影响广西防城港地区汉族成年男性癌胚抗原水平的遗传变异分析及其临床意义探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究内容]本研究内容分三部分:(1)对广西特定地区的相同种族、成年男性健康人群的血清CEA(Carcinoembryonic Antigen)水平及其影响因素进行流行病学调查。(2)在该人群中进行血清CEA水平与单核苷酸多态性(SNP)位点的定量全基因组关联分析。(3)分析影响该地区散发性结直肠癌患者血清CEA水平的遗传变异及探讨其临床意义。
     第一部分
     [目的]了解广西防城港地区的汉族成年男性健康人群的血清CEA水平分布及其相关影响因素。
     [材料与方法]我们对来自广西防城港地区汉族人群的2,022名男性健康成人进行外周静脉血血清CEA水平的检测。对该研究人群进行身体健康检查以排除患病人群;相关问卷调查以了解个体生活环境的差异并将其作为相关影响因素进行分析。研究人群的血清CEA水平值进行正态性转换。单因素分析比较各影响因素对血清CEA水平的影响;利用多元线性回归模型分析血清CEA水平与这些影响因素之间的关系;并对各个因素作出评价。统计学软件为SPSS17.0。
     [结果]广西防城港地区汉族成年健康男性(17-68岁)的血清CEA水平均数为2.505±1.682(ng/mL);CEA水平分布范围为(0.239~26.69ng/mL);其分布呈偏态分布。单因素分析的结果提示:年龄,吸烟及吸烟量,饮酒,肥胖(BMI>28)均为影响该人群血清CEA水平的相关因素。各年龄组间血清CEA水平差异有统计学意义(p<0.001);年龄大于60岁组中CEA水平最高1.45±0.26ng/ml。吸烟组与非吸烟组间的差异有统计学意义p<0.001;在吸烟者中按总吸烟量(年包数)进行分组后比较血清CEA水平的差异;重度吸烟组的CEA水平最高1.44±0.25ng/ml,其差异有统计学意义p<0.001。 BMI各组的CEA水平差异有统计学意义(p=0.034)。乙型病毒性肝炎的感染不是影响血清CEA水平的因素(p=0.175)。通过多元线性回归模型分析,进入模型的自变量包括吸烟(吸烟总量)、肥胖(BMI)、饮酒;其中吸烟量对血清CEA水平的影响在上述影响因素中最大,其相关系数(校正后)为0.175,p<0.001。肥胖与正常人群的血清CEA水平呈负相关(B=-0.05;p=0.006)。上述影响因素的R2(调整后)为0.07。
     [结论]通过大规模流行病学调查取得防城港地区男性汉族健康人群的血清CEA水平分布数据。其单因素分析的结果提示:年龄,吸烟及吸烟量,饮酒,肥胖(BMI)均为影响该人群血清CEA水平的相关因素;多因素分析提示总吸烟量及年龄是影响CEA水平的重要因素。相关影响因素对正常人群CEA水平差异的影响较小。
     第二部分
     [目的]对广西防城港地区男性汉族健康人群进行血清CEA水平与单核苷酸多态性(SNP)位点的定量全基因组关联分析(GWAS);了解影响该人群血清CEA水平的遗传变异因素。
     [材料与方法]采集研究人群的外周静脉血检测血清CEA水平及提取DNA样本。利用高通量的基因分型技术The Illumina Omini1全基因组SNP分型芯片对上述研究人群的DNA样本(n=2,018)进行SNP分型。满足分型质量控制标准的入组人群(n=1,999)进行血清CEA水平与SNP分型成功位点(n=709,211)在多元线性回归模型中进行关联分析;样本血清CEA值在关联分析中按校正年龄,BMI及吸烟量进行校正。全基因组关联分析统计学检验显著性水平经Boferroni校正后统计检验标准为1E-7。基因分型的质量控制标准:Hardy-Weinberg Equilibrium(HWE)test p>0.001;最小等位基因频率>0.01;基因分型成功率>0.95。相关位点及其所在基因进行生物信息学功能分析及预测,所用分析软件为DAVID6.7.通过与ABO血型各等位基因(A1,A2,B,O)相关SNP(rs507666,rs8176704, rs687289.与rs8176746)对研究人群进行ABO血型进行等位基因分型并比较各组血清CEA水平。关联分析所用软件为PLINK v1.06.
