单环刺螠纤溶酶的分离纯化及单环刺螠纤溶酶Ⅲ的药效学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血栓性疾病(thrmobotic disease,TD)严重威胁着人类的生命健康,其发病率高居各种疾病之首,危害人体心、脑和肺的血管系统。据世界卫生组织统计,自2004年至今,全世界每年都有1700多万人死于心脑血管病,而我国心脑血管疾病患者已经超过2.7亿人,每年死于心脑血管疾病的患者多达300万以上。
     溶栓疗法被认为是治疗血栓性疾病最为有效的方法,溶栓药物也早已经广泛应用于各种血栓性疾病的治疗。以尿激酶、t-PA为代表的临床溶栓剂效果显著,但也存在许多副作用,且价格不菲。因此,人们一直在努力从生物界寻找着理想溶栓物质的来源。基于海洋生物天然活性物质相比于陆生生物活性物质的诸多优势,本实验室经过多年积累,从海洋无脊椎动物单环刺螠(Urchis unicinctus)体内发现并分离纯化出了一系列具有纤溶活性的蛋白酶,并以其分子量由大及小命名为单环刺螠纤溶酶Ⅰ(45.1kDa)、Ⅱ(26.7kDa)、Ⅲ(20.8kDa)和Ⅳ(10-11kDa)。本研究利用离子交换色谱及凝胶过滤色谱等柱层析技术制备了纯度较高的单环刺螠纤溶酶Ⅰ(45.1kDa)和Ⅲ(20.8kDa),并以单环刺螠纤溶酶Ⅲ为研究对象,系统考察了其生化性质及酶学性质,评价了其生物安全性和体内外抗凝、溶栓活性。现将主要研究结果分述如下:
     1.采用多种分离和纯化方法相结合,包括透析、冷冻干燥、凝胶柱层析和阴离子交换柱层析,获得了纯度较高的单环刺螠纤溶酶Ⅰ和Ⅲ,两种蛋白在Native-PAGE和SDS-PAGE中均显示单一条带,说明两者成分均一且均为单链蛋白,分子量分别为45.1kDa和20.8kDa。
     2.对单环刺螠纤溶酶Ⅲ进行了系统地生化性质及酶学性质研究:UFEⅢ是一种丝氨酸蛋白酶,其N末端12个氨基酸依次为:IIGGSQAAITSY。UFEⅢ的等电点在7.2附近。每mg UFEⅢ的总纤溶酶活力为1461.5个尿激酶活力单位,其中包含692.3个直接降解纤维蛋白(原)的活力单位和769.2个纤溶酶原激酶的活力单位。UFEⅢ水解纤维蛋白原的方式为:A链> B链>链。UFEⅢ在60℃以下稳定,最适反应温度在55-60℃之间;UFEⅢ在pH6-10之间活力较高,最适pH值为8.5。Mn~(2+)和Mg~(2+)能提升UFEⅢ酶活力,Cu~(2+)能显著地抑制UFEⅢ酶活力。另外,丝氨酸蛋白酶抑制剂PMSF和SBTI能显著抑制UFEⅢ酶活力。以酪蛋白为底物,UFEⅢ的酶促反应动力学常数:Vmax=42.92μg/min·ml,Km=1.06mg/ml。
     3.单环刺螠纤溶酶Ⅲ不引起机体溶血,无明显的出血反应,无小鼠全身急性毒性。
     4.单环刺螠纤溶酶Ⅲ在体外有较好的抗凝、溶栓活性,对红细胞无害;在3h内,其体外溶栓率达60.5%。在动物体内,UFEⅢ能显著延长小鼠凝血时间,UFEⅢ高、中、低三个剂量组对大鼠颈动脉血栓形成的抑制率分别达到70.2%,54.0%和36.4%,表现出了良好的抗凝活性;在FeCl3诱导兔颈动脉血栓模型和结扎诱导大鼠下腔静脉血栓模型中,UFEⅢ能部分溶解造模动物血管堵塞处的血栓块,表现出较好的溶栓活性,延长给药时间可实现堵塞血管的再通。此外,UFEⅢ能显著降低受试动物的血浆FIB浓度、延长动物内源性凝血指标APTT和TT。
     综上所述,单环刺螠纤溶酶Ⅲ同时具备直接降解纤维蛋白(原)和激活纤溶酶原的能力,具有较好的生物安全性,在动物体内外都表现出了显著的抗凝、溶栓活性,有潜力成为一种新的溶栓制剂来源。
Thrombotic diseases, involving cardiovascular disease, cerebrovascular disease andvenous thromboembolism, are becoming a leading cause of morbidity and mortalityworldwide. According to WHO, since2004, there were17millions of people diedfrom cardiovascular and cerebrovascular diseases every year. In China, there arealmost270millions cardiovascular and cerebrovascular patients and3millions ofthem died every year.
