Nrf2在大鼠肢体爆炸伤后短暂低温肺保护中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争中肢体爆炸伤发生率高,且多存在血管、神经和广泛的软组织损伤,是战时创伤性截肢的主要原因。肢体爆炸伤由于其特殊的致伤机理,常导致全身免疫系统过度激活,进而导致远隔器官损伤。其中,以肺损伤的发生率最高,且常常是多器官功能损害的先兆,因此减轻或预防肺损伤的发生成为改善肢体爆炸伤伤员预后的关键。
     既往研究表明,控制性全身低温可明显减轻脓毒症、内毒素和缺血—再灌注等引起的肺损伤,但对于有活动性出血的肢体爆炸伤而言,长时间低温可能导致致命性出血。近期研究发现对于急性肺损伤的救治,低温维持时间并非越长越好,相反短时间全身低温(2h)肺保护作用优于长时间全身低温(5h)。全身降温30min也可明显增强组织对缺血的耐受。另外,前期研究提示损伤局部短暂低温可通过抑制全身失控性炎症反应和氧化损伤减轻肺和肠道屏障功能损害。因此,本研究拟通过制作肢体远端爆炸伤动物模型,观察全身短暂低温和损伤局部短暂低温对肺损伤的作用,并初步探讨其机制。
     内源性保护机制受损在创伤后脏器功能损害中的作用日益受到人们的关注。NF-E2相关因子(Nrf2)是决定细胞内源性抗损伤能力的关键转录因子,具有抗氧化、抗炎等作用。最新研究发现Nrf2转录调节活性增强在动物冬眠时缺血缺氧的耐受过程中具有重要作用,提示控制性低温可能是通过增强Nrf2转录调节活性,进而发挥保护效应。但Nrf2在肢体爆炸伤后肺损伤及低温脏器保护作用中的相关研究目前尚未见报道。
     针对上述问题,本研究分为四个部分:①采用80mg DDNP纸质点爆源紧贴大鼠左后肢下段引爆制作肢体爆炸伤动物模型,观察全身短暂低温(30min)或损伤局部短暂低温(30min)对肢体爆炸伤后肺损伤的作用。②全身短暂低温或损伤局部短暂低温对肢体爆炸伤后肺Nrf2转录调节活性的影响。③培养肺微血管内皮细胞,通过给予肺微血管内皮细胞不同剂量的H2O2或TNFα,观察Nrf2转录调节活性的变化,初步探讨全身短暂低温和损伤局部短暂低温是否通过减少肺自由基和炎症因子的产生,进而参与Nrf2转录调节活性的调控。④采用RNAi技术阻断肺微血管内皮细胞Nrf2表达,研究Nrf2在抗炎症损伤和抗氧化损伤中的作用;探讨Nrf2在低温肺保护中的作用。
     主要结果结论如下:
     1.大鼠肢体爆炸伤后早期可引起肺组织出现以炎症损伤、氧化损伤、炎症细胞浸润和肺水肿为主要表现的继发肺损伤早期改变;肺组织MDA含量和MPO活性明显升高(p<0.05),SOD活性明显下降;肺组织TNFα、IL-6和IL-10水平均明显升高(p<0.01)。
     2.全身短暂低温或损伤局部短暂低温可明显减轻肢体爆炸伤后肺组织炎症细胞浸润,肺水肿;降低肺组织MDA含量和MPO活性(p<0.01),增高SOD活性;降低肺组织TNFα、IL-6和IL-10水平(p<0.01)。说明全身短暂低温或损伤局部短暂低温可通过抑制氧化应激和炎症反应,减轻肢体爆炸伤后肺损伤。
     3.肢体爆炸伤后肺Nrf2转录调节活性增强,全身短暂低温或损伤局部短暂低温可进一步增强肺Nrf2的转录调节活性,但对肺Nrf2 mRNA表达水平没有明显影响,说明全身短暂低温或损伤局部短暂低温对肢体爆炸伤后肺Nrf2转录调节活性的调控并非发生在基因转录水平。
     4.采用不同剂量H2O2或TNFα处理肺微血管内皮细胞后,Nrf2转录调节活性发生不同的改变:中、低剂量H2O2(0.125、0.25、0.5mM)或TNFα(2.5、5、10ng/ml)引起Nrf2转录调节活性呈剂量依赖性升高,而高浓度H2O2(1、2mM)或TNFα(20、40ng/ml)引起Nrf2转录调节活性下降。结合全身短暂低温或损伤局部短暂低温可明显抑制肢体爆炸伤后肺组织氧化损伤和炎症反应的实验结果,我们认为全身短暂低温或损伤局部短暂低温可能通过抑制肢体爆炸伤后肺自由基和炎症因子的产生,从而增强Nrf2的转录调节活性。
     5.采用RNAi技术阻断肺微血管内皮细胞Nrf2的表达后,TNFα或H2O2引起肺微血管内皮细胞更为严重的炎症损伤和氧化损伤:与野生对照细胞和转染空质粒的细胞比较,Nrf2表达下降的细胞凋亡率增高,LDH水平升高;MDA含量升高;IL-6水平升高,IL-10水平下降;GSH含量下降;且上述指标的变化幅度与Nrf2表达受抑程度一致,说明Nrf2在细胞抗氧化损伤和炎症损伤过程中具有重要作用,而氧化损伤和炎症反应恰好是引起肢体爆炸伤后肺损伤的重要原因,因此Nrf2转录调节活性增强是全身短暂低温或损伤局部短暂低温减轻肢体爆炸伤后肺损伤的重要机制之一。全身短暂低温或损伤局部短暂低温通过增强肺Nrf2转录调节活性,发挥长时程保护作用,减轻肢体爆炸伤后肺损伤。
Being the main reason for traumatic amputation in war time, limb’s explosion injury frequently occurs in modern wars, causing damages to blood vessel, neurotmesis and extensive soft tissue. Immune system is often excessively activated after limb’s explosion injury, subsequently resulting in remote organ damage. Amongst, incidence rate of acute lung injury is the highest, which often portends multiple organ dysfunction syndrome, so mitigation and prevention of acute lung injury become the very key step to improve prognosis of limb’s explosion injury.
