基质金属蛋白酶及抑制剂在先天性心脏病围术期的表达及干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概述:
     随着体外循环手术的低龄化和复杂化,术后心力衰竭的发生率明显增加,因此早期诊断和及时治疗至关重要。心力衰竭的发生机制主要是神经内分泌系统的激活和心室重构。心室重构包括心肌细胞和细胞外基质的变化,后者是心室重构的重要原因,又称为心肌基质重构。基质金属蛋白酶是一组能特异地降解细胞外基质成分的Zn2+依赖的酶家族,在组织重构中起重要作用。基质金属蛋白酶(Matrix Metalloproteinase, MMPs)与基质金属蛋白酶抑制剂(Tissue Inhibitor of Metalloproteinase, TIMPs)是胶原代谢的主要调节物质,两者相互作用共同维持着心血管基质的分解与重构。在冠心病、高血压的病人中存在MMPs活性增高,TIMPs表达减少,MMPs与TIMPs平衡失调,导致细胞外基质合成和降解失衡,心室扩大,心功能下降。本研究为了了解先天性心脏病MMPs与TIMPs在血浆和心肌组织中的表达水平,比较充血类和缺血类先心围术期MMPs与TIMPs表达的差异,并进一步应用血管紧张素转换酶抑制剂(Angiotension Converting Enzyme Inhibitors, ACEI)治疗肺充血性先心,了解用药前后MMPs与TIMPs表达的变化。
     第一部分基质金属蛋白酶及其抑制剂在先天性心脏病中表达的研究
     目的:
     了解先天性心脏病患儿血浆MMP-3、MMP-9、TIMP-1的浓度,比较肺充血性先心与缺血类先心的差异,并探讨其可能的机制。
     方法:
     选择2009年1月~2009年8月心胸外科手术患儿55例,分为三组,漏斗胸10例为正常对照组,室间隔缺损患儿25例为肺充血组,法洛四联症患儿20例为肺缺血组。所有患儿术前行超声心动图检查,测左室射血分数(LVEF)、左心室收缩及舒张末直径和容积(LVDs、LVDd、LVESV、LVEDV)。术前抽血,应用ELISA法检测血浆MMP-3,-9及TIMP-1浓度。
     结果:
     超声心动图检查:
     1.肺充血组较正常组LVEDV、LVESV、LVDd、LVDs均增大,p<0.01。
     2.肺缺血组较正常组比较各参数均减小,但是p>0.05,仅LVEDV减小有统计学意义。
     3.肺充血组和缺血组比较除LVEF无差异外,LVEDV、LVESV、LVDd、LVDs均增大,p<0.01,有显著统计学意义。
     实验室检测:
     ELISA
     1.MMP-3:肺充血组较缺血组及对照组升高,p<0.01,有显著统计学意义;缺血组与对照组比较无差异。
     2. MMP-9:肺充血组与肺缺血组均高于正常组,p<0.05,有统计学意义,且以肺充血组升高更为显著。
     3.TIMP-1:肺充血组与肺缺血组均低于正常组,p<0.05,有统计学意义,而以肺缺血组降低更为显著。
     结论:
     1.根据超声心动图检查结果与正常对照组比较,说明先天性心脏病患儿存在不同程度的心功能不全。
     2.先天性心脏病的患儿存在血浆MMP-3,-9及TIMP-1浓度的改变,与对照组比较MMP-3、-9均升高,而TIMP-1降低。
     3.充血性先心和缺血类先心相比,血浆MMP-3、-9、TIMP-1浓度均升高,提示肺充血性先心的心功能改变可能较缺血类先心更为显著。
     第二部分肌钙蛋白与基质金属蛋白酶及抑制剂在先天性心脏病围术期的表达及机制
     目的:
     了解肺充血性先心与缺血类先心心肌组织中MMP-3、-9、TIMP-1 mRNA的表达及心肌组织胶原含量和分布的差异,比较肺充血性先心和缺血类先心在体外循环手术前后血浆MMP-3、-9、TIMP-1浓度,并探讨其可能的机制。同时测定肌钙蛋白(cTnI)在体外循环前后的变化,比较cTnⅠ与MMPs/TIMPs及心功能的相关性。
     方法:
     选取2009年1月~2009年8月在我院行体外循环手术治疗的先天性心脏病患儿共45例,室间隔缺损25例为肺充血组,法洛四联症20例为肺缺血组。所有患儿于术前、术后一周行超声心动图检查,测LVEF、LVDs、LVDd、LVESV、LVEDV。
     分别于术前、体外循环术后即刻、术后6h、24h、3d抽血测血浆MMP-3,-9及TIMP-1浓度以及测cTnI的变化。术中取右室异常肌束应用RT-PCR方法检测MMP-3,-9及TIMP-1 mRNA表达,应用羟脯氨酸消化法测心肌羟脯氨酸的含量,并进一步计算心肌胶原含量。取右室异常肌束应用免疫组化的方法,了解Ⅰ、Ⅲ型胶原的分布。
     结果:
     超声心动图检查:
     1.肺充血组术前、术后比较除LVEF无变化外,LVEDV、LVESV、LVDd、LVDs均较术前减小,p<0.01,有显著统计学意义。
     2.肺缺血组术前、术后比较LVEF、LVEDV、LVESV、LVDd、LVDs均有所增加,但除LVDs外(p<0.05),其余测值均无统计学意义。
     3.术后肺充血组与缺血组之间比较各参数均无统计学差异,p>0.05。
     实验室检测:
     ELISA:
     1.术前及术后各时点肺充血组血浆MMP-3、-9、TIMP-1浓度均高于肺缺血组,p<0.05,且有统计学意义。肺充血组cTnⅠ浓度在术前高于缺血组,但术后各时点均低于缺血组,p<0.05,有统计学意义。
     2.同一组内CPB前后不同时点比较:
     1)MMP-3:于CPB术后升高,术后6h达最高,然后逐渐降低,至术后3天降至低于术前水平。
     2)MMP-9:于CPB术后即刻显著升高,术后6h达最高,以后逐渐下降,至术后3天时降至低于术前水平。
     3)TIMP-1:两组均表现为逐渐升高,肺充血组于术后3天达到最高,而肺缺血组在术后3天时呈逐渐下降的趋势。
     4)cTnI:两组均表现为术后即刻显著升高,以后逐渐降低,至术后3天肺缺血组仍高于术前。
     RT-PCR:
     1.肺充血组心肌组织中MMP-3、-9、TIMP-1 mRNA表达均高于肺缺血组,p<0.05,有统计学意义。
     2.肺充血组中MMP-3 mRNA的含量最低,MMP-9与TIMP-1的含量相仿。
     3.肺缺血组中MMP-3 mRNA的含量最低,TIMP-1 mRNA的含量最高。
     羟脯氨酸消化法:
     肺充血组心肌组织羟脯氨酸含量及心肌胶原含量较缺血组低,p<0.05,有统计学意义。
     免疫组化:
     1.肺充血组患儿Ⅰ、Ⅲ型胶原较缺血组减少。
     2.肺缺血组患儿心肌Ⅰ、Ⅲ型胶原表现为阳性染色。
     结论:
     1.两组先心于CPB术后不同时点MMP-3、-9先升高后降低,于术后3天降至低于术前的水平,但仍高于正常基础值。TIMP-1在肺充血组逐渐升高,于(?)。术后3天达最高,而肺缺血组在术后3天降低,两组TIMP-1均低于正常基础值。与cTnⅠ在术后显著升高,以后逐渐下降的趋势相符,说明CPB手术对心功能有一定的损害作用,但是术后心功能得到迅速恢复,并较术前明显改善,而MMPs/TIMPs的表达与cTnⅠ的浓度及心功能的变化存在着密切的相关关系。
     2.肺充血性先心心肌组织MMP-3、-9、TIMP-1 mRNA表达均高于肺缺血组,说明肺充血性先心的心功能降低较缺血类先心更为明显。
     3.肺充血性先心心肌胶原含量低于缺血组,可能与MMP-3、MMP-9活性增高有关。
     4.肺充血性先心心肌胶原Ⅰ、Ⅲ型染色均较缺血类先心弱,提示其胶原含量低于缺血类先心。说明由于MMPs升高,导致胶原降解增加,也可能与缺血类先心血氧降低有关。
     第三部分血管紧张素转换酶抑制剂对先天性心脏病围术期基质金属蛋白酶及抑制剂表达的影响及
     机制
     目的:
     于术前三天和术后应用ACEI治疗肺充血性先天性心脏病,并与仅常规治疗的肺充血性先心比较,了解术前和术后MMP-3、-9、TIMP-1的浓度及cTnⅠ的变化,并同时随访超声心动图,了解心功能的改变,为治疗充血性先心心力衰竭提供新的有效的治疗手段。
     方法:
     选取2009年1月~2009年8月在我院行体外循环手术治疗的室间隔缺损患儿共50例,分为两组,室间隔缺损常规治疗25例为对照组,室间隔缺损应用常规加ACEI治疗患儿25例为干预组。所有患儿于术前、术后一周行超声心动图检查,测LVEF、LVDs、LVDd、LVESV、LVEDV。干预组于术前三天给予依那普利(ACEI)0.2mg/kg/d,顿服,并于术后当天起继续应用依那普利(ACEI) 0.2mg/g/d,顿服。
     分别于术前、体外循环术后即刻、术后6h、24h、3d抽血测血浆MMP-3,-9、TIMP-1及cTnⅠ浓度及其变化。
     结果:
     超声心动图检查:
     1.术前两组之间LVEF、LVEDV、LVESV、LVDd、LVDs均无差异,p>0.05。
     2.术后两组之间LVEF、LVEDV、LVESV均无差异,但干预组LVDd、LVDs较对照组缩小,p<0.05,有统计学差异。
     3.术前与术后两组之间比较,除LVEF无变化外,LVEDV、LVESV、LVDd、LVDs均较术前减小,p<0.01,有显著统计学差异。
     实验室检测:
     ELISA:
     1.术前及术后各时点除干预组术后3天TIMP-1较高外,其余各参数干预组均低于对照组。术前、术后即刻两组cTnⅠ相比较无差异,但是术后6h、24h、3d,干预组cTnⅠ较对照组显著降低,p<0.01,有统计学意义。
     2.同一组内CPB前后不同时点比较:
     1)MMP-3:于CPB术后6-24小时达最高,以后逐渐下降,术后3天降至低于术前。
     2)MMP-9:于术后即刻显著升高,术后6小时达最高,以后逐渐下降,术后3天降至低于术前水平。
     3) TIMP-1:均表现为逐渐升高,于术后3天达到最高。
     4) cTnI:两组均于术后即刻明显升高,以后逐渐降低,并最终降至术前的水平,但是干预组较对照组降低的程度更为显著,p<0.05。
     结论:
     应用ACEI能有效调节MMPs/TIMPs的表达,术后MMPs的表达与cTnⅠ的降低相符,而TIMPs的表达则相反,说明通过MMPs/TIMPs的调节机制能进一步调节胶原代谢,抑制心室腔扩大,对于改善心功能具有一定的临床意义。
Backgroud:
     Heart failure is a common complication in congenital heart disease during the peri-operation period. The most important thing for us is to diagnosticate early and treat timely. The majority mechanism of the development of heart failure is the active of neurohormonal mechanisms and cardiac remodeling. Cardiac remodeling includes the alteration in the myocardium cell and extracellular matrix. The alteration of the extracellular matrix is an important factor of cardiac remodeling. Matrix metalloproteinase are a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins and make a major role in tissue remodeling. Matrix metalloproteinase and tissue inhibitor of metalloproteinase are specialized proteinases that regulate the metabolism of collegan. MMPs and TIMPs appear to be balanced in the normal myocardium thereby maintaining the integrity of the myocardium. In the patients of coronary artery diseases and hypertention, MMPs activity was increased but TIMPs decreased. It appears unbalanced between MMPs and TIMPs, break down the component and degradation of the ECM, develop the ventricular dilatation and cardiac dysfunction. The purpose of our study is to measure MMPs and TIMPs levels and expressions in plasma and cariac tissue during caridiopulmonary bypass in congenital heart diseases. To compare the expression of MMPs and TIMPs before and after the CPB operation between left-to-right shunt and right-to-left shunt of congenital heart diseases. To evaluate the effect of ACEI therapy in left-to-right shunt of congenital heart disease pre- and post-operation, measure the plasma MMPs and TIMPs levels before and after surgery.