     Thrombolytic therapy is commonly acknowledged to be the most effective way torealize recanalization. But most of the current fibrinolytic agents available for clinicsuch as tissue plasminogen activator (t-PA), urokinase and lumbrukinase havehemorrhagic side effects, short half-life in the body and expensive. Therefore,searching for ideal thrombolytic products has never been suspended. Marineorganisms need to adapt to the complex living environment and fierce competition forsurvival in the ocean, which makes them evolve different metabolic mechanismscompared with terrestrial lives. Thus, they are more abundant in many kinds ofbiologically active substances including fibrinolytic compounds. In this lab, a seriesof enzymes with fibrino(gen)lytic activity were discovered and purified from themarine invertebrate, Urchis unicinctus and they named after their molecular weightsorder from high to low: UFEⅠ(45.1kDa), UFEⅡ(26.7kDa), UFEⅢ(20.8kDa) andUFEⅣ(10-11kDa). In this present study, UFEⅠ(45.1kDa) and UFEⅢ(20.8kDa)were purified to electrophoretic homogeneity via ion exchange and gel filtrationchromatography from this worm. Subsequently, UFE Ⅲ was picked out andinvestigated from many aspects involving biochemical characters, biosafety andpharmacological activities. The main achievements in this work are shown as follows.
     1. Urchis unicinctus fibrinolytic enzyme Ⅰ&Ⅲ were obtained after acombination of isolation procedures including dialysis, lyophillization, gelfiltration and anion exchange chromatography. According to Native-PAGE and SDS-PAGE, UFEⅠ and UFEⅢ were both monomeric proteins, withmolecular weights of45.1kDa and20.8kDa, respectively.
     2. UFEⅢ was a serine protease and its N-terminal amino acid sequence wasIIGGSQAAITSY. Isoelectric point of UFEⅢ was around7.2. In fibrin plateassays, UFEⅢ was found to contain1461.5U (urokinase units)/mg totalfibrinolytic activity, which consisted of692.3U/mg direct fibrinolyticactivity and769.2U/mg plasminogen-activator activity. The fibrinogendegrading pattern of UFEⅢ was A-chains> B-chains>-chain. Besides,UFEⅢ was stable at pH6-10below60℃with an optimal catalytic pH of8.5at approximately55℃. The activity of UFEⅢ was enhanced by Mn~(2+)and Mg~(2+)but inhibited by Cu~(2+). Besides, UFEⅢ was also inhibited by PMSFand SBTI. Further, Kmand Vmaxvalues for casein were1.06mg/ml and42.92g/min-1ml-1, respectively.
     3. UFEⅢ exhibited neither hemolysis nor hemorrhagic effect. In Kunming mice,UFEⅢ exhibited no acute toxicity, too.
     4. UFEⅢ exhibited good anticoagulant and thrombolytic effects in vitro, with athrombus dissolve rate of60.5%within3h. In vivo, UFEⅢ not onlyprolonged the clotting time of Kunming mice, also inhibited the carotidarterial thrombosis in Wistar rats, exhibiting a nice anticoagulant effect.Moreover, UFEⅢ showed thrombolytic effect in vivo. In FeCl3inducedcarotid arterial thrombus model and stasis induced vena caval thrombusmodel, UFEⅢ could partially degrade the clots in the modeling segment ofvessel. Further, UFEⅢ significantly decreased the fibrinogen content oftesting animals and prolonged the intrinsic coagulation parameters-APTT andTT.
     From the above, UFEⅢ exhibited both anticoagulant and thrombolytic activities invivo and in vitro, which make it potentially be a new source of thrombolytic agents.
