人型支原体感染状况及对大环内酯类药物耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:支原体(Mycoplasma)是引起泌尿生殖道感染较为常见的病原体,生殖道支原体感染往往引起非淋病性尿道炎(NGU)、宫颈炎、盆腔炎、自发性流产、不孕等严重后果。部分病人感染以后由于治疗不及时或治疗方法不得当,经常会导致病情反复发作和支原体对药物产生耐药性,给临床治疗带来困难。经过临床的检测及药敏试验可以发现,虽然支原体感染以解脲脲原体为主,但感染人型支原体(Mh)的病人多表现为病史较长,且Mh药敏结果为多重耐药。支原体由于缺乏细胞壁,故对于干扰细胞壁形成的l3一内酰胺类抗生素,如青霉素、头孢菌素等具有天然的耐药性;又因在Mh基因组中携带有耐四环素的tetM基因,从而使四环素的应用受到局限,现在临床上用于治疗人型支原体感染的主要为大环内酯类药物和喹诺酮类。本研究对临床分离出的支原体感染标本进行了药敏试验,并对其耐药情况进行了分析,同时对人型支原体对大环内酯类药物的耐药机制进行了探讨,力求找出其耐药的根本因素,从而能够为临床治疗及耐药机理的研究提供理论依据。
     方法:从2003年1月至2006年12月来我院皮肤科和妇科门诊就诊患者共4846例为统计对象,其中男1726例,女3120例,年龄2~69岁。通过珠海丽珠公司提供的培养药敏试验板对其进行药敏试验,统计其耐药情况。经过液体培养基分离培养,固体培养基鉴定并纯化的方法进行筛选,从上述标本中筛选出20株人型支原体,排除了了其他细菌及支原体感染的可能。应用PCR对可能导致耐大环内酯类药物Erm A、Erm B、Erm C以及Mef A基因的检测,并对人型支原体与大环内酯类药物的结合位点所在区域23 s rRNA的V区进行了序列的扩增,扩增产物通过琼脂糖凝胶电泳进行鉴定。
     结果:临床上以解脲脲原体感染居多,约占NGU的40%,混合感染次之,单纯人型支原体感染较少;Mh对14、15环大环内酯类药物耐药情况比较严重,对16环交沙霉素敏感性较高。20例菌株中未发现ErmA、B、C的阳性条带;Mef A的检测也未发现阳性条带。对23S rRNA的V区扩增的结果与基因Bank中的人型支原体序列比较显示,对交沙霉素敏感株未发生位点突变,同时还和肺炎支原体序列进行了比对,结果发现在2057位可发现G-A的改变。经十六环大环内酯类药物诱导产生耐药的两株人型支原体最小抑菌浓度分别为64mg/l和128mg/l,两个诱导株中的2059位存在着A-G的突变。
     结论:对于混合感染病例的病例,应排除用14、15环大环内酯药物进行治疗,以防止消除Uu感染后仍存在Mh感染.人型支原体对大环内酯类药物的耐药主要可以归结为药物结合位点的改变,而并非甲基化酶以及外排泵作用,对16元环大环内酯类药物获得性耐药的菌株,其机制可能与2059位的A-G突变导致支原体与药物结合能力下降有关。
Introduction
     Human mycoplasmas are common pathogens of urogenital and respirat- ory tract infections. They can cause non-gonococcal urethritis、cervicitis、pelvic inflammatory disease、spontaneous abortion、infertility and other diseases. Due to unsuitable treatment after infection,more and more drug-resistance had been reported recent years .we also can find that the resistance of mycoplasmas to microlide are increasing year by year by the detection of susceptibility test. It was even worse in the mixed infection by Mycoplasma hominis(Mh) and ureaplasma urealyticum(Uu) and Mh alone.
     Mh is one of the main pathogens of urogenital tract infections, some antibiotics such as penicillin、cephalosporin are inefficacious to it because it lacks of cell wall;and also there is Tet M gene in its genome, tetracycline are inefficacious too. In clinical, doctor usually use macrolides and quinolones.