     Part I
     The Study on the Expression of Matrix Metalloproteinase and Tissue Inhibitor of Metalloproteinase in Congenital Heart Disease
     Objectivs:
     To measure the plasma MMP-3、-9 and TIMP-1 in congenital heart diseases. To detect the possible mechanism and compare the difference between left-to-right shunt and right-to-left shunt of congenital heart disease.
     Methods:
     From Jan.2009 to Aug.2009, there were 55 cases divided into three groups,10 cases of Pectus in the control group,25 cases of VSD in left-to-right group, and 20 cases of TOF in the right-to-left group. All the patients had ECG and Cardiac ECHO before surgery. We measure the LVEF, LVEDV, LVESV, LVDd, LVDs. The plasma levels of MMP-3,-9 and TIMP-1 were measured by radioimmunoassay (ELISA) before surgery.
     Results:
     ECHO:
     1. The LVEDV, LVESV, LVDd, and LVDs were larger in left-to-right shunt group than in control group.
     2. The LVEDV, LVESV, LVDd, and LVDs were smaller in right-to-left shunt group than in control group.
     3. In the group of left-to-right shunt, the LVEDV, LVESV, LVDd, and LVDs were larger than in right-to-left shunt group.
     Experimental:
     ELISA
     1. The plasma MMP-3 level was the highest in left-to-right group, but same between right-to-left group and control group.
     2. The plasma MMP-9 levels were higher both in left-to-right group and right-to-left group than control group. But it was the highest in the group of left-to-right group.
     3. The plasma TIMP-1 levels were lower both in left-to-right group and right-to-left group than control group. But it was the lowest in the group of right-to-left group.
     Conclusions:
     1. There might be different degree of heart failure in congenital heart diseases.
     2. Increased plasma MMP-3,-9 and decreased circulating TIMP-1 were determined in patients with congenital heart diseases.
     3. Increased plasma MMP-3,-9 and TIMP-1 were determined in group of left-to-righg shunt than in right-to-left group. It showed that the heart function was significantly lower in left-to-right group than in right-to-left group.
     PartⅡ
     The Study on the Effect of the Expression of Matrix Metalloproteinase and Tissue Inhibitor of Metalloproteinase during the Cariopulmonary Bypass in Congenital Heart Disease
     Objectivs:
     To measure the expression of MMP-3,-9 and TIMP-1 mRNA and the content of collagen in cardiac tissue of congenital heart diseases. To compare the plasma MMP-3,-9, TIMP-1 and cTnI levels during cardiopulmonary bypass in congenital heart diseases.
     Methods:
     From Jan.2009 to Aug.2009, there were 45 cases divided into two groups,25 cases of VSD in left-to-right group, and 20 cases of TOF in the right-to-left group. All the patients had ECG and Cardiac ECHO before and one week after surgery. We measured the LVEF, LVEDV, LVESV, LVDd, LVDs.
