations.
引文
[1]Braden GL, Mulhern JG, O'Shea MH,et al.Changing incidence of glomerular
    disease in adults. Am J Kidney Dis,2000,35:878-883.
    [2]刘刚,马序竹,邹万忠等.肾活检患者肾脏病构成十年对比分析.临床内科杂志,2004,21:834-838.
    [3]Glassock RJ. The Pathogenesis of Idiopathic Membranous Nephropathy:A 50-Year Odyssey. Am J Kidney Dis,2010,56:157-167.
    [4]Hinglais N, Kazatchkine MD, Bhakdi S, et al. Immunohistochemical study of the C5b-9 complex of complement in human kidneys. Kidney Int,1986,30:399-410.
    [5]Debiec H, Guigonis V,Ronco PM, et al. Antenatal membranous glomerulone。 phritis due to anti-neutral endopeptidase antibod ies. N Engl J Med,2002,346: 2053-2060.
    [6]Beck Jr LH, Bonegio RG, Lambeau G et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med,2009,361: 11-21.
    [7]Beck Jr LH, Salant DJ. Membranous nephropathy:recent travels and new roads ahead. Kidney Int,2010,77:765-770.
    [8]Van der Zee JS, Aalberse RC. The role of IgG in immediate-type hypersensitivity. Eur Respir J, Suppl,1991,13:91s-96s.
    [9]Kuroki A, Iyoda M, Shibata T, et al. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy. Kidney International,2005, 68:302-310.
    [10]王波,刘志红,吴燕等.特发性膜性肾病患者调节性T细胞和B淋巴细胞的变化及其临床意义.肾脏病与透析肾移植杂志,2009,18:322-328.
    [11]Remuzzi G, Chiurchiu C, Abbate M,et al. Rituximab for idio-pathic membranous nephropathy. Lancet,2002,360:923-924.
    [12]Ruggenenti P, Cravedi P, Remuzzi G. Rituximab for membranous nephropathy and immune disease:Less might be enough. Nat Clin Pract Nephrol,2009,5:76-77.
    [13]Zhu JF, Paull WE. Heterogeneity and plasticity of T helper cells.Cell Research, 2010,20:4-12.
    [14]Vila J, Isaacs JD, Anderson AE. Regulatory T cells and autoimmunity. Curr Opin Hematol,2009,16:274-279.
    [15]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005,6:1133-1141.
    [16]Sakaguchi S, Ono M, Setoguchi R, et al, Foxp3+CD25+CD4+natural regulatory T cells in dominant self-tolerance and autoimmune disease, Immunol Rev,2006, 212:8-27.
    [17]Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity, Nat Immunol,2007,8:345-350.
    [18]Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest,2006,116:1310-1316.
    [19]Cheng X, Yu X, Ding YJ, The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol,2008,127:89-97.
    [20]Wu C, Wang S, Wang F,et al. Increased frequencies of T helper type 17 cells in the peripheralblood of patients with acute myeloid leukaemia. Clin Exp Immunol. 2009,158:199-204.
    [21]Jilin Ma JL, Yu JN, Tao XJ, et al. The imbalance between regulatory and IL-17-secreting CD4+T cells in lupus patients.Clin Rheumatol,2010,29:1251-1258
    [22]Masuda M, Matsumoto M, Tanaka S,et al. Clinical implication of peripheral CD4+CD25+regulatory T cells and Th17 cells in myasthenia gravis patients. J Neuroimmunol,2010,225:123-131.
    [23]Liu XL, Yang PZ, Lin XM, et al. Inhibitory effect of Cyclosporin A and corticosteroids on the production of IFN-y and IL-17 by T cells in Vogt-Koyanagi-Harada syndrome. Clinical Immunology,2009,131:333-342.
    [24]Zhang C, Zhang JY, Yang BY,et al. Cyclosporin A inhibits the production of IL-17 by memory Th17 cells from healthy individuals and patients with rheumatoid arthritis. Cytokine,2008,42:345-352
    [25]Meloni F, Morosini M, Solari N, et al. Peripheral CD4+CD25+Treg cell expansion in lung transplant recipients is not affected by calcineurin inhibitors. Int Immunopharmacol,2006,6:2002-2010.