     In this research, we had analysised the drug- resistance conditions of the clinical samples by susceptibility test , meanwhile, we had explored the mechanism of drug-resistance of Mh to the. Macrolides.
     Methods
     Urogenital specimens from 4846 (male:1726,female:3120, age:2-69) outpatients were assayed by the susceptibility test according to the instructions of kits which were provided by Lizhu company.
     To choose 20 Mh specimens from above metioned samples for the research of drug-resistance. All of them are cultured in liquid medium and purified by the solid medium to exclude other microorganisms.
     To assay the Erm A、Erm B、Erm C and Mef A by polymerase chainreaction and the domain V of 23s rRNA where the binding site of Mh to macrolides are also amplified. The product are detected by agarose gel electrophoresis
     Comparing the sequence of the products of 23s rRNA with correspon- ding sequence in genebank ,and analysis the mutation .
     Results
     Infections by Uu are common in clinical, it occupied 40% of NGU, and infection by Mh alone are rare appearance, all of them were mearly resistance to the 14、15 ring macrolides but sensitive to 16 ring macrolide, Josamycin. In mixed infection cases, it should be treated without 14、15 ring microlide to prevent the Mh infection coming worse.
     In this research, we didn’t find the Erm A、Erm B、Erm C and Mef A gene after PCR detection.
     After comparing to sequence of Mycoplasma pneumonia Genebank ,we can find a G2057A mutation.
     Refer to the induced resistant strain, the MIC is 64mg/L and 128mg/L respectively.In this research, we can find a A2059G mutation in common. Conclusion
     The resistance of Mh to macrolides are not caused by the methylase (ErmA、Erm B、Erm C) and Mef A but caused by the mutant of binding site to the drug. And to acquired resistance to 16 ring macrolide, the mechanism may be the A2059G mutant in 23s rRNA domain V.
引文
1. 孙蓉,孙峰,唐尧,等 .扬州市性传播疾病患者支原体、衣原体、淋病奈瑟菌及加特纳菌感染情况的研究[J].中华流行病学杂志,2004,25:146-149.
    2. 吴移谋 ; 黄树杰 ; 谢礼豪,等 . 男性非淋菌性尿道炎患者性病病原体的研究[J]. 中国皮肤性病学杂志.1998,12(1)10-12.
    3. FJ Diaz-Garcia, AP Herrera-Mendoza, S Giono-Cerezo, et al. Mycoplasma hominis attaches to and locates intracellularly in human spermatozoa. Hum Reprod. 2006, 21(6):1591-8.
    4. M A Gonzalez-Jimenez, CA Villanueva-Diaz. Epididymal stereocilia in semen of infertile men: evidence of chronic epididymitis? Andrologia. 2006 ,38(1): 26-30.
    5. 童向东,姜淑慧,沈三阳. 168 例支原体培养及体外药敏分析[J]. 中华医院感染学杂志,2004,14:1312-1313.
    6. 孟冬娅,薛文成,胡晓芳,等.泌尿生殖道支原体感染流行病学及耐药性变异分析[J]. 实用诊断与治疗杂志. 2006,20(8):583-585.
    7. Pereyre S, Gonzalez P, de Barbeyrac B, et al. Mutations in 23S rRNA Account for Intrinsic Resistance to Macrolides in Mycoplasma hominis and Mycoplasma fermentans and for Acquired Resistance to Macrolides in M. hominis. Antimicrob Agents Chemother. 2002; 46: 3142–3150.
    8. Waites K B, Cassell G H, Canupp K C, et al. In vitro susceptibilities of mycoplasmas and ureaplasmas to new macrolides and aryl-fluoroquinolones. Antimicrob Agents Chemother. 1988,32:1500–1502.