     The plasma levels of MMP-3,-9, TIMP-1 and cTnI were measured by ELISA before surgery and 6h,24h,3d after surgery respectively. The expression of MMP-3,-9 and TIMP-1 mRNA in cardiac tissue were detected by RT-PCR. We also measured the content of collegan in cardiac tissue.
     Results:
     ECHO:
     1. The LVEDV, LVESV, LVDd, and LVDs were significantly decreased after surgery in left-to-right group.
     2. The LVEDV, LVESV, LVDd, and LVDs were significantly increased after surgery in right-to-left group.
     3. There was no diference of LVEDV, LVESV, LVDd, and LVDs between left-to-right group and right-to-left group after surgery.
     Experimental:
     ELISA:
     1. The plasma MMP-3,-9 and TIMP-1 levels were significantly higher in left-to-right group than in right-to-left group before CPB and 6h,24h,3d after surgery. The level of cTnl was higher in left-to-right group before CPB, but lower after CPB.
     2. Compared at the different time after surgery in the same group:
     1) The plasma MMP-3,-9 levels were increased after CPB and extremely high at 6h after surgery. Then the level became lower and at the lowest level 3d after surgery.
     2) The plasma TIMP-1 level was increased after CPB and extremely high at the 3d after surgery in left-to-right group, but decreased at 3d after surgery in right-to-left group.
     3) The leverl of cTnⅠwas increased immediately after CPB and then decreased.
     RT-PCR:
     1. The expression of MMP-3、-9、TIMP-1 mRNA were significantly high in left-to-right group than in right-to-left group.
     2. The expression of MMP-3 mRNA was the lowest in left-to-right group. The expression of MMP-9 and TIMP-1 were extremely same.
     3. The expression of MMP-3 mRNA was the lowest in the right-to-left group, and TIMP-1 mRNA was the highest.
     Hydrolyzation Assay:
     The content of collegan in cardiac tissue was significantly low in left-to-right group.
     IHC:
     1. The content ofⅠ,Ⅲcollegan in cardiac tissue of left-to-right group were lower than in the right-to-left group.
     2. The content ofⅠ,Ⅲcollegan in cardiac tissue of right-to-left group were positive.
     Conclusions:
     1. The plasma MMP-3,-9 and cTnⅠlevels were increased after CPB and then decreased. The plasma TIMP-1 level was increased after CPB and extremely high at the 3d after surgery in left-to-right group, but decreased at 3d after surgery in right-to-left group. It showed that there might be cardiac injury because of CPB. But the heart function recovered rapidly after surgery. MMPs/TIMPs may play a role in regulating heart function as cTnⅠ.
     2. The expression of MMP-3、-9、TIMP-1 mRNA were significantly high in left-to-right group than in right-to-left group. It showed that marked heart dysfunction in left-to-right group.
     3. The content of collegan in cardiac tissue was significantly low in left-to-right group. It might because of the increased activation of MMP-3 and MMP-9.
     4. The content ofⅠ,Ⅲcollegan in cardiac tissue of left-to-right group were lower in left-to-right group than in right-to-left group.
     Part III
     The Study on the ACEI Therapy of the Expression of Matrix Metalloproteinase and Tissue Inhibitor of Metalloproteinase during Cardiopulmonary Bypass in Congenital Heart Disease
     Objectivs:
     To evaluate the effect of ACEI therapy in left-to-right shunt congenital heart disease pre-, and post-CPB. To measure plasma MMP-3,-9, TIMP-1 and cTnⅠlevels during cardiopulmonary bypass between control group and ACEI group.
     Methods:
     From Jan.2009 to Aug.2009, there were 50 cases divided into two groups,25 cases of VSD in control group, and 25 cases of VSD with ACEI therapy in ACEI group. All the patients had ECG and Cardiac ECHO before and one week after surgery. We measure the LVEF, LVEDV, LVESV, LVDd, LVDs. The control group treated with standard therapy. The ACEI group with ACEI therapy used enalapril 0.2mg/kg/d by oral once daily three days before surgery. The group also used enalapril 0.2mg/kg/d by oral once daily from the day of surgery.
     The plasma levels of MMP-3,-9, TIMP-1 and cTnl were measured by ELISA before surgery and 6h,24h,3d after surgery respectively.
     Results:
     ECHO:
     1. There was no significantly difference of LVEDV, LVESV, LVDd, and LVDs between two groups before surgery.
     2. There was no difference of LVEF, LVEDV, LVESV between two groups after surgery. There were significant reduce of LVDd and LVDs in ACEI group.
     3. There were significant reduce of LVEDV, LVESV, LVDd and LVDs between two groups both before and after surgery.
     Experimental:
     ELISA:
     1. The plasma MMP-3,-9 and TIMP-1 levels were significantly lower in ACEI group than control group before CPB and 6h,24h,3d after surgery, expect for the TIMP-1 level at 3d after surgery. The level of cTnⅠwas no different between two groups before CPB and immediately after CPB, but decreased at 6h,24h and 3d. In ACEI group, the level of cTnⅠwas significantly lower than in control group.