     [结果]通过GWAS发现25个SNP位点达到全基因组关联分析统计学检验显著性(1E-7)。这些位点主要位于ABO基因(rs8176741;rs8176746; rs8176722; rs8176743; rs8176749; rs507666Ts7873522;176720;rs8176725);FUT2_基因(rs1047781);FUT6基因(rs3760775,rs778805,rs778809);CA11基因(rs11880333);RPL18基因(rs2292324);SULT2B1基因(rs3786749);FAM3B基因(rs441810);FAM83E基因(rs433852)。基因集功能富集分析结果提示相关基因(ABO基因与在FUT1,2基因)位于鞘糖脂合成通路。ABO各等位基因型携带者间的血清CEA水平存在差异(BB>BO; AAAB)。
     [结论]我们发现影响血清CEA水平的相关SNP位点及其所在基因。与ABO血型的等位基因相关位点的多态性影响血清CEA水平;提示ABO血型的等位基因型与血清CEA水平可能存在相关性。
     第三部分
     [目的]分析影响广西地区散发性结直肠癌患者血清CEA水平的遗传变异因素;探讨该遗传变异与广西地区散发性结直肠患者临床表现的关系。
     [材料与方法]收集194例在广西医科大学第一附属医院住院并手术的散发性结肠癌患者进行血清CEA水平检测及DNA标本采集。相关临床数据通过完整住院记录及复诊、随访资料提供。切除组织病理经该院病理科经两名资深病理科医生共同诊断。根据全基因组关联分析的统计学显著性水平及ABO血型相关基因位点原则挑选候选SNP。 DNA标本的相关SNP等位基因分型采用实时荧光定量PCR法;分型探针采用TaqMan-MGB双等位基因分型探针。单因素分析影响术前CEA水平的因素采用非参数法;比较各因素对淋巴结转移及术后肿瘤复发的影响采用Logistic回归分析。Kaplan-Meier法用于比较各影响因素组之间的无瘤生存时间。统计学软件为SPSS17.0。
     [结果]194例散发性结直肠癌患者术后病理诊断为腺癌。淋巴结转移与远处转移是术前CEA水平差异的影响因素(5.36vs3.41ng/ml, p=0.011;11.87vs3.60ng/ml,p=0.033).淋巴结转移组术后无瘤生存时间的差异有统计学意义(p=0.021).Logistic回归分析提示淋巴结转移是影响术后肿瘤复发的风险因素(OR:3.517;95%C.I:1.437-8.607;p=0.006).在排除肿瘤转移的影响后,对各候选SNP的等位基因型术前CEA水平的差异分析结果提示rs107781(A/T)位点的等位基因型与术前CEA水平相关(AA:1.725,AT:3.49,TT:4.1lng/ml;p=0.009)。在不同淋巴结转移状态下,rs1047781各等位基因型组的术后无瘤生存时间差异无统计学意义:在伴有淋巴结转移病人中,AAvs AT:p=0.146;AA vs TT:p=0.173;AT vs TT:p:0.956;无淋巴结转移病人中,AA vs AT:p:0.823;AA vs TT:p=0.389;AT vs TT:p=0.254).分别以rs1047781的3个等位基因型作为遗传背景下,分析病人的不同淋巴结转移状态对术后无瘤生存时间的影响;结果提示AA基因型中两组差异无统计学意义(p=0.981);AT及TT基因型组中两组差异有统计学意义(p=0.037;p=0.029).rs3760775(G/T)各等位基因组的发病部位的差异有统计学意义(X2=18.584,p=0.017). rs2071699(A/G),各等位基因组(AA,AG,GG)的发病部位(升结肠)的差异有统计学意义(X2=16.254,p=0.039).rs441810(A/G)各等位基因组的发病部位差异有统计学意义(χ2=144.123,p<0.001);其大体病理表现的差异有统计学意义(X2=9.304,p=0.050).rs8176746的等位基因型组间(AA,AG,GG)的区域淋巴结转移发生率的差异有统计学意义(AA vs GG:27.4%vs1.1%;X2=7.609,p=0.022).