    [26]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995,155:1151-1164.
    [27]Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol,2007; 8:191-197.
    [28]Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+CD4+regulatory T cells:their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev,2001,182:18-32.
    [29]Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med,2007,204:57-63.
    [30]Bennett CL, Ochs HD, Ramsdell F, et al.The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome(IPEX) is caused by mutation of FOXP3.Nat Genet,2001,27:20-21.
    [31]Wildin RS, Ramsdell F, Proll S, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy.Nat Genet,2001,27:18-20.
    [32]Shevach EM. CD4+CD25+supp ressor T cells:more questions than answers. Nat Rev Immunol,2002,2:389-400.
    [33]Corthay A. How do Regulatory T Cells Work? Scand J Immunol,2009,70, 326-336.
    [34]Salcido-Ochoa F, Tsang J, Tam P,et al. Regulatory T cells in transplantation: does extracellular adenosine triphosphate metabolism through CD39 play a crucial role? Transplant Rev,2010,24:52-66.
    [35]Alam MS, Kurtz CC, Rowlett RM, et al. CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. J Infect Dis,2009,199:494-504.
    [36]Fletcher JM, Lonergan R, Costelloe L, et al. CD39+Foxp3+regulatory T Cells suppress pathogenic Thl7 cells and are impaired in multiple sclerosis. J Immunol, 2009,183:7602-7610.
    [37]Seddiki N. Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells, J Exp Med,2006,203:1693-1700.
    [38]Liu W, Putnam AL, Xu-yu Z, et al. CD 127 expression inversely correlates with FoxP3 and suppres-940 sive function of human CD4+T reg cells. J Exp Med,2006, 203:1701-1711.
    [39]Afzali B, Lombardi G,Lechler RI. The role of T helper 17(Th17) and regulatory Tcells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol,2007,148:32-46.
    [40]Matsumoto K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron,2002,91:243-249.
    [41]Shao XS, Yang XQ, Zhao XD, et al, The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome, PediatrNephrol,2009,24:1683-1690.
    [42]Liu LL, Yan Q, Li XW, et al. The Th17/Treg Imbalance in Aldult Patients with Minimal Change nephrotic syndrome. Clinical Immunology, 2011,139:314-320.
    [43]Ge D, You Z, Expression of interleukin-17RC protein in normal human tissues, Int Arch Med,2008,17:19-23.
    [44]Ponticelli C, Passerini P. Can prognostic factors assist therapeutic decisions in idiopathic membranous nephropathy? J Nephrol,2010,23:156-163.
    [45]Cattran DC, Atexopoulos E, Hecring P,et al. Cyelosporin in idiopathic domerolar disease associated with the nephrotie syndrome:workshop recommendations. Kidney Int,2007,72:1429-1447.
    [46]Segundo DS, Fabrega E, Lopez-Hoyos M. Reduced Numbers of Blood Natural Regulatory T Cells in Stable Liver Transplant Recipients With High Levels of Calcineurin Inhibitors. Transplantation Proceedings,2007,39,2290-2292.
    [47]Kawai M, Kitade H, Mathieu C. Inhibitory and Stimulatory Effects of Cyclosporine A on the Development of Regulatory T Cells In Vivo.Transplantation, 2005;79:1073-1077.
    [48]Kopf H, de la Rosa GM, Howard OM, Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+T regulatory cells. Int Immunopharmacol,2007,7:1819-1824.
    [49]Karagiannidis C, Akdis M, Holopainen P,et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 2004; 114:1425-1433.
    [50]Braitch M, Harikrishnan S, Robins RA,et al. Glucocorticoids increase CD4+CD25high cell percentage and Foxp3 expression in patients with multiple sclerosis. ActaNeurol Scand,2009:119:239-245.
    [51]Morgan ME, Flierman R, van Duivenvoorde LM, et al, Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+regulatory T cells, Arthritis Rheum,2005,52:2212-2221.
    [52]Mekala DJ, Geiger TL. Immunotherapy of autoimmune encephalomyelitis with redirected CD4+CD25+T lymphocytes. Blood,2005,105:2090-2092.
    [53]Schramm C, Huber S, Protschka M, et al. TGF-beta regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol,2004; 16:1241-1249.