引文
[1] Mathers CD, Loncar D. Projections of global mortality and burden of disease from2002to2030. PLoS Med,2006,3: e442
    [2]赵友春,赵淑梅,王革,张长恺.第三代溶血栓药物研究进展.药学进展,2003,28(2):72-75
    [3] Survey of income and program participation (SIPP). MMWR Morb Mortal Wkly Rep,2001,50:120-125
    [4] Heit JA. Venous thromboembolism epidemiology: Implications for prevention andmanagement. Semin Thromb Hemost,2002,28:3-13
    [5]沈志祥.糖尿病中的止血与血栓,见:王振义,李家增,阮长耿主编.血栓与止血-基础理论与临床.上海:上海科学技术出版社,1995.525-530
    [6] Decker KD, Havenbergh TV, Drchambeau O, et al. Basilar artery thrombosis in a traumapatient. Resuscitation,2003,59:147-154
    [7] Khorana AA., Fine RL. Pancreatic cancer and thrmoboembolic disease. The Lancet Oncology,2004,5:655-663
    [8] Mandalà M, Ferretti G, Cremonesi M, et al. Venous thromboembolism and cancer: new issuesfor an old topic. Critical Reviews in Oncology/Hematology,2003,48:65-80
    [9]王鸿利.肾脏疾病中的出血与血栓形成,见:王振义,李家增,阮长耿主编.血栓与止血基础理论与临床,第二版,上海:上海科学技术出版社,1996.507-515
    [10]王鸿利.肝脏疾病中的出血与弥散性血管内凝血,见:王振义,李家增,阮长耿主编.血栓与止血基础理论与临床,第二版,上海:上海科学技术出版社,1996.520-524
    [11]熊立凡,王鸿利.外科手术中的血栓形成,见:王振义,李家增,阮长耿主编.血栓与止血基础理论与临床,第二版,上海:上海科学技术出版社,1996.372-440
    [12]李家增,贺石林,王鸿利主编.血栓病学.北京:科学出版社,1996.5-6
    [13] Huber K, Christ G, Wojta J, Gulba D. Plasminogen activator inhibitor type-1inCardiovaseular Disease Status Report2001. Thrombosis Research,2001,103:S7-S9
    [14] Van Meijer M, Pannekoek H. Structure of Plasminogen activator inhibitor1(PAI-1) andfunction in fibrinolysis: an update. Fibrinolysis,1995,9:263-276
    [15] De Meyer SF, Vanhooelbeke K, Broos K, et al. Antiplatelet drugs. British J Haematol,2008,142:515-528
    [16] Birk S, Kruuse C, Petersen KA, et al. The headache-inducing effect of cilostazol in humanvolunteers. Cephalalgia,2006,26:1304-9
    [17] Francescone S, Halperin JL.“Triple therapy” or triple threat?: balancing the risks ofantithrombotic therapy for patients with atrial fibrillation and coronary stents. J Am Coll Cardiol,2008,51:826-7
    [18] Johnson S. Known knowns and known unknowns: Risks associated with combinationantithrombotic therapy. Thrombosis Research,2008,123:S7–S11
    [19] Chair JH, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C,Ohman EM, Dalen JE. Heparin and low molecular weight heparin mechanisms of action,pharmacokinetics, dosing, monitoring, efficacy and safety. Chest,2001,119(1_suppl):64S-94S
    [20] Lucio A, Anna GM, Antonella M, Rossana M, Mariano S, Sabrina G, Luigia R, Antonio B.Safety and efficacy of anticoagulation therapy with low molecular weight heparin for portal veinthrombosis in patients with liver cirrhosis. Journal of Clinical Gastroenterology,2010,44(6):448-451
    [21]乔彦,吕晓川.抗凝血药物研究进展,中国心血管病研究杂志.2005,3(8):631
    [22]李江,沈玉祥.慢性心房颤动血栓前状态及华法林抗凝治疗的研究进展,心血管病学进展,2002,23:363
    [23]熊长明.新型抗凝药的研究进展和临床应用.中国新药杂志,2009,18(7):1618-1622
    [24] Turpie AG, Bauer KA, Eriksson BI, et al. Postoperative fondaparinux versus postoperativeenoxaparin for prevention of venous thromboembolism after elective hip-replacement surgery: arandomised double-blind trial. Lancet,2002,359:1721-1726
    [25] Cangir AK, Yuksel C, Dakak, et al. Use of intrapleural streptokinase in experimental minimalclotted hemothorax. European Journal of Cardio-thoracic Surgery,2005,27:667-670
    [26] Crabbe SJ, Grimm AM, Hopkins LE. Acylated plasminogen-streptokinase activator complex:a new approach to thrombolytic therapy. Pharmacotherapy,1990,10(2):115-126
    [27]植绍权.早期尿激酶静脉溶栓治疗急性心肌梗塞24例临床分析.第一军医大学学报,2005,25(11):1452-1453
    [28]宋或林,董玉红.颈动脉注射尿激酶治疗超早期脑梗塞.中国冶金工业医学杂志,2005,22(4):403-404
    [29]李利红,王辰,陈世伦等.不同溶栓方案治疗肺栓塞时凝血纤溶变化的实验研究.中国呼吸与危重监护杂志,2005,4(3):221-224
    [30]王中枢.纤维蛋白溶解的生物化学.北京:科学出版社,1991.129-130
    [31] Gurewich V, Pannell R, Louie S, et al. Effectiveand fibrin-specific clot lysis by a zymogenprecursor form of urokinase (pro-urokinase). A study in vitro and in two animal species. J ClinInvest,1984,73:1731–1739