     Previous investigations indicate that controlled whole-body hypothermia obviously mitigates lung injury caused by sepsis, endotoxin and ischemic-reperfusion injury etc. while for limb’s explosion injury accompanying with active bleeding, a long-time hypothermia may lead to fateful hemorrhage. Recent studies found that for the therapy of acute lung injury, early and short-time (2h) application of whole-body hypothermia is better than long-time hypothermia (5h). Transient(30min) whole-body hypothermia can significantly increase ischemic tolerance. Moreover, we also found that transient regional hypothermia can mitigate lung injury and intestinal tract barrier damage by inhibiting the systemic inflammatory reaction and oxidative injury in our early investigations. Therefore, the animal model is made for limb’s explosion injury, meanwhile observing effects of transient(30min) whole-body hypothermia or regional hypothermia on lung injury.
     Endogenous protective system damage has driven considerable interests recently. NF-E2 related factor (Nrf2) is the key transcription factor in endogenous protective system, playing important roles in reducing oxidative stress, inflammatory damage and accumulation of toxic metabolites which are all involved in secondary lung injury after limb’s explosion injury. Latest study points out that Nrf2 is activated to regulate antioxidant defenses during hibernation. However, relevant reports about hypothermia protection effects of Nrf2 on lung injury after limb’s explosion injury are presently unavailable.
     In view of that, this paper is divided into four parts:
     Part 1: Animal model was made by detonating 80mg DDNP fixed on left hind limb of SD rats, meanwhile observing effects of transient (30min) whole-body hypothermia or regional hypothermia on secondary lung injury after limb’s explosion injury.
     Part 2: Effects of transient (30min) whole-body hypothermia or regional hypothermia on Nrf2 of lung after limb’s explosion injury was observed.
     Part 3: Pulmonary micro-vascular endothelial cells (PMVECs) were cultured. In order to investigate changes of Nrf2-transcriptional activity, PMVECs were treated with different doses of hydrogen peroxide (H2O2) or tumor necrosis factorα, expecting to explore the mechanism of Nrf2 transcriptional activity regulated by transient (30min) whole-body hypothermia or regional hypothermia.
     Part 4: Nrf2 expression in PMVECs was inhibited by RNA interference. Simultaneously, that whether Nrf2 exerts effects on anti-oxidative injury and anti-inflammation was investigated, exploring Nrf2’role in hypothermia protection.
     The main results and conclusions are as follows:
     1. Secondary lung injury resulted from limb’s explosion injury are characterized of inflammatory reaction, oxidative injury and PMN infiltration. MDA contents and MPO activity in lung tissue are significantly increased (p<0.05), SOD activity decreased, TNFα、IL-6 and IL-10 concentration are remarkably increased (p<0.01).
     2. Transient whole-body hypothermia or regional hypothermia obviously inhibits inflammatory cells infiltration, mitigates pulmonary edema, decreases MDA content and MPO activity (p<0.01), increases SOD activity and decrease the level of TNFα, IL-6 and IL-10 (p<0.01) in lung tissue. All these show that transient whole-body hypothermia and regional hypothermia can mitigate lung injury after limb’s explosion injury by inhibiting oxidative stress and inflammatory reaction.
     3. Transcriptional activity of Nrf2 in lung tissue is increased after limb’s explosion injury, and further increased by early application of transient whole-body or regional hypothermia. However, Nrf2 mRNA levels are not changed, indicating that regulation of Nrf2 transcriptional activity does not occur at gene transcriptional level.
     4. Nrf2-ARE binding activity is increased after PMVECs exposed to 0.125mM, 0.25mM and 0.5mM hydrogen peroxide (H2O2) or 2.5 ng/ml, 5 ng/ml and 10ng/ml TNFαsolution, showing concentration-dependent. Nrf2-ARE binding activity is decreased after PMVECs exposed to 1mM or 2mM hydrogen peroxide and 20 or 40ng/ml TNF-αsolution compared with 0.5mM hydrogen peroxide or 10ng/ml TNF-αsolution. In consideration that transient whole-body or regional hypothermia can significantly inhibit oxidative injury and inflammatory reaction in lung after limb’explosion injury, it is concluded that Nrf2 transcriptional activity and endogenous protective competent can be increased due to inflammatory cytokines and free radicals are reduced by early application of transient whole-body or regional hypothermia, which is helpful to mitigate lung injury after limb’s explosion injury.
     5. Hydrogen peroxide (H2O2) or tumor necrosis factorαcan lead to more severe injury of PMVECs after Nrf2 gene expression is inhibited by RNA interfere, indicating Nrf2 play important role in the process of anti-oxidative injury and anti-inflammatory reaction. It is suggested transient whole-body or regional hypothermia alleviates lung injury via enhancing transcriptional activity of Nrf2 in the lung tissue.