    9. Kobayashi H, Nakajima H, Shimizu Y, et al. Macrolides and lincomcin susceptibility of mycoplasma hyorhinis and variable mutation of domain Ⅱ and Ⅴ in 23S Ribosomal RNA. J Vet Med Sci 2005,67:795-800.
    10. Douthwaite S, Hansen L H, Mauvais P. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol Microbiol. 2000,36:183–192.
    11. 薛文成 ,孟冬娅, 万 楠,等.2006 年泌尿生殖系统支原体感染状况及耐药性分析[J].中国实验诊断学,2007,11(3):335-337.
    12. 张 京 京 ( 综 述 ) , 张 天 托 ( 审 校 ). 耐 大 环 内 酯 肺 炎 链 球 菌 的 研 究 [J]. 医 学 综 述2005 ,11(6) :565-567.
    13. Arthur, M., C. Molinas, C. Mabilat, and P. Courvalin. 1990. Detection ofresistance by the polymerase chain reaction using primers in conserved regions of erm rRNA methylase genes. Antimicrob. Agents Chemother. 34:2024–2026.
    14. Cundliffe, E. 1990. Recognition sites for antibiotics within rRNA, p. 479–490 In W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner (ed.), The ribosome: structure, functions, and evolution. American Society for Microbiology, Washington, D.C.
    15. Depardieu, F., and P. Courvalin. 2001. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45:319–323.
    16. Douthwaite, S. 1992. Functional interactions within 23S rRNA involving the peptidyltransferase center. J. Bacteriol. 174:1333–1338.
    17. Douthwaite, S., and C. Aagaard. 1993. Erythromycin binding is reduced in ribosomes with conformational alteration in the 23S rRNA peptidyl transferase loop. J. Mol. Biol. 232:725–731.
    18. Ettayebi, M., S. M. Prasad, and E. A. Morgan. 1985. Chloramphenicol erythromycinresistance mutations in 23S rRNA gene of Escherichia coli. J.Bacteriol. 162:551–557.
    19. Canu, A., B. Malbruny, M. Coquemont, T. A. Davies, P. C. Appelbaum, and R. Leclercq. 2002. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46:125–131.
    20. Capobianco, J. O., and R. C. Goldman. 1990. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H). Antimicrob. Agents Chemother. R. Leclercq. 2002. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46:125–131.
    21. Furneri, P. M., G. Tempera, G. Bisignano, F. V. Cottarelli, and G. Nicoletti. Anti-mycoplasmal activity of a new macrolide: miocamycin. Chemioterapia VI:341–345.
    22. Gobel, U., G. H. Butler, and E. J. Stanbridge. 1984. Comparative analysis of Mycoplasma ribosomal RNA operons. Isr. J. Med. Sci. 20:762–764.
    23. Hansen, L. H., P. Mauvais, and S. Douthwaite. 1999. The macrolide-ketolide ribosomal RNA. Mol. Microbiol. 31:623–631.
    24. Kloss, P., L. Xiong, D. L. Shinabarger, and A. S. Mankin. 1999. Resistance mutations in 23S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J. Mol. Biol. 294:93–103.
    25. Ladefoged, S. A., and G. Christiansen. 1992. Physical and genetic mapping of the genomes of five Mycoplasma hominis strains by pulsed-field gel electrophoresis.J. Bacteriol. erythromycin 174:2199–2207.
    26. Ettayebi, M., S. M. Prasad, and E. A. Morgan. 1985. Chloramphenicol erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J. Bacteriol. 162:551–557.
    27. Mankin, A. S., and R. A. Garret. 1991. Chloramphenicol in the single 23S rRNA gene of the archaeon Halobacterium halobium. J. Bacteriol. 173:3559–3563.
    28. Meier, A., P. Kirschner, B. Springer, V. A. Steingrube, B. A. Brown, R. J. Wallace, Jr., and E. C. Bo¨ttger. 1994. Identification of mutations in 23S rRNA gene of clarithromycin-resistance Mycobacterium intracellulare. Antimicrob. Agents Chemother. 38:381–384.