     2. Compared at the different time after surgery in the same group:
     1) The plasma MMP-3,-9 levels were increased after CPB and extremely high at 6h after surgery in both groups. Then the level became lower and at the lowest level 3d after surgery.
     2) The plasma TIMP-1 level was increased after CPB and extremely high at 3d after surgery in both groups.
     3) The level of cTnⅠwas increased immediately after CPB and then decreased in two groups. Compared to the control group, the cTnⅠlevel of ACEI group was significantly lower.
     Conclusions:
     As a potential therapeutic, ACEI may convert the expression of MMPs and TIMPs. We got the same change of MMPs and cTnⅠbut diferent change of TIMPs and cTnⅠbetween two groups. It declared that the mechamism of MMPs/TIMPs can regulate the metabolism of collegan, depress the dilation of ventricle and improve the heart function.
引文
1. Suresh CT. Dynamic role of extracellular matrix metalloproteinases in heart failure. Cardiovasc Pathol,1998,7(3):153-159.
    2. Creemers E, Cleutjens J, Smiths J, et al. Matrix metallopreoteinase inhibition after myocardial infarction:A new approach to prevent heart failure. J Circ Res,2001, 89:201-210.
    3. Spinale FG, Coker ML, Thomas CV, et al. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure:relation to ventricular and myocyte function. J Circ Res,1998, 82(4):482-495.
    4. Petrson JT, Li H, Dillon L, et al. Evolutin of matrix metalloproteinase and tissue ingibitor expression during heart failure progression in the infracted rat. J Cardiovasc Res,2000,46(2):307-315.
    5. Rohde LE, Duchame A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction inmice. Circulation,1999,99:3063-3070.
    6. Tyagi SC, Kummar SG, Banks J, et al. Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol,1995, 27:2177-2189.
    7. Nagase H. Activation mechanisms of matrix metalloproteinase. Biol Chem,1997, 378:151-160.
    8. Muzahir HT, Sunil N, Andrew DB, et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment. Americ J Hypertension,2004,17:764-769.
    9. Lindsay M, Maxwell P, Dunn F. TIMP-1:a maker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension,2002,40:136-141.
    10. Etoh T, Joffs C, Deschamps Al, et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol,2001,281(3):H987-994.
    11. Wei CC, Meng QC, Palmer R, et al. Evidence for angiotensin converting enzyme and chymase mediated angiotensin Ⅱ formation in the interstitial fluid space of the dog heart in vivo. Clrculatlon,1999,99:2583-2586.
    12. Brunner HP, Rocca MD, Vaddadi G, et al. Recent insight into therapy of congestive heart failure, focus on ACE inhibition and angiotensin Ⅱ angagonoism. J Am Coll Cardiol,1999,33(5):1163-1169.
    13. Lijnen PJ, Petrov VV. Role of intracardiac rennin-angiotensin-aldosterone system in extracellular matrix remodeling. Methods Find Exp Clin Pharmacol,2003, 25:541-564.
    14. Reinhardit D, Sigusch HH, Hensse J, et al. Cardiac remodeling in end stage heart failure:upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart,2002,88(5):525-530.
    15.Visse, Robert, et al. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry. J Circ Res 2003,92: 827-839.
    16. Carlyle WC, Jacobson AW, Judd DL, et al. Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J. JMolCardiol,1997,29:2451-2463
    17. Takano H, Hasegawa H, Nagai T, et al. Implication of cardiac remodeling in heart failure:mechanisms and therapeutic strategies. J Internal Medicine,2003,42: 465-469.
    18. Hojo Y, Ikeda U, Ueno S, et al. Expression of matrix metalloproteinases in patients with acute myocardial infarction. Jpn Circ J,2001,65:71-75.
    19. Sun Y, Zhang QJ, Zhang J, et al. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med,2000,135:316-323.
    20. Ronamic AM, Burns Kurtis CL, Gout B, et al. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci,2001,68:799-814.
    21. Danielsen CC, Wiggers H, Andersen HR. Increased amounts of collagenase and gelationase in porcine myocardium following ischemic and reperfusion. J Mol Cell Cardiol,1998,30:1431-1442.
    22. Hojo Y, Ikeda U, Ueno S, et al. Expression of matrix metalloproteinases in patients with acute myocardial infarction. Jpn Circ J,2001,65:71-75.
    23. Zhang B, Ye S, Herrmann SM, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation,1999,99:178-1794.
    24. Hirohata S, Kusachi S, Murakami M, et al. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of myocardialinfarction. Heart,1997,78:278-284.
    25. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation,1998,97:1708-1715.
    26. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation,1998,98:1728-1734.
    27. Spinale FG, Coker ML, Bong BR, Zellner JL, et al. Myocardial matrix degradation and metalloproteinase activation in the failing heart:a potential therapeutic target. Cardiovase Res,2000,46:225-238.
    28. Li YY, McTernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res,2000,46:214-224.
    29. Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. J Clin Cardiol,2003,26:55-59.
    30. Werb Z. Degradation of collagen. In Weiss JB, Jayson MIV, eds. Collagen in Health and Disease. Edinburgh:Churchill Livingstone,1982,121-134.
    31. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis; functional significance and regulatory factors. Cardiovasc Res,1993,27:341-348.