    [54]Hirayama K, Ebihara I, Yamamoto S,et al. Predominance of Type-2 Immune Response in Idiopathic Membranous Nephropathy. Nephron,2002,91:255-261.
    [55]Likuni N, Lourenco EV, Hahn BH, et al. Cutting Edge:Regulatory T Cells Directly Suppress B Cells in Systemic Lupus Erythematosus. J Immunol,2009,183: 1518-1522.
    [56]Wolf D, Hochegger K, Wolf AM, et al, CD4+CD25+Regulatory T Cells Inhibit Experimental Anti-Glomerular Basement Membrane Glomerulonephritis in Mice, J Am SocNephrol,2005,16:1360-1370.
    [57]Monteiro RMM, Camara NOS, Rodrigues MM, et al. A role for regulatory T cells in renal acute kidney injury. Transplant Immunology,2009,21:50-55.
    [58]Mahajan D, Wang YP, Qin XH, et al. CD4+CD25+Regulatory T Cells Protect against Injury in an Innate Murine Model of Chronic Kidney Disease. J Am Soc Nephrol,2006,17:2731-2741.
    [59]Berre LL, Bruneau S, Naulet J, et al, Induction of T Regulatory Cells Attenuates Idiopathic Nephrotic Syndrome, J Am Soc Nephrol,2009,20:57-67.
    [60]Van Kooten C, Boonstra JG, Paape ME Fossiez F,et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection, J Am Soc Nephro,1998,19 :1526-1534.
    [61]李新,彭立人.血液透析患者血清IL一6与急性时相反应的关系研究.中固血液净化,2004,3(7)371—372.
    [62]Veronese F, Rotman S, Smith RN, et al. Pathological and clinical correlates of FOXP3+cells in renal allografts during acute rejection. Am J Transplant,2007,7: 914-922.
    [63]Martin L, de la Vega MF, Bocrie O, et al. Detection of Foxp3+cells on biopsies of kidney transplants with early acute rejection. Transplant Proc,2007, 39:2586-2588.
    [64]Quiza CG, Leenaerts PL, Hall BM. The role of T cells in the mediation of glomerular injury in Heymann's nephritis in the rat. Int Immunol 1992, 4:423-432.
    [65]李琚,张宜苗,刘砺等.小剂量环孢素A联合小剂量泼尼松治疗特发性膜性肾病的初步观察.中华肾脏病杂志,2010,26:160-164.
    [1]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,1995,155:1151-1164.
    [2]Coenen JJ, Koenen HJ, van Rijssen E, et al. Tolerizing effects of co-stimulation blockade rest on functional dominance of CD4+CD25+regulatory T cells. Transplantation,2005; 79:147-156.
    [3]Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol,2007; 8:191-197.
    [4]Li W, Carper K, Zheng XX, et al. The role of Foxp3+regulatory T cells in liver transplant tolerance. Transplant Proc,2006; 38:3205-3206.
    [5]. Raimondi G, Turner MS, Thomson AW, et al. Naturally occurring regulatory T cells:recent insights in health and disease. Crit Rev Immunol,2007; 27:61-95.
    [6]. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+CD4+regulatory T cells:their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev,2001; 182:18-32.
    [7]. Sarkar S, Fox DA. Regulatory T cell defects in rheumatoid arthritis. Arthritis Rheum,2007; 56:710-713.
    [8]. Shevach EM. Regulatory/suppressor T cells in health and disease. Arthritis Rheum, 2004;50:2721-2724.
    [9]Y. Nishizuka, T. Sakakura, Thymus and reproduction:sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science,1969,166:753-755.
    [10]A. Kojima, Y. Tanaka-Kojima, T. Sakakura, et al. Prevention of postthymec-tomy autoimmune thyroiditis in mice. Lab Invest.1976,34:601-605.
    [11]R.K. Gershon, K. Kondo, Cell interactions in the induction of tolerance:the role of thymic lymphocytes. Immunology.1970,18:723-737.
    [12]Itoh M, T. Takahashi, N. Sakaguchi, et al. Thymus and autoimmunity production of CD25+CD4+naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol,1999; 162:5317-5326.