    [32] Lijnen HR, Van Hoef B, Nelles L, et al. Plasminogen activation with single chainurokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen(Ser740-Ala) and plasmin-resistant scu-PA (Lys158-Glu). Journal of Biological Chemistry,1990,265:5232–5236
    [33] Andreenko GV, Lyutova LV, Shimonaeva EE. Changes of the fibrinolytic system of animalsinduced by injection of tissue plasminogen activator. Thrombosis Research,1982,27(3):279-288
    [34] Hoffmeister HM, Kastner C, Szabo S, Beyer ME, Helber U, Kazmaier S, Baumbach A,Wendel HP, Heller W. Fibrin specificity and procoagulant effect related to the kallikrein-contactphase system and to plasmin generation with double-bolus reteplase and front-loaded alteplasethrombolysis in acute myocardial infarction. Am J Cardiol,2000,86(3):263-268
    [35] Stewart RJ, Fredenburgh JC, Leslie BA, Keyt JA, Rischke JA, Weitz JI. Identification of themechanism responsible for the increased fibrin specificity of TNK-tissue plasminogen activatorrelative to tissue plasminogen activator. Jourbal of Biological Chemistry,2000,275(14):10112-10120
    [36] Binbrek A, Rao N, Absher PM, Van de Werf FJ, Sobel BE. The relative rapidity ofrecanalization induced by recombinant tissue-type plasminogen activator (r-tPA) and TNK-tPA,assessed with enzymatic methods. Coron Artery Dis,2000,11(5):429-435
    [37] Swenson S, Markland FS. Snake venom fibrin(ogen)olytic enzyme. Toxicon,2005,45:1021-1039
    [38] Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism.Biochem. J.,2006,397:377-387
    [39] Nolan C, Hall LS, Barlow GH. Ancrod, the coagulating enzyme from Malayan pit viper(Agkistrodon rhodostoma) venom. Methods in Enzymology,1976,45:205–213
    [40] Itoh N, Tanaka N, Mihashi S, et al. Molecular cloning and sequence analysis of cDNA forbatroxobin, a thrombin-like snake venom enzyme. Journal of Biological Chemistry,1987,262:3132–3135
    [41] Egen NB, Russell FE, Sammons DW, et al. Isolation by preparative isoelectric focusing of adirect acting fibrinolytic enzyme from the venom of Agkistrodon contortrix contortrix (southerncopperhead). Toxicon,1987,25:1189–1198
    [42] Mihara H, Sumi H, Akazawa T, et al. Fibrinolytic enzyme extracted from the earthworm.Thrombosis and Haemostasis,1983,50:258-263
    [43] Mihara, H., Sumi, H., Yoneta, T., et al. A novel fibrinolytic enzyme extracted from theearthworm, Lumbricus rubellus. Jpn J Physiol,1991,41:461-472
    [44] Nakajima N, Mihara H, Sumi H. Characterization of potent fibrinolytic enzymes inearthworm, Lumbricus rubellus. Biosci Biotechnol Biochem,1993,57:1726-1730
    [45] Wang F, Wang C, Li M, Gui LL, Zhang JP, Chang WR. Purification, characterization andcrystallization of a group of earthworm fibrinolytic enzymes from Eisenia fetida. BiotechnologyLetters,2003,25:1105-1109
    [46] Phan TB, Ta TD, Nguyen DT, Van Den Broek LA, Duong GT. Purification andcharacterization of novel fibrinolytic proteases as potential antithrombotic agents from earthwormPerionyx excavatus. AMB Express,2011,1:26
    [47] Fan Q, Wu C, Li L, et al. Some features of intestinal absorption of intact fibrinolytic enzymeIII-1from Lumbricus rubellus. Biochim Biophys Acta,2001,1526:286-292
    [48] Hu RL, Zhang SF, Liang HY, et al. Codon optimization, expression, and characterization ofrecombinant lumbrokinase in goat milk. Protein Expression and Purification,2004,37:83-88
    [49] Ge T, Sun ZJ, Fu SH, Liang GD. Cloning of thrombolytic enzyme (lumbrokinase) fromearthworm and its expression in the yeast Pichia pastoris. Protein Expression and Purification,2005,42:20-28
    [50] Xu ZR, Yang YM, Gui QF, Zhang LN, Hu L. Expression, purification, and characterization ofrecombinant lumbrokinase PI239in Escherichia coli. Protein Expression and Purification,2010,69:198-203
    [51] Gardell SJ, Duong LT, Diehl RE, et al. Isolation, characterization and cDNA cloning of avampire bat salivary plasminogen activator. Journal of Biological Chemistry,1989,64:17947-17952