    32. Cleutjens JPM. The role of matrix metalloproteinases in heart failure. Cardivas Res,1996,32:816-821.
    33. Mann DL, Spinalae FG. Activation of matrix metalloproteinases in the failing human heart. Breaking the tie that bands. Circulation,1998,98:1699-1702
    34. Wilson EM, Moainie SL, Baskin JM, et al. Region and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation, 2003,107(22):2857-2863.
    35. Mukherjee R, Brinsa TA, Dowdy KB, et al. Myocardial infarction expansion and matrix metalloproteinase inhibition. Circulation,2003,107:618-624.
    36. Hammer S, Loeff M, Reichenspruner H, et al. Effect of cardiopulmonary bypass on myocardial function, damage and inflammation after cardiac surgery in neoborns and children. Thoracic and Cardiovascular Surgeon,2001, 49(6):349-354.
    37. Bernard L, Croal MB, Graham S, et al. Relationship between postoperative cardiac troponin I levels and outcome of cardiac surgery. Circulation,2006, 114:1468-1475.
    38. Montgomery VL, Sullivan JE, Buchino JJ. Prognostic value of pre-and postoperative caridac troponin Ⅰ measurement in children having cardiac surgery. Pediatric and Developmental Pathology.2000,3(1):53-60.
    39. Gupta MM, Dern JH, Flynn PA, et al. Early pleural effusions related to the myocardial injury after openheart surgery for congenital heart disease. Congenital Heart Disease.2010,5(3):256-261.
    40. Ronamic AM, Harrison SM, Bao W, et al. Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res,2002,54:549-558.
    41.Nagahiro N, Kazuhiro Y, Yasushi S, et al. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res,2003,57:766-774.
    42. Spinale FG, Coker ML, Heung LJ, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation,2000,102:1944-1949.
    43.舒强,张向红,叶菁菁等.基质金属蛋白酶-9与婴幼儿体外循环术后急性肺损伤的相关性.中华急诊医学杂志.2007,16(8):823-828.
    44. HF Galley, GD Macaulay, NR Webster. Matrix metalloproteinase-9, tissue ingibitor of metalloproteinase-1 and tumour necrosis factor a release during cardiopulmonary bypass. Anaesthesia,2002,57:659-662.
    45. Tyagi SC, Haas SJ, Kumar SG, et al. Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol 1996,28:1415-1428.
    46. Richardson CP, McKenna RW, Bristow M, et al. Report of the 1995, WHO/ISFCTF on the definition and classification of cardiomyopathies. Circulation,16,93:841-842.
    47. Boluyt MO, O'Neill L, Meredith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure, marked upregulation of genes encoding extracellular matrix components. Cir Res,194,75:23-32.
    48. SH Li, E Edmunds, AD Blann, et al. Matrix metalloproteinase-9 and tissue ingibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and anti-hypertensive therapy. International J of Cardiology, 2000,75:43-47.
    49. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res,1995,77:863-868.
    50. Weber KT, Sun Y, Guarda E, et al. Myocardial fibrosis in hypertensive heart disease:an overview of potential regulatory mechanisms. Eur Heart J,1995, 16(suppl C):24-28.
    51.Galis ZS, Sukluva GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994,94:2493-2503.
    52. Nishikawa N, Yamamoto K, Sakata Y, et al. Cifferential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. J Cardiovasc Res,2003,57:766-774.
    53. Lamparter S, Slight SH, Weber KT. Doxycycline and tissue repair in rats. J Lab Clin Med,2002,139:295-302
    54.郭建中,高长青.基质金属蛋白酶及抑制剂在心肌梗塞后心室重构中的作用.中华老年心脑血管病杂志,2005,7(1):39-42.
    55.中华妊学会心血管病学分会.慢性收缩性心力衰竭防治建议.中华心血管病杂志,2002,30(1);7.
    56. Unger T. Neurohormonal modulation In cardiovascular disease. Am Heart J.2000,139(1 P12)1:S2.
    57.王先梅,严睿,杨丽霞等.心肌组织基质金属蛋白酶-1、2、9及其抑制物-1、2基因表达变化在心肌肥厚患者心肌纤维化中的意义.中国循环杂志,2006,21(5):382-385.
    58. Laviades C, Vain N, Femandez J, et al. Abnormalities of the extracellular degradation of collagen type Ⅰ in essential hypertension. Circulation,1998, 98:535-540.
    59.覃远汉,刘唐威,伍伟锋等.基质金属蛋白酶-3在病毒性心肌炎中的表达及福辛普利的干预作用.实用儿科临床杂志,2005,20(7):635-637.
    60.覃远汉,刘唐威,伍伟锋等.基质金属蛋白酶在小鼠病毒性心肌炎中的表达及肾素-血管紧张素系统阻断后的变化.临床儿科杂志,2005,23(10):727-730.
    61.谢萍,吕文涛,高志凌等.肿瘤坏死因子-α与基质金属蛋白酶-9在心力衰竭中的变化及药物干预的影响.中国循环杂志,2006,21(1):33-35.
    1. Suresh CT. Dynamic role of extracellular matrix metalloproteinases in heart failure. Cardiovasc Pathol,1998,7(3):153-159.