引文
1. Jevtic M,Petrovic M,Ignjatovic D,et al. Treatment of wounded in the combat zone .J Trauma.1996,40(3suppl):S173-S176.
    2. Mehran R,Connelly P,Boucher P, et al. Modern war surgery: the experience of Bosnia.:the clinical experience.Can J Surg.1995;384(4):338-346.
    3. Starnes BW, Beekley AC, Sebesta JA, et al.Extremity vascular injuries on the battlefield: tips for surgeons deploying to war. J Trauma.2006;60(2):432-442.
    4. Aboutanous MB. Wartime civilian injuries : epidermiology and in tervention strategies. J Trauma , 1997 , 43(4):719– 726.
    5. Hayda R, Harris RM, Bass CD. Blast injury research: modeling injury effects of landmines, bullets, and bombs.Clin Orthop Relat Res.2004,422:88-96.
    6. Pitoyo CW. Acute respiratory distress syndrome. Acta Med Indones. 2008, 40 (1):48-52.
    7.王正国,付小兵主编.分子创伤学.福建科学技术出版社.411-415.
    8. Randhawa R,Bellingan G.. Acute lung injury. Anaesthesia& Intensive Care Medcine. 2007,8(11):477-480.
    9. Pittet JF,Machersie RC,Martin TR,et al. Biological markers of acute lung injury: prognostic and pathogenetic significance.Am J Respir Crit Care Med.1997, 155(4): 1187-1205.
    10. Delong P, Murray JA, Cook CK. Mechanical ventilation in the management of acute respiratory distress syndrome.. Semin Dial.2006,19(6):517-524.
    11. Chu SJ,Perng WC,Hung CM,et al. Effects of Various Body Temperatures After Lipopoly–saccharide - Induced Lung Injury in Rats.Chest. 2005,128(1):327-336
    12. Kira S, Daa T, Kashima K, et al. Mild hypothermia reduces expression of intercellular adhesion molecule(ICAM-1) and the accumulation of neutrophils after acid-induced lung injury in the rat. Acta Anaesthsiol Scand.2005,49(3):351-359.
    13. Huang PS,Tang gj,Chen CH,et al. Whole-body moderate hypothermia confers protection from wood smoke-induced acute lung injury in rats:the therapeutic window. 2006,34(4): 1160-1167.
    14. Yunoki M,Nishio S,Ukita N,et al. Characteristics of hypothermic preconditioninginfluencing the induction of delayed ischemic tolerance. J Neurosurq. 2002,97 (3):650-657.
    15.甯交琳,王韶亮,葛衡江.低温对创伤失血性休克后早期炎症反应影响的研究.重庆医学.2005;34(5):717-720.
    16.王韶亮,甯交琳,葛衡江等.全身和局部降低对创伤失血性休克后小肠早期炎症反应影响的研究.第三军医大学学报. 3005,27(13):1367-1369.
    17. Jaiswal AK.Nrf2 signaling in coordinated activation of antioxidant gene expression,Free Radic Biol Med.2004,36(10):1199-207.
    18. Kraft AD , Johnson DA , Johnson JA. Nuclear factor E2-related factor 2- dependent antioxidant response element activation by tert- butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci,2004 , 24(5):1101-1112.
    19. Yan W,Wang HD,Hu ZG,et al. Activaion of Nrf2-ARE pathway in brain after traumatic injury. Neurosci Lett.2008,431(2):150-154.
    20. Pier JM,Ni Z,McMullen DC,et al.Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrel,Spermophilus tridecemlineatus. Mol Cell Biochem. 2008,10(Epub ahead of print.
    21.王兴胜,吴国明,钱桂生.肺脏在MODS中的地位及ARDS与MODS的关系.国外医学内科学分册.2005,32(2):58-61.
    22. Do?an A, Sungur I, Bilgi? S, et al. Amputations in eastern Turkey (Van): a multicenter epidemiological study.Acta Orthop Traumatol Turc. 2008;42(1):53-58.
    23. Wisborg T, Murad MK, Edvardsen O, et al. Life or death. The social impact of paramedics and. Rural Remote Health. 2008,8(1):816.
    24. Ebrahimzadeh MH, Rajabi MT.Long-term outcomes of patients undergoing war-related amputations of the foot and ankle. J Foot Ankle Surg. 2007 Nov-Dec; 46(6):429-433.
    25.张雪非,吕荣,史惠强等.海岸及海水中肢体关节爆炸伤的试验研究。中国矫形外科杂志。2006,14(8):600-602.
    26. Elsayed NM, Gorbunov NV. Pulmonary Biochemical and Histological Alterations after Repeated Low-Level Blast Overpressure Exposures. Toxicological Sciences.2007, 95(1): 289-296.
    27. Fong Y, Lowry SF. Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol. 1990,55(2):157-70.
    28. Walter L,Emest E,Frederick A, et al. Interleukin-6 in the injuried patient. Maker of injury or mediator of inflammation? Ann Surg.1996,224(5):647-664.
    29. De vrise. Immunosuppressive and anti-inflammatory properties of interleukin 10.Ann Med.1995, 27(5):537-541.
    30. Van der poll T, Jensen PM, Montegut WJ,et al. Effects of interleukin-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol.1997, 158(4): 1971-1975.
    31. Abraham E, Neutrophils and acute lung injury. Crit Care Med. 2003,31 (4suppl): S195 -S199.
    32. Kyriakides C,Austen WG,Wang Y,et al. Neutrophil Mediated Remote Organ Injury after Lower Torso Ischemia and Reperfusion Is Selectin and Complement Dependent. J Trauma. 2000,48(1):32-39.