     [结论]rs1047781位点的等位基因多态性与广西地区散发性结直肠癌患者术前CEA水平差异相关;该结果与正常人群的GWAS结果一致。该位点的等位基因多态性是影响人群CEA水平的遗传变异因素之一。通过与无淋巴结转移的病人比较,结果提示rs1047781等位基因T可能与该地区伴有淋巴结转移的散发性结直肠癌术后早期复发有关。rs441810多态性与散发性结直肠癌大体病理分型相关,等位基因A基因型是溃疡型肿瘤风险因素;其等位基因A与升结肠癌发病相关。rs8176746多态性与CRC术前淋巴结转移发生率相关,等位基因A是淋巴结转移的风险因素。
[Content] There were three parts included in our study:1) an epidemiological survey was designed to determine the distributions of serum CEA levels in healthy men from specific area and the same race; in addiction, we analyzed the confounders affecting serum CEA levels.2) The genome-wide association study (GWAS) was conducted to research the SNPs associated with serum CEA levels in the participants.3) Based on the result of GWAS, We tried to explore the association between polymorphisms and the serum CEA levels in patients with sporadic CRC from specific area; and the clinic significance of such polymorphisms were analyzed in the patients.
     Part One
     [Purpose] In this study, we tried to determine the distributions of serum CEA levels in healthy men from Fangchenggang Area and the Han nationality; we also evaluated the confounders affecting the serum CEA levels in the participants.
     [Materials and Methods] The subjects from The Fangchenggang Area Male Health and Examination Survey (FAMHES) received routine physical examinations and Epidemiological survey by standardized questionnaire. Serum CEA level of peripheral venous blood was measured with electrochemiluminescence immunoassay. The differences of CEA values with regard to each affecting factors were assessed using one-way Analysis of Variance (ANOVA) or t-test. General linear regression analysis was used to assess the impact of age, BMI and the amount of smoking cigarettes among HBsAg negative subjects.
     [Result] The mean of serum CEA levels was2.505±1.682(ng/mL); CEA levels ranged0.239~26.69ng/mL. The result of ANOVA showed age smoking drinking and BMI were the confounders in smokers and no-smokers was significantly different (t-test,p<0.001). The mean value of CEA in sub-group was significantly different (ANOVA,p<0.001); and the elder were with higher CEA level. When grouped by total quantity of cigarettes (mild, moderate and severe smoking), the CEA levels were significantly different (ANOVA,p<0.001). Alcohol-drinking was not a significant contributor to the CEA levels in this population (ANOVA, p=0.294). The age, smoking, BMI were subjected to multivariate analysis. In General Linear Regression model, Age (Beta=0.003,p<0.001), total quantity of cigarettes (Beta=0.004,p<0.001) and BMI (Beta=-0.05,/?=0.006) were significantly associated with CEA level; the adjusted R2of regression model was0.070.
     [Conclusion] We got the distributions of serum CEA level of healthy men from Fangchenggang Area and the Han nationality. Age、smoking and BMI were factors affecting serm CEA level. Total quantity of cigarettes and age were important confounders which had little contribution to the variation of CEA level..
     Part Two
     [Purpose] To identify the loci associated with serum level of CEA in healthy men from FAMHES.
     [Materials and Methods] The DNA of subjects were extracted from peripheral venous blood.The Illumina Omini1beadchip (Illumina, San Diego, USA) was used for the genome-wide association study (GWAS).1,999subjects from FAMHES passed the QC call rate of95%were included in the final data analysis and a total of709,211SNPs passed the following QC criteria:p>0.001for Hardy-Weinberg Equilibrium (HWE) test, minor allele frequency (MAF)>0.01and genotype call rate>95%. A linear regression model was used to analyze the association between serum CEA levels and SNP genotypes. The age, total quantity of smoking cigarette and BMI were covariates in the model and had been adjusted before association study. The PLINK v1.06software package was used to perform this statistical analysis. Bioinformatics soft DAVIA6.7was used to analysis the potential functions of associated SNPs. Four SNPs (rs507666, rs8176704, rs687289, rs8176746) were used to conduct allelic genotyping for ABO blood type and CEA levels of the allelic genotypes were analyzed.
     [Result] Twenty-five SNPs were associated with the serum CEA levels at GWAS significant level(p=1E-7). The SNPs located in gene coding region included rs8176741, rs8176746, rs8176722, rs8176743, rs8176749, rs507666, rs7873522, rs8176720, rs8176725(ABO gene); rs1047781(FUT2gene); rs3760775, rs778805, rs778809(FUT6gene); rs11880333(CA11gene); rs2292324(RPL18gene); rs3786749(SULT2B1gene); rs441810(FAM3B gene); rs433852(FAM83E gene). Result of bioinformatics analysis for associated SNPs and genes showed that the Glycosphing-olipid biosythesis pathway was the pathway with genes function enrichment.
     [Conclusion] The SNPs associated with CEA levels in Chinese men were identified in our study and the genes (ABO gene and FUT11,2gene)which associated SNPs located in were determined. The allelic genotypes of ABO blood type were associated with serum CEA levels.