    29. Moazed, D., and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884.
    30. Garza-Ramos, G., L. Q. Xiong, P. Zhong, and A. Mankin. 2001. Binding siteof macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 183:6898–6907.
    31. Glass, J. I., E. J. Lefkowitz, J. S. Glass, C. R. Heiner, Y. Chen, and G. H.Cassell. 2000. The complete sequence of the mucosal pathogen Ureaplasma urealyti- cum. Nature 407:757–762.
    32. Gutell, R. R. 1994. Collection of small subunit (16S- and 16S-like) ribosomalRNA structures. . Nucleic Acids Res. 22:3502–3507
    33. Hansen, L. H., P. Mauvais, and S. Douthwaite. 1999. The macrolide- ketolideantibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31:623–631.
    34. Harris, E. H., B. D. Burkhart, N. W. Gillham, and J. E. Boynton. 1989. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292.
    35. Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B. C. Li, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:4420–4449.
    36. Huang, Y., J. A. Robertson, and G. W. Stemke. 1995. An unusual rRNA gene organization in Mycoplasma fermentans (incognitus strain). Can. J. Microbiol. 41:424–427.
    37. Johansson, K. E., M. Heldtander, and B. Petterson. 1998. Characterization of mycoplasmas by PCR and sequence analysis with universal 16S rDNA primers. Methods Mol. Biol. 104:145–165.
    38. Ladefoged, S. A., and G. Christiansen. 1992. Physical and genetic mapping of the genomes of five Mycoplasma hominis strains by pulsed-field gel electrophoresis.J. Bacteriol. 174:2199–2207.
    39. Lucier, T. S., K. Heitzman, S. K. Liu, and P. C. Hu. 1995. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39:2770–2773.
    40. Ludwig, W., G. Kirchof, N. Klugbauer, M. Weizenegger, D. Betzl, M. Ehrmann,C. Hertel, S. Jilg, R. Tatzel, H. Zitzelsberger, S. Liebl, M. Hochberger,J. Shah, D. Lane, and P. R. Wallnoef. 1992. Complete 23S ribosomal RNA sequences of gram-positive bacteria with a low DNA G_C content.Syst. Appl. Microbiol. 15:487–501.
    41. Moazed, D., and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884.
    42. Nagai, K., P. C. Appelbaum, T. A. Davies, L. M. Kelly, D. B. Hoellman, A. T.Andrasevic, L. Drukalska, W. Hryniewicz, M. R. Jacobs, J. Kolman, J.Miciuleviciene, M. Pana, L. Setchanova, M. K. Thege, H. Hupkova, J. Trupl,and P. Urbaskova. 2002. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutationamong 992 pneumococci from 10 Central and Eastern European countries.Antimicrob. Agents Chemother. 46:371–377.
    43. Okazaki, N., M. Narita, S. Yamada, K. Izumikawa, M. Umetsu, T. Kenri, Y.Sasaki, Y. Arakawa, and T. Sasaki. 2001. Characteristics of macrolide- resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiol. Immunol. 45:617–620.
    44. Paulsen, I. T., L. Nguyen, M. K. Sliwinski, R. Rabus, and M. H. Saier, Jr.2000. Microbial genome analyses: comparative transport capabilities in eighteenpro- karyotes. J. Mol. Biol. 301:75–100.
    45. Wallace, R. J., Jr., A. Meier, B. A. Brown, Y. Zhang, P. Sander, G. O. Onyi,and E. C. Bottger. 1996. Genetic basis for clarithromycin resistance amongisolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob.Agents Chemother. 40:1676–1681.