    [13]Pacholczyk R, Kraj P, L. I. Peptide specificity of thymic selection of CD4+CD25 +T cells. J Immunol,2002; 168:613-620.
    [14]Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol,2001; 2:816-822.
    [15]Curotto de Lafaille MA, Lino AC, Kutchukhidze N, et al. CD25-T cells generate CD25+Foxp3+ regulatory T cells by pefipheral expansion. J Immnnd,2004,173: 7259-7268.
    [16]Kang HK, Michaels MA, Berner BR, et al. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol,2005,174:3247-3255.
    [17]Groux H, O'Garra A, Bigler M et al. A CD4 T-cel subset inhibits anti—gen-specific T-cell responses and prevents colitis. Nature,1997,3899: 737-742.
    [18]Kemper C, Chan A C, Green J M, et al. Activation of human CD4 cels with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature,2003; 421:388-392.
    [19]FariaAM, WeinerHL. Oraltolerance. Imimmol Rev,2005,206:232-259.
    [20]Y. Carrier, J. Yuan, V.K. Kuchroo, et al, Th3 cells in peripheral tolerance induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta 839 T cell-transgenic mice, J. Immunol.2007,178:179-185.
    [21]Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol, 2004;172:3983-3988.
    [22]Willerford DM, Chen J, Ferry JA, et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity, 1995; 3:521-530.
    [23]Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci,2005,102:5138-43.
    [24]Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol,2007,7:305-310.
    [25]Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol,2007,8:277-284.
    [26]Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol,2007,8:457-462.
    [27]Lahl K, Loddenkemper C, Drouin C, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med,2007,204:57-63.
    [28]Bennett CL, Ochs HD, Ramsdell F, et al.The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome(IPEX) is caused by mutation of FOXP3.Nat Genet,2001,27:20-21.
    [29]Wildin RS, Ramsdell F, Proll S, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy.Nat Genet,2001,27:18-20.
    [30]Fontenot JD, Gavin MA, Rudensky AY.Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Innunol,2003,4:330-336.
    [31]Sakaguchi S. Naturally arising CD4+regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol,2004; 22:531-562.
    [32]Takahashi T, Tagami T, Yamazaki S,et al. Immunologic selftolerance maintained by CD25+CD4+regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med,2000,192:303-310.
    [33]Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+regulatory cells that control intestinal inflammation. J Exp Med,2000,192:295-302.
    [34]Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol,2002; 3:135-142.
    [35]Ko K, Yamazaki S, Nakamura K, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med,2005; 202:885-891.
    [36]S. Ronchetti, O. Zollo, S. Bruscoli, et al. GITR. a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations, Eur. J. Immunol,2004,34:613-622.
    [37]G.L. Stephens, R.S. McHugh, M.J. Whitters, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells, J. Immunol.2004,173: 5008-5020.
    [38]KronenbergM, Rudensky A. Regulation of immunity by self-reactive T cells. Nature,2005,435:598-604.
    [39]Birebent B, Lorho R, Lechartier H, et al. Supp ressive p roperties of human CD4 +CD25+regulatory T cells are dependent on CTLA-4 exp ression. Eur J Immunol, 2004,34:3485-3496.
    [40]ChenW, Wahl SM. TGF-beta:the missing link in CD4+CD25+regulatory T cell-mediated immunosupp ression. Cytokine Growth Factor Rev,2003,14:85-89.
    [41]Nakamura K, KitaniA, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+regulatory T cell activity in both humans and mice. J Immunol,2004,172:834-842.
    [42]Cederbom L, Hall H, Ivars F. CD4+CD25+regulatory T cells down-regulate co-stimulatory molecules on antigenp resenting cells. Eur J Immunol,2000,30: 1538-1543.
    [43]Tang Q, Krummel MF. Imaging the function of regulatory T cells in vivo. Curr Op in Immunol,2006,18:496-502.
    [44]Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+regulatory T cells control major persistence and immunity. Nature,2002; 420:502-507.
    [45]Sabat R, Grutz G, Warszawska K, et al. Biology of interleukin-10. Cytokine & Growth Factor Reviews,2010,21:331-344.
    [46]Schramm C, Huber S, Protschka M, et al. TGF-beta regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo. Int Immunol,2004; 16:1241-1249.