    2. Takano H, Hasegawa H, Nagai T, et al. Implication of cardiac remodeling in heart failure:mechanisms and therapeutic strategies. J Internal Medicine,2003,42: 465-469.
    3. Hojo Y, Ikeda U, Ueno S, et al. Expression of matrix metalloproteinases in patients with acute myocardial infarction. Jpn Circ J,2001,65:71-75.
    4. Creemers E, Cleutjens J, Smiths J, et al. Matrix metallopreoteinase inhibition after myocardial infarction:A new approach to prevent heart failure. J Circ Res, 2001,89:201-210.
    5. Spinale FG, Coker ML, Thomas CV, et al. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure:relation to ventricular and myocyte function. J Circ Res,1998, 82(4):482-495.
    6. Petrson JT, Li H, Dillon L, et al. Evolutin of matrix metalloproteinase and tissue ingibitor expression during heart failure progression in the infracted rat. J Cardiovasc Res,2000,46(2):307-315.
    7. Vincenti MP, White LA, Schroen DJ, Benbow U, et al. Regulation expression of the gene for matrix metalloproteinase-1 (collagenase):mRNA stability. Crit Rev Eukaryotic Gene Expr 1996,6:391-411.
    8. Visse, Robert, et al. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry. J Circ Res 2003,92: 827-839.
    9. Nagase H. Activation mechanisms of matrix metalloproteinase. Biol Chem,1997, 378:151-160.
    10. Sun Y, Zhang QJ, Zhang J, et al. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med,2000,135:316-323.
    11. Mukherjee R, Brinsa TA, Dowdy KB, et al. Myocardial infarction expansion and matrix metalloproteinase inhibition. Circulation,2003,107:618-624.
    12. Liu Ye, Wang M, Greene J, et al. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase-4 (TIMP-4). J Biol Chem,1997, 272:20479-20483
    13. Muzahir HT, Sunil N, Andrew DB, et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment. Americ J Hypertension,2004,17:764-769.
    14. Lindsay M, Maxwell P, Dunn F. TIMP-1:a maker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension,2002,40:136-141.
    15. Etoh T, Joffs C, Deschamps AI, et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol,2001,281 (3):H987-994.
    16. Carlyle WC, Jacobson AW, Judd DL, et al. Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart. J. JMolCardiol,1997,29:2451-2463
    17. Wcber KT, Brilla CG, Janicki JS. Myocardial fibrosis; functional significance and regulatory factors. Cardiovasc Res,1993,27:341-348.
    18. Cleutjens JPM. The role of matrix metalloproteinases in heart failure. Cardivas Res,1996,32:816-821.
    19. Mann DL, Spinalae FG. Activation of matrix metalloproteinases in the failing human heart. Breaking the tie that bands. Circulation,1998,98:1699-1702
    20. Wilson EM, Moainie SL, Baskin JM, et al. Region and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation, 2003,107(22):2857-2863.
    21. Li YY, McTieman CF, Moravec CS, Kormos RL, et al. The activated matrix metalloproteinase-9 in the failing human heart is suppressed by LVAD support. Circulation,1999,100(suppl):I560-567.
    22. Heymans S, Luttun A, Nuyens D, et al. Ingibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and carses cardiac failure, [see comments]. Nat Med,1999, 5:1135-1142.
    23. Li YY, Feng YQ, Kadokami T, et al. Modulation of matrix metalloproteinase activities remodels myocardial extracellular matrix in TNF a transgenic mice. Circulation,1999,100(suppl):I752-760.
    24. Simeon A, Monier F, Emonard H, et al. Fibroblast-cyokine-extracellular matrix interactions in wound repair. Curr Top Pathol,1999,93:95-101.
    25. Cleutjens JP, Verluyten MJ, Smiths JF, et al. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol,1995,147:325-538.
    26. Ronamic AM, Burns Kurtis CL, Gout B, et al. Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci,2001,68:799-814.
    27. Cucharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardio infarction. J Clin Invest,2000, 106:55-62.
    28. Shimizu N, Yoshiyama M, Takeuchi K, et al. Dopler echocardiographic assessment and cardiac gene expression analysis of the left ventricle in myocardial infracted rats. J Jpn Circ J,1998,62:436-437.
    29. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation,1998,97:1708-1715.
    30. Li YY, Feldman AM, Sun Y, et al. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation,1998,98:1728-1734.
    31. Falk PM, Soccal J, Grunenelder, et al. Regulation of matrix metalloproteinase and effect of MMP inhibition in heart transplant related reperfusion injury. Eur J Cardiothorac Surg,2002,22:53-58.
    32. Danielsen CC, Wiggers H, Andersen HR. Increased amounts of collagenase and gelationase in porcine myocardium following ischemic and reperfusion. J Mol Cell Cardiol,1998,30:1431-1442.
    33. Hojo Y, Ikeda U, Ueno S, et al. Expression of matrix metalloproteinases in patients with acute myocardial infarction. Jpn Circ J,2001,65:71-75.