    [52] Petri T, Langer G, Bringmann P, et al. Production of vampire bat plasminogen activatorDSPA-α1in CHO and insect cells. Journal of Biotechnology,1995,39:77-83
    [53] Wei, Z, Wang, Y, Li, G, et al. Optimized gene synthesis, expression and purification of activesalivary plasminogen activator alpha2(DSPAalpha2) of Desmodus rotundus in Pichia pastoris.Protein Expression and Purification,2008,57:27-33
    [54] Zhang YL, Cui JY, Zhang R, Wang YP, Hong M. A novel fibrinolytic serine protease from thepolychaete Nereis (Neanthes) virens (Sars): Purification and characterization. Biochimie,2007,89:93-103
    [55] Deng ZH, Wang SH, Li Q, Ji X, Zhang LZ, Hong M. Purification and characterization of anovel fibrinolytic enzyme from the polychaete, Neanthes japonica (Iznka). BioresourceTechnology,2010,101:1954-1960
    [56] Wang SH, Deng ZH, Li Q, Ge X, Bo QQ, Liu JK, Cui JY, Jiang X, Liu J, Zhang LZ, Hong M.A novel alkaline serine protease with fibrinolytic activity from the polychaete, Neanthes japonica.Comparative Biochemistry and Physiology, Part B,2011,159:18-25
    [57] Jung WK, Je JK, Kim HJ, Kim SK. A novel anticoagulant protein from Scapharcabroughtonii. Journal of Biochemistry and Molecular Biology,2002,35:199-205
    [58] Hahn BS, Cho SY, Wu SJ, et al. Purification and characterization of a serine protease withfibrinolytic activity from Tenodera sinensis (praying mantis). Biochimica et Biophysica Acta,1999,1430:376-386
    [59]Hahn BS, Cho SY, Ahn MY, et al. Purification and characterization of a plasmin-like proteasefrom Tenodera sinensis (Chinese mantis). Insect Biochemistry and Molecular Biology,2001,31:573-581
    [60] Ahn MY, Hahn BS, Ryu KS, et al. Purification and characterization of a serine protease withfibrinolytic activity from the dung beetles, Catharsius molossus. Thrombosis Research,2003,112:339-347
    [61]Ahn MY, Hahn BS, Ryu KS. Purification and characterization of a serine protease (CPM-2)with fibrinolytic activity from the dung beetles. Arch Pharm Res,2005,28:816-822
    [62] You WK, Sohn YD, Kima KY, et al. Purification and molecular cloning of a novel serineprotease from the centipede, Scolopendra subspinipes mutilans. Insect Biochemistry andMolecular Biology,2004,34:239-250
    [63] Choo YM, Lee KS, Yoon HJ, Qiu YL, Wan H, Sohn MR, Sohn HD, Jin BR. Antifibrinolyticrole of a bee venom serine protease inhibitor that acts as a plasmin inhibitor. PLoS ONE,2012,7(2): e32269
    [64] Qiu YL, Choo YM, Yoon HJ, Jin BR. Molecular cloning and fibrin(ogen)olytic activity of abumblebee (Bombus hypocrita sapporoensis) venom serine protease. Journal of Asia PacificEntomology,2012,15:79-82
    [65] Matsubara K, Sumi H, Hori K, Miyazawa K. Purification and characterization of twofibrinolytic enzymes from a marine green alga, Codium intricatum. Comp. Biochem. Physiol.,1998,119B(1):177-181
    [66] Matsubara K, Hori K, Matsuura Y, Miyazawa K. Purification and characterization of afibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga,Codium intricatum. Comparative Biochemistry and Physiology Part B2000,125:137-143
    [67] Cha WS, Park SS, Kim SJ, Choi DB. Biochemical and enzymatic properties of a fibrinolyticenzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. BioresourceTechnology,2010,101:6475-6481
    [68] Kim JS, Kim JE, Choi BS, Park SE, Sapkota K, Kim S, Lee HH, Kim CS, Park Y, Kim MK,Kim YS, Kim SJ. Purification and characterization of fibrinolytic metalloprotease fromPerenniporia fraxinea mycelia. Mycological research,2008,112:990-998
    [69] Zhang XQ, Liu QH, Zhang GQ, Wang HX, Ng TB. Purification and molecular cloning of aserine protease from the mushroom Hypsizigus marmoreus. Process Biochemistry,2010,45:724-730
    [70] Li HP, Hu Z, Yuan JL, Fan HD, Chen W, Wang SJ, Zheng SS, Zheng ZL, Zou GL. A novelextracellular protease with fibrinolytic activity from the culture supernatant of Cordyceps sinensis:purification and characterization. Phytotherapy Research,2007.21:1234-1241