    [47]Golshayan D, Jiang S, Tsang J, et al. In vitro expanded donor alloantigen-specific CD4+CD25+regulatory T cells promote experimental transplantation tolerance. Blood,2007,109:827-835.
    [48]Veronese F, Rotman S, Smith RN, et al. Pathological and clinical correlates of FOXP3+cells in renal allografts during acute rejection. Am J Transplant,2007,7: 914-922.
    [49]Zhen W, Bingyi S, Qian YY, et al. Short-term anti-CD25 monoclonal antibody administration down-regulated CD25 expression without eliminating the neogenetic functional regulatory T cells in kidney transplantation. Clin Exp Immunol,2009 155:496-503.
    [50]Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for FOXP3 in the urine of renal allograft recipients. N Engl J Med,2005,353:2342-2351.
    [51]Martin L, de la Vega MF, Bocrie O, et al. Detection of Foxp3+cells on biopsies of kidney transplants with early acute rejection. Transplant Proc,2007,39: 2586-2588.
    [52]Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood,2006,108:1291-1297.
    [53]Wanner C, Zimmermann J, Schwedler S, et al. Inflammation and cardiovascular risk in dialysis patients. Kidney Int 2002,80(Suppl 3),S99-S102.
    [54]Mahajan D,Wang Y, Qin X, et al. CD4+CD25+regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol, 2006,17:2731-2741.
    [55]Meier P, Dayer E, Blanc E, et al. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J Am Soc Nephrol,2002,13,204-212.
    [56]Meier P, Meier R, Blanc E. Influence of CD4+/CD25+regulatory T cells on atherogenesis in patients with end-stage kidney disease. Expert Rev Cardiovasc Ther, 2008,6:987-997.
    [57]Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol,2003;14:2199-210.
    [58]Rabb H. The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int 2002;61:1935-1946.
    [59]Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int 2004,66:486-491.
    [60]Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 2006,17:1503-1520.
    [61]Kinsey GR, Sharma R, Huang L, et al. Regulatory T Cells Suppress Innate Immunity in Kidney Ischemia-Reperfusion Injury. J Am Soc Nephrol 2009, 20:1744-1753.
    [62]Monteiro RM, Camara NO, Rodrigues MM, et al. A role for regulatory T cells in renal acute kidney injury. Transpl Immunol 2009,21:50-55.
    [63]Quiza CG, Leenaerts PL, Hall BM. The role of T cells in the mediation of glomerular injury in Heymann's nephritis in the rat. Int Immunol 1992,4:423-432.
    [64]Mahajan D, Wang Y, Qin X, et al. CD4+CD25+regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol 2006,17:2731-2741.
    [65]Wolf D, Hochegger K, Wolf AM, et al. CD4+CD25+regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol 2005,16:1360-1370.
    [66]Salama AD, Chaudhry AN, Holthaus KA, et al. Regulation by CD25+lymphocytes of autoantigen-specific T-cell responses in Goodpasture's (anti-GBM) disease. Kidney Int,2003,64:1685-1694.
    [1]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005,6:1133-1141.
    [2]Murphy CA, Langrish CL, Chen Y,et al. Divergent pro-and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med,2003; 198: 1951-1957.
    [3]Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin Invest,2006; 116:1310-1316.
    [4]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity,2000; 13:715-725.
    [5]Korn T, Bettelli E, Oukka M, et al.IL-17 and Th17 cells. Annu Rev Immunol, 2009,27:485-517.
    [6]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med,2005; 201:233-240.
    [7]Cua DJ, Sherlock J, Chen YI, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature,2003, 421:744-748.
    [8]MeGeaehy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin Immunol,2007,19:372-376.
    [9]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGF 0 in the context of an innammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24:179-189.
    [10]Acosta-Rodriguez EV, Napolitani G, IJanzavecchia A, et al. Interleukins 1 beta and 6 but not transfoming growth flactorbeta are essential for the differentiation of intedeukin 17-producing human T helper cells. Nat Immunol,2007,8:942-949.
    [11]Ivanov II, McKenzie BS, Zhou L,et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinnammatory IL-17+T helper cells. Cell, 2006,126:1121-1133.