    33. Chavko M, Prusazzyk K, McCarron RM. Lung injury and recovery after exposure to blast overpressure.J Trauma injury,infection,and critical care,2006,61(4): 933-942.
    34. Lang JD, McArdle PJ,O Reilly PJ,et al. Oxidant-antioxidant balance in acute lung injury. Chest,2002, 122(6 suppl): 314s -320s.
    35. Fink MP. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome.Curr Opin Crit Care.2002;8(1):6-11.
    36. Vuokko LK, James DC.Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med.2003,167(12):1600-1619.
    37. Elsayed NM, Armstrong KL, William MT, et al. Antioxidant loading reduces oxidative stress induced by high-energy impulse noise (blast) exposure. Toxicology. 2000, 155(1-3):91-99.
    38. Elsayed NM, Gorbunov NV, Kagan VF. A proposed biochemical mechanism involving hemoglobin for blast overpressure-induced injury. Toxicology. 1997,121 (1):81-90.
    39. Chang H, Huang KL, Li MH,et al. Manipulations of core temperatures in ischemia–reperfusion lung injury in rabbits. Pulmonary Pharmacology&Therapeutics. 2008,21(2):285-291.
    40. Chin JY,Koh Y,Kim MJ et al. The effects of hypothermia on endotoxin-primed lung.Anesth Anajq.2007,104(5):1171-1178.
    41. Chu SJ,Perng WC,Hung CM,et al. Effects of various body temperatures after lipopolysaccharide-induced lung injury in rats.Chest.128(1):327-336.
    42. Irazuzta JE, Pretzlaff R, Rowin M, et al. Hypothermia as an adjunctive treatment for severe bacterial meningitis. Brain Res.2000,881(1):88-97.
    43. Balch HH,Noyes HE,Hughes CW. The influence of hypothermia on experimental peritonitis. Surgery.1995,38(6):1036-1042.
    44. Irazuzta JE,Pretzlaff RK,Zingarelli B,et al. Modulation of nuclear factor-kappaB activation and decreased markers of neurological injury associated with hypothermic therapy in experimental bacterial meningitis..Crit Care Med. 2002,30(11):2553-2559.
    45. Qing M, Woltje M,Schumacher K,et al. The use of moderate hypothermia during cardiac surgery is associated with repression of tumour necrosis factor-alpha via inhibition of activating protein-1: an experimental study.Crit Care. 2006,10(2): R57-R65.
    46. Haddix TL,Pohlaman TH,Noel RF,et al. Hypothermia inhibits human E-selectin transcription. J Surg Res.1996,64(2):176-183.
    47. Rowin ME,Xue V,Irazuzta J. Hypothermia attenuatesβ1 integrin expression on extravasated neutrophil in an animal model of meningitis. Inflammation,2001, 25(3):137-144.
    48. Inamasu J,Suga S,Sato S,et al. Intra-ischemic hypothermia attenuates intercellular adhesion molecule-1(ICAM-1) and migration of neutrophil. Neurol Res.2001,23(1):105-111.
    49. Sutcliffe IT,Smith HA,Stanimirovic D,et al. Effects of moderate hypothermia on IL-1 beta induced leukocyte rolling and adhesion in pial microcirculation of mice and on proinflammatory gene expression in human cerebral endothelial cells. J Cereb Blood Flow Metab.2001,21(11):1310-1319.
    50. Engerson TD, McKelvey TG, Rhyne DB, et al. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J Clin Invest.1987,79(6):1564-1570.
    51. Patel S,Pachter L,Yee H,et al. Topical hepatic hypothermia attenuates pulmonary injury after hepatic ischemia and reperfusion.2000,191(6):650-656.
    52. Tsaaoun HT,Fisher M,Attuwaybi BO,et al. Regional Hypothermia Reduces MucosalNF-_B and PMN Priming via Gut Lymph During Canine Mesenteric Ischemia/Reperfusion. Journal of Surgical Research.2003,115(1):121-126.
    53. Loukogeorgakis SP,Panagiotidou AT,Broadhead MW, et al. Remote Ischemic Preconditioning Provides Early and Late Protection Against Endothelial Ischemia-Reperfusion Injury in Humans Role of the Autonomic Nervous System. Journal of Ameraican College of Cardiology.2005,46(3):450-456
    54. Tang ZL,Lu R,Hu CP. et al. Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Ach Pharmacol.1999,359(3):243-247.
    55. Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance.. Am J Physiol Heart Circ Physiol.2000,278(5):H1517-H1576.
    56. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species.. Adv Enzyme Regul. 2006,46: 113-140.
    57. Ishii T, Itoh K, Takahashi S et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible gene in macrophages. J Biol Chem.2000, 275(21):16023-16029.
    58. Farombi EO, Shrotriya S, Na HK, et al. Curcumin attenuates dimethylnitrosamine- induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxixol. 2008,46(2):1279-1287.
    59. Joung EJ, Li MH, Lee HG, et al. Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid Redox Signal. 2007,9(12):2087-2098.
    60. Park SH, Jang JH, Li MH, et al. Nrf2-mediated heme oxygenase-1 induction confers adaptive survival response to tetrahydropapaveroline-induced oxidative PC12 cell death. Antioxid Redox Signal. 2007 ,9(12):2075-2086.