    [71] Choi DB, Cha WS, Park NM, Kim HY, Lee JH, Park JS, Park SS. Purification andcharacterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris.Bioresource Technology,2011,102:3279-3285
    [72] Kim HC, Choi BS, Sapkota K, Kim S, Lee HJ, Yoo JC, Kim SJ. Purification andcharacterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes.Process Biochemistry,2011,46:1545-1553
    [73] Mahajan PM, Nayak S, Lele SS. Fibrinolytic enzyme from newly isolated marine bacteriumBacillus subtilis ICTF-1: media optimization, purification and characterization. Journal ofBioscience and Bioengineering,2012,113(3):307-314
    [74] Mukherjee AK, Rai SK, Thakur R, Chattopadhyay P, Kar SK. Bafibrinase: a non-toxic,non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-Iexhibits in vivo anticoagulant activity and thrombolytic potency. doi:10.1016/j.biochi.2012.02.027
    [75] Mander P, Cho SS, Simkhada JR, Choi YH, Yoo JC. A low molecular weightchymotrypsin-like novel fibrinolytic enzyme from Streptomyces sp. CS624. Process Biochemistry,2011,46:1449-1455
    [76] Simkhada JR, Mander P, Cho SS, Yoo JC. A novel fibrinolytic protease from Streptomyces sp.CS684. Process Biochemistry,2010,45:88-93
    [77] Kim YJ, Park JU, Seo MJ, Kim MJ, Lee HH, Jin SH, et al. Purification and biochemicalcharacteristics of fibrinolytic enzyme from Streptomyces corcohrussi JK-20. J Life Science,2010,20:838-844
    [78] Uesugi Y, Usuki H, Iwabuchi M, Hatanaka T. Highly potent fibrinolytic serine protease fromStreptomyces. Enzyme and Microbial Technology,2011,48:7-12
    [79] Lee SY, Kim JS, Kim JE, Sapkota K, Shen MH, Kim S, et al. Purification andcharacterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. ProteinExpression and Purification,2005,43:10-17
    [80] Lu FX, Lu ZX, Bie XM, Yao ZY, Wang YF, Lu YP, Guo Y. Purification and characterizationof a novel anticoagulant and fibrinolytic enzyme produced by endophytic bacterium Paenibacilluspolymyxa EJS-3. Thrombosis Research,2010,126: e349-e355
    [81] Agrebi R, Haddar A, Hmidet N, Jellouli K, Manni L, Nasri M. BSF1fibrinolytic enzymefrom a marine bacterium Bacillus subtilis A26: purification, biochemical and molecularcharacterization. Process Biochemistry,2009,44:1252-1259
    [82]Wu, B, Wu, L, Chen, D. Purification and characterization of a novel fibrinolytic protease fromFusarium sp. CPCC480097. J Ind Microbiol Biotechnol,2009,36:451-459
    [83] Sumi H, Hamada H, Tsushima H, et al. A novel fibrinolytic enzyme (nattokinase) in thevegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia,1987,43:1110-1111
    [84] Chiang CJ, Chen HC, Chao YP, Tzen JTC. Efficient system of artificial oil bodies forfunctional expression and purification of recombinant Nattokinase in Escherichia coli. J. Agric.Food Chem.2005,53,4799-4804
    [85] Hsia CH, Shen MC, Lin JS, Wen YK, Hwang KL, Cham TM, Yang NC. Nattokinasedecreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. NutritionResearch,2009,29,190-196
    [86] Wang CT, Ji BP, Nout BBL, Li PL, Ji H, Chen LF. Purification and characterization of afibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J IndMicrobiol Biotechnol,2006,33:750-758
    [87] Chang CT, Wang PM, Hung YF, Chung YC. Purification and biochemical properties of afibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chemistry,2012,133:1611-1617
    [88] Jeong YK, Yang WS, Kim KH, Chung KT, Joo WH, Kim JH, Kim DE, Park JU. Purificationof a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumorcell lines. Biotechnology Letters,2004,26:393-397
    [89] Montriwong A, Kaewphuak S, Rodtong S, Roytrakul S, Yongsawatdigul J. Novel fibrinolyticenzymes from Virgibacillus halodenitrificans SK1-3-7isolated from fish sauce fermentation.Process Biochemistry,2012,47:2379-2387
    [90] Mackman N. Triggers, targets and treatments for thrombosis. Nature,2008,451(21):914-918
    [91] Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medizin. Frankfurt,Meidinger,1856.