    [12]Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008,28:29-39.
    [13]Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008,453: 236-240.
    [14]Rouvier E, LucianiMF,Mattei MG, Denizot F,et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol,1993,5445-5456.
    [15]Korn T, Oukka M, uchrooVK, et al. Thl7 cells:effector cells with inflammatory properties. Semin Immunol,2007; 19:362-371.
    [16]Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev,2003,14:155-174.
    [17]Ye P, Rodriguez FH, Kanaly S,et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med,2001,194:519-527.
    [18]Huang W, Na L, Fidel PL, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis,2004,190:624-631.
    [19]Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood,2003,101:2620-2627.
    [20]Afzali B, Lombardi G, Lechler RI. The role of T helper 17(Thl7) and regulatory T cells(Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol,2007,148:32-46.
    [21]Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol,2008,9:166-175.
    [22]Nurieva R, Yang XO, Martinez G et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448:480-483.
    [23]Korn T, Bettelli E, Gao W et al. IL-21 initiates an alternative pathway to induce proinfiammatory T(H)17 cells. Nature,2007,448:484-487.
    [24]Leonard WJ, Spolski R. Interleukin-21:a modulator of lymphoid proliferation, apoptosis and differentiation. Nat. Rev. Immunol,2005,5:688-698.
    [25]Liang SC, Tan XY, Luxenberg DP et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med,2006,203:2271-2279.
    [26]Fouser LA, Wright JF, Dunussi-Joannopoulos K, et al. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev,2008,226:87-102.
    [27]Nowak EC, Weaver CT, Turner H, et al. IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med,2009,206:1653-60.
    [28]Faulkner H, Humphreys N, Renauld JC, et al. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur J Immunol,1997,27: 2536-2540.
    [29]Liu Y, Teige I, Birnir B, et al. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med,2006,12:518-525.
    [30]Elyaman W, Bradshaw EM, Uyttenhove C, et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+natural regulatory T cells. Proc Natl Acad Sci,200,106:12885-12890.
    [31]Zhou L, Lopes JE, Chong MM et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008; 453: 236-240.
    [32]Korn T, Reddy J, Gao W et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med,2007,13:423-431.
    [33]Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,2006,441: 235-238.
    [34]Zhou L, Ivanov II, Spolski R,et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 2007,8:967-974.
    [35]Stumhofer JS, Laurence A, Wilson EH, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol,2006,7:937-945.
    [36]Awasthi A, Carrier Y, Peron JP, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol,2007,8: 1380-1389.
    [37]Stumhofer JS, Silver JS, Laurence A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol,2007,8: 1363-1371.
    [38]Fitzgerald DC, Zhang GX, El-Behi M, et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol,2007,8:1372-1379.
    [39]O'Connor W Jr, Kamanaka M, Booth CJ, et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol,2009,10: 603-609.
    [40]Awasthi A, Kuchroo VK. IL-17A directly inhibits TH1 cells and thereby suppresses development of intestinal inflammation. Nat Immunol,2009,10:568-570.
    [41]Van Kooten C, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am SocNephrol,1998,9:1526-1534.
    [42]Dong X, Bachman LA, Miller MN, et al. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction. Kidney Int,2008,74: 1294-1309.
    [43]Turner JE, Paust HJ, Steinmetz OM, et al. The Th17 immune response in renal inflammation. Kidney Int,2010,77:1070-1075.
    [44]Summers SA, Steinmetz OM, Li M, et al. Thl and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol,2009,20:2518-2524.
    [45]Gan PY, Steinmetz OM, Tan D, et al. Th17 nephritogenic immunity induces autoimmune anti-MPO glomerulonephritis. J Am Soc Nephrol,2010,21:925-931.
    [46]Markovic-Lipkovski J, Muller CA, Risler T, et al. Association of glomerular and interstitial mononuclear leukocytes with different forms of glomerulonephritis. Nephrol Dial Transplant,1990,5:10-17.
    [47]Weber M, Lohse AW, Manns M, et al. IgG subclass distribution of autoantibodies to glomerular basement membrane in Goodpasture's syndrome compared to other autoantibodies. Nephron,1988,49:54-57.