    61. Dhakshinamoorthy S ,Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 2001,20(29):3906–3917.
    62. Itoh KN,Wakabayashi Y, Katoh T et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2domain. Genes Dev. 1999,13(1):76–86.
    63. Kraft AD , Johnson DA , Johnson JA. Nuclear factor E2-related factor 2- dependent antioxidant response element activation by tert- butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci,2004, 24(5):1101-1112.
    64. Hu R,Xu CJ,Shen GX,et al. Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sciences. 2006,79 (20):1944-1955.
    65. Enomoto A,Itoh K,Nagayoshi E,et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.Toxicol Sci.2001,59(1):169-177.
    66. Thimmulappa RK, Lee H ,Rangasamy T, et al. Nrf2 is a critical regulator the innate immune response and survival during experimental sepsis. J Clin Invest.2006, 116(4):984-995.
    67. Lizuka T, Ishii Y, Ken I, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005,10(12):1113-1125.
    68. Ma Q, Battelli L,Hubbs AF. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2.Am J Pahtol.2006,168(6):1960-1974.
    69. Chen XL, Dodd G, Thomas S, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2006;290(5):H1862-1870.
    70. Zhang DD,Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.Mol Cell Biol,2003,23(22):8137-8151.
    71. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol ,1997 ,37 :517-554.
    72. Otterbein LE ,Choi AM. Heme oxygenase :colors of defense against cellular stress. AmJ Physiol Lung Cell Mol Physiol ,2000 ,279(6) :L1029-1037.
    73. Verma A ,Hirsch DJ , Glatt CE ,et al . Carbon monoxide :A putative neural messenger Science ,1993 ,259(5093) :381-384.
    74. Mc Coubrey WK,Huang TJ ,Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem, 1997 ,247(2):725-732.
    75. Okinaga S,Takahashi K,Takeda M,et al. Regulation of human heme oxygenase-1 gene expression under thermal stress.Blood,1996,87(12):5074-5084
    76. Hong HY,Jeon WK,Kim BC. Up-regulation of heme oxygenase-1 expression through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the anti-inflammatory effect of 15-deoxy-Delta(12,14)-prostaglandin J(2) in murine macrophages.2008, 582(6):861-868.
    77. Seldon MP,Silva G,Pejanovic N,et al. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol.2007,179(11):7840-7851.
    78. Matsuoka Y,Masuda H,Yokoyama M,et al. Protective effects of bilirubin against cyclophosphamide induced hemorrhagic cystitis in rats. J Urol. 2008, 179(3):1160-1166.
    79. Chung SW,Liu X,Macias AA,et al. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest,2008,118(1):239- 247.
    80. Elbirt KK,Bonkovsky HL. Heme oxygenase-1:Recent advances in understanding it regulation and role. Proc Assoc Am Physicians.1999,11(5):438-447.
    81. Dore S,Takahashi M, Ferris CD , et al . Bilirubin ,formed by activation of heme oxygenase 2 ,protects neurons against oxidative stress injury[ R] . Proceeding of the National Academy of Sciences of the United States of America.1999,96(5):2445-2450.
    82.陈莉,赵金垣.一种新的细胞信息分子—氧化碳.中华内科杂志, 1999 ,38 (4) :270-272.
    83. Alayash A I, Patel R P, Cashon R E. Redox reactions of hemoglobin and myoglobin: biological and toxicological imp lications.]. Antioxid Redox Signal. 2001,3 (2):313 - 327.
    84. Torti F M, Torti S V. Regulation of ferritin genes and protein [ J ]. Blood. 2002,99 (10) : 3505 - 3516.
    85. Baranano DE, Wolosker H, Bae B I, et al. A mammalian iron ATPase induced byiron .J Biol Chem.2000,275 (20):15166 - 15173.
    86. Choi BM,KimBR.Upregulation of heme oxygenase-1 by brazilin via the phosphatidylinositol 3-kinase/Akt and ERK pathways and its protective effect against oxidative injury. Eur J Pharmacol.2008,580(1-2):12-18.
    87. Li J, Johnson D, Calkins M et al. Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci. 2005,83(2):313-328.
    88.谢崧,杨小静,钱桂生,等.大鼠肺微血管内皮细胞培养及鉴定.中国应用生理学杂志.1997,13(2):189-190.
    89. Chen SF,Fei X,Li SH. A new simple method for isolationg of microvascular endothelial cells avoiding both chemical and mechanical injuries.Microvasc Res,1995,50(1):119-126.
    90.梁光波,金慧铭,微血管内皮细胞的分离培养.中国微循环杂志.2002,6(1):5217
    91. Kraling BM,Jimenez SA,Sorger T,et al. Isolation and characterization of microvascular endothelial cells from the adult human dermis and from skin biopsies of patients with systemic sclerosis. Lab Invest.1994,71(5):745-754.
    92. Richard L, Velasw P, Detmar M. A simple immunomagnetic protocol for the selective isolation and long term culure of human dermal microvascular endothelial cells. Exp Cell Res.1998,240(1):1-6.
    93. Chen SF,Fei X,Li SH. A new simple method for isolation of microvascular endothelial cells avoiding both chemical and mechanical injuries .Microvas Res,1995, 50(1):119-128.
    94. Tontsch U,Bauer HC. Isolation,characterization and long-term cultivation of rocine and murine cerebral capillary endothelial cells.Microvas Res.1989,37(2):148-161.
    95. Nawashiro H,Tasaki K,Christl AR,et al. TNFαpretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 1997, 17(5):483-490.