    [92] Wang SH, Li Q, Deng ZH, Ji X, Jiang X, Ge X, Bo QQ, Cui JY, Zhang LZ, Liu JK, Hong M.Neanthes japonica (Iznka) fibrinolytic enzyme reduced cerebral infarction, cerebral edema andincreased antioxidation in rat models of focal cerebral ischemia. Neuroscience Letters,2011,489:16-19
    [93] Lin X, Liang XX, Tang JJ, Chen JS, Qiu PX, Yan GM. The effect of the fibrinolytic enzymeF Ⅱ a from Agkistrodon acutus venom on acute pulmonary thromboembolism. ActaPharmacologica Sinica,2011,32:239-244
    [94] Tang ZY, Wang YY, Xiao YL, Zhao M, Peng SQ. Anti-thrombotic activity of PDR, a newlysynthesized L-Arg derivative, on three thrombosis models in rats. Thrombosis Research,2003,110:127-133
    [95] Kusada A, Isogai N, Cooley BC. Electric injury model of murine arterial thrombosis.Thrombosis Research,2007,121:103-106
    [96] Peternel L, Drevensˇek G, Cˇerne M, Sˇtalc A. Evaluation of two experimental venousthrombosis models in the rat. Thrombosis Research,2005,115:527-534
    [97] Chi LG, Saganek LJ, Rogers KL, Mertz TE, Metz AL, Uprichard A, Gallagher KP. A novelmodel of venous thrombosis in the vena cava of rabbits. Journal of Pharmacological andToxicological Methods,1998,39:193-202
    [98] Tseng MT, Dozier A, Haribabu B,. Graham UM. Transendothelial migration of ferric ion inFeCl3injured murine common carotid artery. Thrombosis Research,2006,118:275-280
    [99] Wang XK, Xu L. An optimized murine model of ferric chloride-induced arterial thrombosisfor thrombosis research. Thrombosis Research,2005,115:95-100
    [100] Ma YB, Zhang ZF, Shao MY, Kang KH, Tan Z, Li JL. Sulfide: quinone Oxidoreductasefrom Echiuran Worm Urechis unicinctus. Marine Biotechnology,2011,13:93-107
    [101] Kumazaki T, Hon H, Osawa S. The nucleotide sequences of5s rRNA from two Annelidaspecies, Perinereis brevicirris and Sabellastarte japonica, and an Echiura species, Urechisunicintus. Nucleic Acids Research,1983,11(10):3347-3350
    [102] Wu ZG, Shen X, Sun MA, Ren JF, Wang YJ, Huang YL, Liu B. Phylogenetic analyses ofcomplete mitochondrial genome of Urechis unicinctus (Echiura) support that echiurans arederived annelids. Molecular Phylogenetics and Evolution,2009,52:558-562
    [103] Kawada T, Masuda K, Satake H, Minakata H, Muneoka Y, Nomoto K. Identification ofmultiple urechistachykinin peptides, gene expression, pharmacological activity, and detectionusing mass spectrometric analyses. Peptides,2000,21:1777-1783
    [104] Kawada T, Furukawa Y, Shimizu Y, Minakata H, Nomoto K, Satake H. A novel tachykininrelated peptide receptor Sequence, genomic organization, and functional analysis. Europe Journalof Biochemistry,2002,269:4238-4246
    [105] Ozeki Y, Tazawa E, Matsui T. D-Galactoside-specific lectins from the body wall of anechiuroid (Urechis unicinctus) and two annelids (Neanthes japonica andMsanguinea).Comparative Biochemistry and Physiology,1997,118B(1):1-6
    [106] Jo HY, Jung WK, Kim SK. Purification and characterization of a novel anticoagulantpeptide from marine echiuroid worm, Urechis unicinctus. Process Biochemistry,2008,43:179-184