     Part Three
     [Purpose] To explore the association between polymorphisms and the serum CEA levels in patients with sporadic CRC from Guangxi Province; and the clinic significance of such polymorphisms were analyzed in the patients.
     [Materials and Methods] The samples of DNA were extracted from normal colon mucosa. The StepOnePlus/7500Real-Time PCR System(Applied Biosystem, Foster, USA) and the TaqMan-MGB probe was used for allelic genotyping. Nonparametric statistics was used in univariate analysis. Multivariable models were constructed by Logistic regression analysis. Kaplan-Meier estimators were applied in calculating survival function; the log-rank test was used to determine the survival differences among individual groups. The SPSS v.17.0program was used for analysis and P value<0.05was considered statistically significant.
     [Result] The univariate analyses revealed that the preoperative CEA level was significant different between subgroups of regional lymph nodes and distant metastases (present vs. absent:11.87vs.3.60ng/ml;5.36vs.3.41ng/ml; respectively). There was significantly different CEA levels in three subgroups (AA, AT and TT) of rs1047781(AA:1.725, AT:3.490and TT:4.110ng/ml; Kruskal-Wallis H test,p=0.009; Jonckheere-Terpstra (J-T) test, p=0.011). The J-T test showed that the TT allelic subgroup had the higher sCEA levels and the AA had the lowest (p=0.011).
     The Logistic regression analysis revealed that the age, preoperative CEA level and primary tumor staging (tumor invasion) were risk factors for regional lymph nodes metastasis. The preoperative CEA level and regional lymph nodes metastasis were risk factors for tumor recurrence in24months after radical operation(OR:1.013,95%CI:1.000~1.026, p=0.044;OR:3.517,95%CI.:1.437~8.607,p=0.006; respectively).
     The result of survival analysis for tumor-free times represented there was not significantly different in AA genotype of rs1047781when the patients were grouped by status of tumor lymph node metastasis (p=0.98); as to the AT and TT genotype, the result were opposite (p=0.037and p=0.029; respectively). In allelic subgroups of rs3760775(G/T), rs2071699(A/G) and rs441810(A/G), there were significant differences of sites of primary tumour(X2=18.584,p=0.017; X2=16.254, p=0.039;X2=144.123,p<0.001; respectively). In allelic subgroups of rs441810, the clinicopathological features of tumour were significantly different(X2=9.304, p=0.050). In allelic subgroups of rs8176746, there were significant differences of rates of lymph nodes metastases(AA vs GG:27.4%vs1.1%;X2=7.609, p=0.022).
     [Conclusion] Polymorphisms of rs1047781were associated with preoperative serum CEA levels in patients with sporadic colorectal cancer supporting the finding of GWAS in healthy population. We propose that the polymorphisms of rs1047781is genetic variance assoeiated-with serum CEA level in population from Southern China. The derived allele (T) of rs1047781might contribute to tumor recurrence in sporadic CRC patients with lymph node metastasis. The allele A of rs441810was the risk factor for tumour of ulcerative type and was associated with the tumour in ascending colon. Allele A of rs8176746was the risk factor for regional lymph node metastasis.
引文
1. Gold P, Freedman SO. Specific carcinoembryonic antigens of the human digestive system. J Exp Med.1965,122(3):467-81.
    2. Olsen A, Teglund S, Nelson D, et al. Gene organization of the pregnancy-specific glycoprotein region on human chromosome 19: assembly and analysis of a 700-kb cosmid contig spanning the region. Genomics.1994,23(3):659-68.
    3. Paxton RJ, Mooser G, Pande H,et al. Sequence analysis of carcinoembryonic antigen:identification of glycosylation sites and homology with the immunoglobulin supergene family. Proc Nati Acad Sci U S A.1987,84(4):920-4.
    4. Kammerer, Zimmermann. Coevolution of Activating and inhibitory receptors within mammalian Carcinoembryonic antigen families. BMC Biology 2010,8,12.
    5. Nap M, Mollgard K, Burtin P, et al. Immunohist ochemistry of carcino-embryonic antigen in the embryo, fetus and adult. Tumor Biol 1988,9:145-153.
    6. Frangsmyr L, Baranov V, Hammarstrom S. Four carcinoembryonic antigen CEA subfamily members, CEA, NCA, BGP and CGM2, selectively expressed in the normal human colonic epithelium are integral components of the fuzzy coat. Tumor Biol 1998.