    96. Ginis I,Jaiswal R,Klimanis D,et al. TNF-alpha induced tolerance to ischemic injury involves differential control of NF-kappa B transactivation:the role of NF-kappa B association with P300 adaptor. J Cereb Blood Flow Metab,2002,22(2):142-152.
    97.梁庆成,吴云,吕海燕等.肿瘤坏死因子-α预处理对大鼠脑缺血再灌注损伤的影响.临床神经病学杂志.2003,16(3):153-156.
    98. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002, 82(1): 47 -95.
    99. Tang XQ, Chen J, Tang EH, Feng JQ, et al. Hydrogen peroxide preconditioning protects PC12 cells against apoptosis induced by oxidative stress. Sheng Li Xue Bao.2005,57(2):211-216.
    100. Kannan S,Jaiswal AK. Low and High Dose UVB Regulation of Transcription Factor NF-E2-Related Factor 2. Carcer Res.2006,66(17):8421-8410.
    101. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002, 82(1): 47 -95.
    102. Tang XQ, Chen J, Tang EH, Feng JQ, et al. Hydrogen peroxide preconditioning protects PC12 cells against apoptosis induced by oxidative stress. Sheng Li Xue Bao.2005,57(2):211-216.
    103. Heller RA,Kronke M. Tumor necrosis factor receptor mediated signaling pathway. J Cell Biol. 1994,126(1):5-9.
    104. Murphey ED,Traber DL. Pretreatment with tumor necrosis factor alpha attenuates arterial hypotension and mortality induced by endotoxin in pigs. Crit Care Med. 2000,28(6):2015-2021.
    105. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against eletrophiles and reactive oxygen species. Adv Enzyme Regul. 2006;46: 113-140.
    106. Levonen AL, Landar A, Ramachandran A, et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. 2004, 378(Pt 2): 373-382.
    107. Kobayashi A, Kang MI, Ohtsuji H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Chem Biol.2004;24(16):7160-7169.
    108. Huang HC,Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 2002,277(45):42769– 42774.
    109. Numazawa S,Ishikawa M, Yoshida A.,et al. Atypical protein kinase C mediatesactivation of NF-E2-related factor 2 in response to oxidative stress. Am. J. Physiol. Cell Physiol. 2003, 285(2):C334– C342.
    110. Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression.. J. Biol. Chem. 2003, 278(45):44675– 44682.
    111. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem.2004; 279(19):20108-20117.
    112. Kang KW, Lee SJ, Park JW, et al. Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2 related factor 2 trough actin rearrangement in response to oxidative stress. Molecular Pharmacology.2002,62(5):1001-1010.
    113. Jain AK,Bloom DA,Jaiswal AK. Nuclear Import and Export Signals in Control of Nrf2. J Biol Chem. 2005,280(32):29158-29168.
    114. Jain AK, Jaiswal AK. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2.J Biol Chem.2006,281(17):12132-12142.
    115. Tang H,Hao Q,Rutherford SA,et al..Inactivation of Src family tyrosine kinases by reactive oxygen species in vivo.J Biol Chem.2005,280(25):23918-23925.
    116. Abe J, Berk BC. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem. 1999,274(30):21003-21010.
    117. True AL, Rahman A, Malik AB. Activation of NF-kappaB induced by H(2)O(2) and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2000 Aug;279(2):L302-310.
    118. Dzam VJ. Transcription factor decoy. Circ Res.2002,90(12):1234-1236.
    119. Krichevsky AM,Kosik KS. RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci.2002,99(18):11926-11929.
    120. Guo S,Kempheus KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.. Cell, 1995,81(4):611-620.
    121. Fire AZ, Gene silencing by double-stranded RNA. Cell Death Differ. 2007, 14(12):1998-2021
    122. Zamore PD,Tuschl T,Sharp PA,et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000, 101(1):25-33.
    123. Holen T,Amarzguioui M,Wiiger MT,et al. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res.2002, 30(8):1757-1766.
    124. Plasterk RH. RNA silencing: the genome’s immune system. Science. 2002, 296(5571): 1263-1265.
    125. Lipardi C,Wei Q,Paterson BM. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001, 107(3):297-307.
    126. Nykanen A,Haley N,Zamore PD,et al. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell,2001,107(3):309-321.
    127. Zamore PD,Tushl T,Sharp PA,et al. RNAi:Double-stranded RNA directs the ATP dependent cleavage of mRNA at 21 to 23 nucleotide.Cell,2000,101(1):25-33.
    128. Bernstein E,Caudy AA,Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature.2001,409(6818):363-366.
    129. Myers JW,Jone JT,Meyer T,et al. Recombinant Dicer efficiently converts large dsRNA into siRNA suitable for genes silencing. Nat Biotechnol.2003,21(3):324-328.
    130. Liaprdi C,Wei Q,Paterson BM. RNAi as random degradative PCR.siRNA primers convert mRNA in to dsRNA that are degraded to generate new siRNA.Cell,2001, 107(3):297-307.
    131. Dzitoyeva S,Dimitrijevic N,Manev H. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry.2001,6(6):665-670.
    132. Grishok A,Pasquinelli AE,Conte D,et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C elegans developmental timing. Cell,2001,106(1):23-24.
    133. Sharp PA. RNA interference. Gene Dev,2001,15(5):485-490.
    134. Ebashir SM,Harborth J,Lendeckel W,et al. Duplexes of 21-nucleotide RNAs mediateRNA interference in cultures mammalian cells. Nature,2001,411(6836):494-498.