    [107] Wang DL,Liu WS,Han BQ, Xu RA. Biochemical and enzymatic properties of a novelmarine fibrinolytic enzyme from Urechis unicinctus. Applied Biochemistry and Biotechnology,2007,136(3):251-261
    [108]蒋仲青,刘万顺,韩宝芹,朱琦.单环刺螠纤溶酶的分离纯化及溶栓活性的初步研究.中国海洋大学学报,2009,39(Sup.):138-142
    [109]韩宝芹,冯伊琳,毕庆庆,刘万顺,隋正红,杨官品.单环刺螠纤溶酶Ⅱ的基因克隆.中国海洋大学学报,2011,41(7/8):91-96
    [110]初金鑫,蔡文娣,韩宝芹,刘万顺,杜长青,谭永林.单环刺螠纤溶酶UFEⅡ的分离纯化及其酶学性质.中国生物制品学杂志,2010,23(7):720-723
    [111]王少华.日本刺沙蚕蛋白酶的纯化、鉴定及日本刺沙蚕纤溶酶的部分药效学研究:[博士学位论文].长春:吉林大学白求恩医学院,2011
    [112] Laemmli UK. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature,1970,227:280-285
    [113] Marder VJ, Landskroner K, Novokhatny V, Zimmerman TP, Kong M, Kanouse JJ, Jesmok G.Plasmin induces local thrombolysis without causing hemorrhage: a comparison with tissueplasminogen activator in the rabbit. Thrombosis Haemostasis,2001,86:739-745
    [114] Novokhatny V. Structure and activity of plasmin and other direct thrombolytic agents.Thrombosis Research,2008,122: S3-S8
    [115] Marder VJ, Novokhatny V. Direct fibrinolytic agents: biochemical attributes, preclinicalfoundation and clinical potential. Journal of Thrombosis and Haemostasis,2010,8:433-444
    [116]成慧中.单环刺螠纤溶酶UFEⅠ的酶学性质和初步药效学及安全性评价:[硕士学位论文].青岛:中国海洋大学海洋生物系,2011
    [117]刘万顺,成慧中,韩宝芹,毕庆庆,董文,关驰.单环刺螠纤溶酶UFEⅠ药效作用和免疫原性的初步研究.中国海洋大学学报,2012,42(1-2):88-92
    [118]蒋仲青.单环刺螠纤溶酶的分离纯化及其药效学的研究:[硕士学位论文].青岛:中国海洋大学海洋生物系,2009
    [119]中华人民共和国国家质量监督检验检疫总局. GB/T16886.1-2001.中华人民共和国国家标准——医疗器械生物学评价.北京:中国标准出版社,2002
    [120]胡大一.急性心肌梗塞现代治疗.北京:中国环境科学出版社,1996.
    [121] Bush LR, Shebuski RJ. In vivo models of arterial thrombosis and thrombolysis. FASEB J,1990,4:3087-3098
    [122] Sturgeon SA, Jones C, Angus JA, Wright CE. Adaptation of the Folts and electrolyticmethods of arterial thrombosis for the study of anti-thrombotic molecules in small animals.Journal of Pharmacological and Toxicological Methods,2006,53:20-29
    [123] Becker RC. Cardiology Patient Pages: Heart attack and stroke prevention in women.Circulation,2005,112:273-275
    [124] Heit JA. Venous thromboembolism epidemiology: Implications for prevention andmanagement. Semin Thromb Hemost,2002,28:3-13
    [125] Marder VJ. Thrombolytic therapy for deep vein thrombosis: potential application of plasmin.Thrombosis Research,2009,123(Suppl.4): S56–S61
    [126] Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ. Res.,2007,100:1673-1685
    [127] Andriamampandry MD. Antithrombotic effects of (n-3) polyunsaturated fatty acids in ratmodels of arterial and venous thrombosis. Thrombosis Research,1999,93:9-16
    [128] Cushman M. Epidemiology and risk factors for venous thrombosis. Semin. Hematol.,2007,44:62-69
    [129] Silverstein D, Heit JA, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ. Trends in theincidence of deep vein thrombosis and pulmonary embolism: a25-year population-based study.Archives of Internal Medicine,1998,158:585-593
    [130] Heit JA, Silverstein MD, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ. Risk factorsfor deep vein thrombosis and pulmonary embolism: a population-based case-control study.Archives of Internal Medicine,2000,160:809-815

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700