    [48]Bowman C, Ambrus K, Lockwood CM. Restriction of human IgG subclass expression in the population of auto-antibodies to glomerular basement membrane. ClinExp Immunol,1987,69:341-349.
    [49]Burlingham WJ, Love RB, Jankowska-Gan E et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest,2007,117:3498-3506.
    [50]Paust HJ, Turner JE, Steinmetz OM,et al. The IL-23/Thl7 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol,2009,20: 969-979.
    [51]Saus J, Wieslander J, Langeveld JP, et al. Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J Biol Chem,1988,263:1374-1380.
    [52]Kitching AR, Turner AL, Semple T et al. Experimental autoimmune anti-glomerular basement membrane glomerulonephritis:a protective role for IFN-gamma. J Am Soc Nephrol,2004,15:1764-1774.
    [53]Paust HJ, Turner JE, Steinmetz OM, et al. The IL-23/Thl7 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol,2009,20: 969-979.
    [54]Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med,2000,192: 123-128.
    [55]Wong CK, Ho CY, Li EK, et al. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus,2000,9:589-593.
    [56]Wong CK, Lit LC, Tam LS, et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus:implications for Th17-mediated inflammation in auto-immunity. Clin Immunol,2008,127:385-393.
    [57]Huang X, Hua J, Shen N, et al. Dysregulated expression of interleukin-23 and interleukin-12 subunits in systemic lupus erythematosus patients. Mod Rheumatol, 2007,17:220-223.
    [58]Dong G, Ye R, Shi W,et al. IL-17 induces autoantibody overproduction and peripheral blood mononuclear cell overexpression of IL-6 in lupus nephritis patients. Chin Med J (Engl),2003,116:543-548.
    [59]Crispin JC, Oukka M, Bayliss G, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17and infiltrate the kidneys. J Immunol,2008,181:8761-8766.
    [60]Yang J, Chu YW, Gao D, et al. Thl7 and natural Treg cell population Dynamics in systemic lupus erythematosus. Arth Rheum,2009,60:1472-1483.
    [61]Zhang Z, Kyttaris VC,Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol,2009,183:3160-3169.
    [62]Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol,2007, 178:7849-7858.
    [63]Hsu HC, Zhou T, Kim H, et al. Production of a novel class of polyreactive pathogenic autoantibodies in BXD2 mice causes glomerulonephritis and arthritis. Arthritis Rheum,2006,54:343-355.
    [64]Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol,2008,9:166-175.
    [65]Xiao H, Heeringa P, Hu P,et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest,2002; 110:955-63.
    [66]Ruth AJ, Kitching AR, Kwan RY, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol,2006,17:1940-1949.
    [67]Saito H, Tsurikisawa N, Tsuburai T, et al. Cytokine production profile of CD4+T cells from patients with active Churg-Strauss syndrome tends toward Th17. Int Arch Allergy Immunol,2009,149 (Suppl 1):61-65.
    [68]Nogueira E, Hamour S, Sawant D, et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant,2010,25:2209-2217.
    [69]Abdulahad WH, Stegeman CA, Limburg PC, et al. Skewed distribution of Th17 lymphocytes in patients with Wegeners granulomatosis in remission. Arthritis. Rheum.2008,58:2196-2205.
    [68]Hoshino A, Nagao T, Nagi-Miura N, et al. MPO-ANCA induces IL-17 production by activated neutrophils in vitro via its Fc region-and complement-dependent manner. J. Autoimmun,2008,31:79-89.
    [69]Matsumoto K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron,2002,91:243-249.
    [70]Liu LL, Yan Q, Li XW, et al. The Th17/Treg Imbalance in Aldult Patients with Minimal Change nephrotic syndrome. Clinical Immunology,2011,139:314-320.
    [71]Matsumoto K, Kanmatsuse K. Interleukin-17 stimulates the release of pro-inflammatory cytokines by blood monocytes in patients with IgA nephropathy. ScandJUrol Nephrol,2003,37:164-171.
    [72]Steinman L. Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat Immunol,2010,11:41-44.
    [73]Griffiths CE, Strober BE, van de Kerkhof P, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med,2010,362:118-128.
    [74]Garrett-Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus erythematosus. Current Opinion in Rheumatology,2008,20:519-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700