    135. Playford MP, Macaulay VM.Targeting the type insulin-like growth factor receptor as anti-cancer treatment.Anticancer Drug.2003,14(90):669-682.
    136. Caplen NJ,Parrish S,Imani F,et al. Specific inhibition of gene expression by smaal double stranded RNAs in invertebrate and vertebrate systems.Proc Natl Acad Sci USA.2001,98(17):9724-9447.
    137. Harborth J, Elbashir SM,Bechert K,et al.Identifiction of essential genes in cultures mammalian cells using small interfering RNAs. J Cell Sci.2001,114(Pt 24):4557-4565.
    138. Yu JY,DeRuiter SL,Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA.2002, 99(9):6047-6052.
    139. Sundaresan M, Yu ZX,Irani FK, et al. Requirement for generation of H2O2 for platelet derived growth factor signal transduction. Science. 1995,270(5234):296-299.
    140. Fong Y, Lowry SF. Tumor necrosis factor in the pathophysiology of infection and sepsis. Clin Immunol Immunopathol. 1990,55(2):157-170.
    141. Dimmeler S, Zeiher AM. Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul Pept.2000,90(1-3): 19-25.
    142. Fujita H, Morita I, Murota S. A possible involvement of ion transporter in tumor necrosis factor alpha and cycloheximide-induced apoptosis of endothelial cells. Mediators Inflamm. 1999;8(4-5):211-218.
    143. Rushworth SA, Macewan DJ. HO-1 underlies resistance of AML cells to TNF-induced apoptosis. Blood. 2008 . Epub ahead of print.
    144. Li J, Lee JM, Johnson JA,et al. Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem.2002,277(1),388-394.
    145. Liao BC, Hsieh CW, Liu YC,et al. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: Effects upon IkappaB and Nrf2. Toxicol Appl Pharmacol. 2008. Epub ahead of print.
    146. Wild AC,Moinova HR,Mulacahy RT. Regulation of gamma–glutamy- lcysteinesynthetase subunit gene expression by the transcription factor Nrf2.. J Biol Chem. 1999,274(47):33627-33636.
    147. Chan K,Han XD,Kan YW. An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Medical Sciences. 201,98(8):4611-4616.
    148. Li J,Lee JM,Johnson JA,et al. Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem.2002,277(1),388-394.
    149. Morito N,Yoh K,Itoh K,et al. Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels.Oncogene,2003,22(58):9275-9281.
    1. Jaiswal AK.Nrf2 signaling in coordinated activation of antioxidant gene expression.Free Radic Biol Med.2004,36(10):1199-1207.
    2. Itoh K,Wakabayashi N,Katoh Y,et al.Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the aminoternimal Neh2 domain.Genes Dev.1999,13(1):76-86.
    3. Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 2001,20(29):3906–3917.
    4. Itoh KN,Wakabayashi Y, Katoh T et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999,13(1):76–86.
    5. Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol.2003, 23(22): 8137–8151.
    6. Zipper LM, Mulcahy RT.The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem. 2002,277(39): 36544–36552.
    7. Jain AK,Bloom DA,Jaiswal AK.Nuclear import and export signals in control of Nrf2. J Biol Chem.2005,280(32):29158-29168.
    8. Levonen AL,Landar A,Ramachandran A,et al. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 2004,378(pt2):373– 382.
    9. Zhang DD,Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.Mol Cell Biol,2003,23(22):8137-8151.
    10. Kong AN,Owuer E,Yu R,et al.Induction of xenobiotic enzyes by he MAP kinase pathway and the antioxidant or electrophile response element(ARE/EpRE),Drug Metab Rev. 2001;33(3-4): 255-271.
    11. Huang HC,Nguyen T,Pickett CB.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.J Biol Chem. 2002, 277(45):42769-42774.
    12. Zipper LM,Mulcahy RT,Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in Hep-G2 cells.Toxicol Sci,2003,73:124-134
    13. Numazawa S,Ishikawa M,Yohida A,et al.Atypical protein kinase C mediates activation of NF-E2-related factor 2 in respinse to oxidative stress.Am J Physiol Cell Physiol. 2003,285(2):C334-C342.
    14. Jain AK,Jaiswal AK.Phosphorylation of Tyrosine 568 controls nuclear export of Nrf2. J Biol Chem.2006,281(17):12132-12142.
    15. Kannan S, Jaiswal AK.Low and high dose UVB regulation of transcription factor NF-E2-related factor 2.Cancer Res.2006,66(17):8421-8429.
    16. Chan K,Han XD,Kan YW,et al.An important function of Nrf2 in combating oxidative stress:detoxification of acetaminophen.Pro Natl Acad Sci USA.2001,98:4611-4616.
    17. Cho HY,Jedlicka AE,Reddy SP,et al. Role of Nrf2 in protection against hyperoxic lung injury in mice.Am J Respir Cell Mol Biol.2002,26:175-182.
    18. Enomoto A,Itoh K,Nagayoshi E,et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes.Toxicol Sci.2001,59(1):169-177.
    19. Moinova HR, Mulcahy RT. Up-regulation of the human gamma glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf2 to an electrophile responsive element.Biochem Biophys Res Commun.1999,261(3):661-668.
    20. Chan K, Kan YW. Nrf2 is essential for protection against acut pulmonary injury in mice. Proc Natl Acal Sci USA.1999,96(22):12731-36.
    21. Shih AY, Johnson DA,Wong G,et al.Coordinate regulation of glutathione biosynthesis and release by Nrf2 expression glia potently protects neurons from oxidative stress.J Neurosci,2003,23(8):3394-406 .