    7. Jothy S, Yuan SY, Shirota K. Transcription of carcino-embryonic antigen in normal colon and colon carcinoma.Am J Pathol 1993, 143:250-257.
    8. Cournoyer D, Beauchemin N, Boucher D,et al. Transcription of genes of the carcinoembryonic antigen family in malignant and nonmalignant human tissues. Cancer Res 1988,48:3153-3157.
    9. Shi ZR, Tacha D, Itzokowitz H_1994. Monoclonal antibody COL-1 reacts with restricted epitopes on carcinoembryonic antigen:an immunohistochemical study. J Histochem Cytochem 42:1215-1219.
    10. Bin-Bin Sun, Hui Shi, Jun Wan.Role of serum carcino embryonic antigen in the detection of colorectal cancer before and after surgical resection. World J Gastroenterol.2012.May 7; 18(17):2121-2126.
    11. J Bjerner, A H(?)getveit. Reference intervals for carcino-embryonic antigen (CEA), CA125, MUC1, Alfa foetoprotein (AFP), neuron-specific enolase (NSE) and CA19.9 from the NORIP study. Scand J Clin Lab Invest 2008;68(8):703-13.
    12. Xiaobo Yang, Jielind Sun, Yong Gao. et al.Genome-Wide Association Study for Serum Complement C3 and C4 Levels in Healthy Chinese Subjects. PLoS Genet.2012 September; 8(9):e1002916.
    13. Alexander JC, Silverman NA, Chretien PB. Effect of Age and Cigarette Smoking on Carcinoembryonic Antigen Levels. JAMA 1976. 235,1975-1979.
    14. Richard P, Sarah D, Harz D, et al. Smoking, smoking cessation, and lung cancer in the UK since 1950:combination of national statistics with two case-control studies. BMJ,2000.321,323-329.
    15. G W Olsen, J S Mandel, R W Gibson, et al. A case-control study of pancreatic cancer and cigarettes, alcohol, coffee and diet. Am JPublic Health 1989.79,1016-1019.
    17. Garrote LF, Herrero R, Reyes RM, et al. Risk factors for cancer of the oral cavity and oro-pharynx in Cuba. Br J Cancer 2001.85,46-54.
    16. Wesselius LJ, Dark DS; Papasian C J.Airway carcinoembryonic antigen concentrations in patients with central lung cancer or chronic bronchitis.1990;98(2):393-7.
    18. K Kashiwabara, H Nakamura, T Yokoi. Chronological change of serum carcinoembryonic antigen (CEA) concentrations and pulmonary function data after cessation of smoking in subjects with smoking-associated CEA abnormality. Clin Chim Acta.2001; 303(1): 25-32.
    20. Yvan Touitou, Jacques Proust, Evelyne Klinger, et al. Cumulative effects of age and pathology on plasma carcino-embryonic antigen in an unselected elderly population. Oncodevelopmental biology and medicine, 1980.20,369-374.
    21. B. Herbeth, A. Bagrel.A study of factors influencing plasma CEA levels in an unselected population. Oncodev Biol Med.1980.1,191-8.
    22. Berardi RS, Ruiz R, Becknell WE, et al. Does advanced age limit the usefulness of CEA assays? Geriatrics,1977.32,86-8.
    23. Fletcher RH. Carcinoembryonic antigen. Ann Intern Med 1986.104, 66-73.
    24. Martin GM. Proliferative homeostasis and its age-related aberrations. Mech Ageing Dev,1979.9,385-9.
    25. Nagayo T. Gastric cancer preceded by severe dysplasia. Histol Histopatnol 1986.1,171-80.
    26. Wei-cheng You, William J, Ji-You Li. Precancerous gastric lesions in a population at high risk of stomach cancer. Cancer Res,1993.53, 1317-21.
    27. Zhe Dai, Yan-Cheng Xu, Li Niu. Obesity and colorectal cancer risk:A meta-analysis of cohort studies. World Journal of Gastroenterology 2007.13,4199-4206.
    28. Giovannucci E. Insulin and colon cancer. Cancer Causes Contr 1995. 6,164-179.
    29. Otani T, Iwasaki M, Sasazuki S, et al. Plasma C-peptide, insulin-like growth factor-Ⅰ, insulin-like growth factor binding proteins and risk of colorectal cancer in a nested case-control study:the Japan public health center-based prospective study. Int J Cancer 2007.120,2007-2012.