    34. Zhang B, Ye S, Herrmann SM, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation,1999,99:178-1794.
    35. Hirohata S, Kusachi S, Murakami M, et al. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of myocardialinfarction. Heart,1997,78:278-284.
    36. Inokubo Y, Hanada H, Ishizaka H, et al. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J, 2001,141:211-217.
    37. Roten L, Nemoto S, Simsic J, et al. Effect of gene deletion of the tissue inhibitor of the matrix metalloproteinase typel (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol,2000,32:109-120.
    38. Manabe I, Shinlar T, Nagai R, et al. Gene expression in fibroblasts and fibrosis irrvolvement in cardiac hypertrophy. J Circ Res,2002,91:1103-1110.
    39. Galis ZS, Sukluva GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994,94:2493-2503.
    40. Li YY, McTernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res,2000,46:214-224.
    41. Spinale FG, Coker ML, Bong BR, Zellner JL, et al. Myocardial matrix degradation and metalloproteinase activation in the failing heart:a potential therapeutic target. Cardiovase Res,2000,46:225-238.
    42. Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. J Clin Cardiol,2003,26:55-59.
    43. Werb Z. Degradation of collagen. In Weiss JB, Jayson MIV, eds. Collagen in Health and Disease. Edinburgh:Churchill Livingstone,1982,121-134.
    44. Ronamic AM, Harrison SM, Bao W, et al. Myocardial protection from ischemia/reperfusion injury by targeted deletion of matrix metalloproteinase-9. Cardiovasc Res,2002,54:549-558.
    45. Nagahiro N, Kazuhiro Y, Yasushi S, et al. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res,2003,57:766-774.
    46. Spinale FG, Coker ML, Heung LJ, et al. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation,2000,102:1944-1949.
    47. Spinale FG, Holzgrefe HH, Mukherjee R et al. Angiotensin converting enzyme inhibition and the progression of congestive cardiomyopathy:effects on left ventricular and myocyte structure and function. Circulation,1995,92(3):562-568.
    48. Spinale FG, Krombach RS, Coker ML, et al. Matrix metalloproteinase inhibition during developing congestive heart failure in pigs, effects on left ventricular geometry and function. Circ Res,1999,85:364-376.
    49.王先梅,严睿,杨丽霞等.心肌组织基质金属蛋白酶-1、2、9及其抑制物-1、2基因表达变化在心肌肥厚患者心肌纤维化中的意义.中国循环杂志,2006,21(5):382-385.
    50.舒强,张向红,叶菁菁等.基质金属蛋白酶-9与婴幼儿体外循环术后急性肺损伤的相关性.中华急诊医学杂志.2007,16(8):823-828.
    51. Rohde LE, Duchame A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction inmice. Circulation,1999,99:3063-3070.
    52. Nishikawa N, Yamamoto K, Sakata Y, et al. Cifferential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. J Cardiovasc Res,2003,57:766-774.
    53. Lamparter S, Slight SH, Weber KT. Doxycycline and tissue repair in rats. J Lab Clin Med,2002,139:295-302.
    54.郭建中,高长青.基质金属蛋白酶及抑制剂在心肌梗塞后心室重构中的作用.中华老年心脑血管病杂志,2005,7(1):39-42.
    55. Wei CC, Meng QC, Palmer R, et al. Evidence for angiotensin converting enzyme and chymase mediated angiotensin II formation in the interstitial fluid space of the dog heart in vivo. Clrculatlon,1999,99:2583-2586.
    56. Brunner HP, Rocca MD,Vaddadi G, et al. Recent insight into therapy of congestive heart failure, focus on ACE inhibition and angiotensin Ⅱ angagonoism. J Am Coll Cardiol,1999,33(5):1163-1169.
    57. Lijnen PJ, Petrov VV. Role of intracardiac rennin-angiotensin-aldosterone system in extracellular matrix remodeling. Methods Find Exp Clin Pharmacol,2003, 25:541-564.
    58. Reinhardit D, Sigusch HH, Hensse J, et al. Cardiac remodeling in end stage heart failure:upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart,2002,88(5):525-530.
    59. Unger T. Neurohormonal modulation In cardiovascular disease. Am Heart J.2000,139(1 P12)I:S2.
    60. SH Li, E Edmunds, AD Blann, et al. Matrix metalloproteinase-9 and tissue ingibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and anti-hypertensive therapy. International J of Cardiology, 2000,75:43-47.
    61. Laviades C, Vain N, Femandez J, et al. Abnormalities of the extracellular degradation of collagen type Ⅰ in essential hypertension. Circulation,1998, 98:535-540.
    62.覃远汉,刘唐威,伍伟锋等.基质金属蛋白酶-3在病毒性心肌炎中的表达及福辛普利的干预作用.实用儿科临床杂志,2005,20(7):635-637.
    63.覃远汉,刘唐威,伍伟锋等.基质金属蛋白酶在小鼠病毒性心肌炎中的表达及肾素-血管紧张素系统阻断后的变化.临床儿科杂志,2005,23(10):727-730.
    64.谢萍,吕文涛,高志凌等.肿瘤坏死因子-α与基质金属蛋白酶-9在心力衰竭中的变化及药物干预的影响.中国循环杂志,2006,21(1):33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700