    22. Kotlo KU,Yehiely F,Efimova E,et al.Nrf2 is an nhibitor of the Fas pathway as identified by Achilles’Heel Method,a new function-based approach to gene identification in human cells.oncogen,2003,22(6):797-806.
    23. Li J,Lee JM,Johnson JA,et al.Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidativestress-induced apoptosis in IMR-32 cells. J Biol Chem.2002,277(1):388-394.
    24. Morito N,Yoh K,Itoh K,et al.Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels.Oncogene,2003,22(58):9275-9281.
    25. Itoh K,Mochizuki M,Ishii Y,et al.Transcription factor Nrf2 regulates inflammation ny mediating the effect of 15deoxy-delta(12,14) prostaglandin J.Mol Cell Biol.2004, 24(1):36-45.
    26. Braun S,Hanselmann C,Gassmann MG,et al.Nrf2 transcription factor,a novle target of keratinocyte growth fator action which regulates gene expression and inflammation in the healing skin wound.Mol CellBiol.2002,22(15):5492-505.
    27. Ishii T, Itoh K, Ruiz E , et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4- hydroxynonenal [J ] . Circ Res , 2004 ,94(5) :609-16.
    28. Buckley BJ , Marshall ZM, Whorton AR. Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. Biochem Biophys Res Commun.2003,307 (4) :973-979.
    29. Li J , Johnson D , Calkins M, et al. Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci ,2005 ,83(2) :313-328.
    30. JM, Shih AY, Murphy TH , et al. NF- E2- related factor-2 mediates neuroprotection against mitochondrial complexⅠand increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem .2003 , 278 (39):37948-37956.
    31. Kraft AD , Johnson DA , Johnson JA. Nuclear factor E2-related factor 2- dependent antioxidant response element activation by tert- butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult.J Neurosci .2004 ,24(5) :1101-1112.
    32. Yoh K, Itoh K, Enomoto A , et al. Nrf2- deficient female mice develop lupus-like autoimmune nephritis[J ] . Kidney Int. 2001,60(4) :1343-1453.
    33. Yamamoto T, Yoh K, Kobayashi A , et al. Identification of polymorphisms in the promoter region of the human NRF2 gene.Biochem Biophys Res Commun.2004, 321(1) :72-79.
    1. Li J ,Lee JM, Johnson JA, et al. Microarray analysis reveals an antioxidant responsive element -driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem.2002, 27(1):388-394
    2. Jaiswal AK.Nrf2 signaling in coordinated activation of antioxidant gene expression, Free Radic Biol Med.2004,36(10): 1199-1207.
    3. Becker BF, Kupatt C,Massoudy P et al. Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion.Z Kardiol.2000,89 (suppl 19):88-91.
    4. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusionphysiology. Cardiovascular Res.2004,61(3):461-470.
    5. Alam J, Wicks C, Stewart D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of P38 kinase and Nrf2 transcription factor. J Biol Chem.2000,275(36):27694-27702.
    6. Chen SF, Fei X, Li SH.A new simple method for isolation of microvascular endothelial cells avoiding both chemical and mechanical injuries. Micro Res.1995,50(1):119-128.
    7. Lee JM, Calkins MJ, Chan K, et al. Identification of the NF-E2-related factor 2 dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligoncleotide microarray analysis.J Biol Chem.2003,278(14): 12029-12038.
    8. Itoh K, Wakabayashi N, Katoh Y, et al.Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the aminoternimal Neh2 domain.Genes Dev.1999,13(1):76-86.
    9. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002, 82(1): 47 -95.
    10. Zheng M,Storz G.. Redox sensing by prokaryotic transcription factors.Biochem Pharmacol.2000,59(1):1-6.
    11. Jain AK, Bloom DA, Jaiswal AK. Nuclear import and export signals in control of Nrf2. J Biol Chem.2005,280(32):29158-29168.
    12. Kong AN,Owuer E,Yu R,et al.Induction of xenobiotic enzyes by he MAP kinase pathway and the antioxidant or electrophile response element(ARE/EpRE),Drug Metab Rev. 2001;33(3-4):255-71.
    13. Huang HC,Nguyen T,Pickett CB.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription.J Biol Chem. 2002, 277 (45): 42769-42774.
    14. Zipper LM,Mulcahy RT,Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in Hep-G2 cells.Toxicol Sci,2003,73(1):124-134.
    15. Numazawa S,Ishikawa M,Yohida A et al.Atypical protein kinase C mediates activation of NF-E2-related factor 2 in respinse to oxidative stress.Am J Physiol Cell Physiol. 2003 285(2):C334-C342.
    16. Levonen AL,Landar A,Ramachandrn A,et al.Cellular mechanisms of redox cell signaling: the role of cysteine in response to electrophilic lipid oxidation products.Biochem J. 2004, 378 (pt2):373-82.
    17. Jain AK,Jaiswal AK.Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J Biol Chem.2006,281(17):12132-12142.
    18. He Z,Cho YY,Ma WY,et al.Regulation of ultraviolet B-induced phosphorylation of histone H3 at serine 10 by Fyn kinase.J Biol Chem.2005,280(4):2446-2454.
    19. Tang H, Hao Q, Rutherford SA, et al. Inactivation of Src family tyrosine kinases by reactive oxygen species in vivo. J Biol Chem.2005,280(25):23918-23925.
    20. Abe J, Berk BC. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem. 1999,274(30):21003-21010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700