    46. PIO MARIA FURNERI,GIANCARLO,2001 Two new point mutation at A2062 associated with Resistance to 16-membered macrolide antibiotics in mutant strains of mycoplasma hominis2958-2960
    47. S.Pereyre,P.Gonzalez, B.de Mutations in 23 s rRNA Account for intrinsic resistance to the macrolide in mycoplasma hominis and mycoplasma fermentans and for acquired resistance to macrolide in M.hominis 2002,ANTIMACR- OBIAL AGENT 3142-3150
    48. Megraud F, Lehn N, Lind T, et a1. Antimicrohial susceptibility testing ofHelicobacter pylori in a large muhieenter trial:the MACH 2 study.Antimicrob Agents Chemother,1999,43(11):2 747—2 752.
    49. Mendonca S , Ecelissato C , Sartori , et a1 . Prevalence of Helicobacter pyloriresistance t() metronidazole,clarithromycin,amoxicillin,tetracycline,andfurazolidone in brazil.Helicobacter,2000,5(2):79—83.
    1. Edelstein PH.Pnetal resistance to maerolides,lincosamides,ketolides,and streptogramin B agents : molecular mechanisms and resistance phenotypes [J].Clin Infect Dis,4,38(Suppl 4):322~7
    2. Jacobs MR, Felmingham D, Appelbaum PC, et a1. The Alexander Project Group.The Alexander Project 1998~2O00:susceptibility of pathogens isolated from community — acquired respiratory tract infection to commonly used antimicrobial agents[J].J Antimicrob Chemother.2oo3,52(2):229~46
    3. Gordon KA , Biedenbach DJ , Jones RN . Comparison of Streptococcus pneumoniae and Haemophilus influenzae susceDt filities from community—acquired respiratory tract infections SENTRY Antimicrobial Surveillance Program.Diagn MicrobioI lnfect Dis.2oo3.46(4):285~9
    4. Waites K.Brown S.Antimicrobial resistance among isolates of respiratory tract infection pathogens from the SOUthem United States:data from the PR0TEKT US Surveillance Program 2000/2001.South Med J,2oo3,96(10):974~85
    5. Gresso MD,Iannelli F,Messina C,et a1.Macrolide efi[ix genes mef(A)and reef(E)ale carried by diferent genetic elements in Streptococcus pneumoniae [J].J Clin Microbiol,2002,40(3):774-8
    6. Ban N,Nissen P,Hansen J,el a1.The complete atomatic structure ofthe large ribosomal subunit at 2.4A resolution[J].Science,2000,289(11):905—920.
    7. Wilson DN,Harms JM,NierhaUS KH,et a1.Species—specific an—tibiotic— ribosome interactions: Implications for drug development[J].Biol Chem,2005,386(12):1239—1252.
    8. Harms JM,Bartels H,Schlunzen F,et a1.Antibiotics acting on thetranslational machinery[J].J Cell Sci,2003,116:1391—1393.
    9. Hahn Vester B,Douthwaite S.Macmlide resistance conferred by base sub—stitutions 23S rRNA[J].Antimicrob Agents Chemother,2001,45(1):1—12.
    10. Hal'lsen JL,Ippolito JA,Ban N,et a1.The structures of fourmacmlide antibiotics bound to the large ribosomal subunit[J].MolCell,2002,10:117—128.
    11. Xiong LQ,Korkhin Y,Mankin AS,et a1.Binding site of the bridged macmlides in the escherichia coli ribosome[J].AntimicrobAgentsChemother,2005,49(1):281—288.
    12. 张澍,孙自镛.肺炎链球菌对大环内酯类耐药机制研究进展[J].国外医药:抗生素分册,2005,26(2):78—82
    13. Song JH, Chang HH, Suh JY, et a1. Macrolide resistance and genotypic characterization of Streptococcus pneumoniae in Asian countries:a study of the Asian Network for SurveiHan ce of ResistantPathogens(ANSORP)[J] . J Antimicrob Chemother,2004,53(3):457~63.
    14. Farrell DJ,I Morrissey,S Bakker,et a1.Molecular characterization ofmacrolide resistance mechanisms am ong Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PR0TEKT 1999-2000 study[J] . J Antimicrob Chemother,2002,50(Supp1.S1):39~4
    15. . Mankin, A. S., and R. A. Garret. 1991. Chloramphenicol in the single 23S rRNA gene of the archaeon Halobacterium halobium.J. Bacteriol. 173: 3559–3563.
    16. Meier, A., P. Kirschner, B. Springer, V. A. Steingrube, B. A. Brown, R. J. Wallace, Jr., and E. C. Bo¨ttger. 1994. Identification of mutations in 23S rRNA gene of clarithromycin-resistance Mycobacterium intracellulare. Antimicrob. Agents Chemother. 38:381–384.
    17. Moazed, D., and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884.
    18. Garza-Ramos, G., L. Q. Xiong, P. Zhong, and A. Mankin. 2001. Binding siteof macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. J. Bacteriol. 183:6898–6907.
    19. . Glass, J. I., E. J. Lefkowitz, J. S. Glass, C. R. Heiner, Y. Chen, and G. H.Cassell. 2000. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:757–762.
    20. Gutell, R. R. 1994. Collection of small subunit (16S- and 16S-like) ribosomalRNA structures. . Nucleic Acids Res. 22:3502–3507
    21. Hansen, L. H., P. Mauvais, and S. Douthwaite. 1999. The macrolide- ketolideantibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31:623–631.
    22. Harris, E. H., B. D. Burkhart, N. W. Gillham, and J. E. Boynton. 1989. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292.
    23. Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B. C. Li, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:4420–4449.
    24. Huang, Y., J. A. Robertson, and G. W. Stemke. 1995. An unusual rRNA gene organization in Mycoplasma fermentans (incognitus strain). Can. J. Microbiol. 41:424–427.
    25. Johansson, K. E., M. Heldtander, and B. Petterson. 1998. Characterization of mycoplasmas by PCR and sequence analysis with universal 16S rDNA primers. Methods Mol. Biol. 104:145–165.
    26. Ladefoged, S. A., and G. Christiansen. 1992. Physical and genetic mapping of the genomes of five Mycoplasma hominis strains by pulsed-field gel electrophoresis.J. Bacteriol. 174:2199–2207.
    27. Lucier, T. S., K. Heitzman, S. K. Liu, and P. C. Hu. 1995. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39:2770–2773.
    28. Ludwig, W., G. Kirchof, N. Klugbauer, M. Weizenegger, D. Betzl, M. Ehrmann,C. Hertel, S. Jilg, R. Tatzel, H. Zitzelsberger, S. Liebl, M. Hochberger,J. Shah, D. Lane, and P. R. Wallnoef. 1992. Complete 23S ribosomal RNA sequences of gram-positive bacteria with a low DNA G-C content.Syst. Appl. Microbiol. 15:487–501.
    29. Seppala Moazed, D., and H. F. Noller. 1987. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie 69:879–884.
    30. Nagai, K., P. C. Appelbaum, T. A. Davies, L. M. Kelly, D. B. Hoellman, A. T.Andrasevic, L. Drukalska, W. Hryniewicz, M. R. Jacobs, J. Kolman, J.Miciuleviciene, M. Pana, L. Setchanova, M. K. Thege, H. Hupkova, J. Trupl,and P. Urbaskova. 2002. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutationamong 992 pneumococci from 10 Central and Eastern European countries.Antimicrob. Agents Chemother. 46:371–377.
    31. PIO MARIA FURNERI,GIANCARLO,2001 Two new point mutation at A2062 associated with Resistance to 16-membered macrolide antibiotics in mutant strains of mycoplasma hominis2958-2960
    32. S.Pereyre,P.Gonzalez,B.de Mutations in 23 s rRNA Account for intrinsicresistance to the macrolide in mycoplasma hominis and mycoplasma fermentans and for acquired resistance to macrolide in M.hominis 2002,ANTIMACRO- BIAL AGENT 3142-3150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700