    30. Chung YW, Han DS, Park YK, et al. Association of obesity, serum glucose and lipids with the risk of advanced colorectal adenoma and cancer:a case-control study in Korea. Dig Liver Dis 2006.38,668-672.
    31. J S Park, GS Choi, YS Jang, et al.Influence of obesity on the serum carcinoembryonic antigen value in patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev,2010.19(10):p.2461-8.
    32. H. Bell, H. Orjasaeter, H. F. Lange. Carcinoembryonic antigen (CEA) in patients with alcoholic liver diseases. Scand J Gastroenterol 1979.14, 273-9.
    1.Botstein D, White RL,Skolnic kM,et al.Construction of a genetic linkage map in manusing restriction fragment length polymorphisms.Am Jhum Genet,1980,32:314-331.
    2.Eric S Lander.The new genomics:global views of bio-logy.Science,1996,274(5287):536-539.
    3.DE Reich, ES Lander. On the allelic spectrum of human disease. TRENDS in Genetics 2001; Vol.17 (9):502-510.
    4.Weiss,KM,TerwilligerJD.How many diseases does it take to map a gene with SNPs?Nature Genet,2000,26:151-15.
    5.Terwilliger JD,WeissKM.Linkage disequilibrium mapping of complex disease:fantasy or reality?.Curr Opin Biotech,1998,9:578-594.
    6. Smyth DJ, Cooper JD, Howson JM, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes. 2011.60(11):3081-4.
    7. McGovern DP, Jones MR, Taylor KD, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum Mol Genet.2010.19(17):3468-76.
    8. Morrow AL, Meinzen-Derr J, Huang P, et al. Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J Pediatr.2011.158(5):745-51.
    9. Hazra A, Kraft P, Selhub J, et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat Genet.2008.40(10): 1160-2.
    10. Nakao M, Matsuo K, Hosono S, et al. ABO blood group alleles and the risk of pancreatic cancer in a Japanese population. Cancer Sci.2011. 102(5):1076-80.
    11. Carpeggiani C, Coceani M, Landi P,et al. ABO blood group alleles: A risk factor for coronary artery disease. An angiographic study. Atherosclerosis.2010.211(2):461-6.
    12. Qi L, Cornells MC, Kraft P, et al. Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes. Hum Mol Genet.2010.19(9):1856-62.
    13. Paterson AD, Lopes-Virella MF, Waggott D, et al. Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin. Arterioscler Thromb Vasc Biol. 2009.29(11):1958-67.
    14. Su Y, Wei TL, Yu Q, Liang YL, Li DC. [Molecular genetic analysis of FUT1 and FUT2 gene in para-Bombay Chinese:a novel FUT1 allele is identified. Zhonghua Yi Xue Yi Chuan Xue Za Zhi.2007.24(5):520-3.
    15.hu Y, Xu G, Patel A, et al. Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics.2002. 80(2):144-50.
    16.Ishii S, Nakao S, Minamikawa-Tachino R,et al. Alternative splicing in the alpha-galactosidase A gene:increased exon inclusion results in the Fabry cardiac phenotype. Am J Hum Genet.2002.70(4):994-1002.
    17.D'Souza I, Schellenberg GD. Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J Biol Chem.2000.275(23):17700-9.
    18.Bennett CL, Brunkow ME, Ramsdell F, et al. A rare polyaden ylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome. Immunogenetics.2001.53(6):435-9.
    19.Blanchette M, Bataille AR, Chen X, et al. Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res.2006.16(5): 656-68.
    20. Sakurai K, Seki N, Fujii R, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in Japanese with non-insulin-dependent diabetes:a nucleotide substitution in the polypyrimidine tract of intron lb. Horm Metab Res.2000.32(8):316-20.
    21.Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science.2003.302(5653):2141-4.
    22. Damerval C, Maurice A, Josse JM,et al. Quantitative trait loci underlying gene product variation:a novel perspective for analyzing regulation of genome expression. Genetics.1994.137(1):289-301.
    23. Glass, R. I., Holmgren, J., Haley, et al. Predisposition for cholera of individuals with O blood group:possible evolutionary significance. Am. J. Epidemiol,1985 121:791-796。
    24. Fry, A. E., Griffiths, M. J., Auburn, S., et al. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Hum. Molec. Genet.2008.17:567-576.
    25. Toure O, Konate S, Sissoko S, et al. Candidate polymorphisms and severe malaria in a malian population. PLoS One,2012,7(9):e43987.
    26. R J Loffeld, E Stobberingh. Helicobacter pylori and ABO blood groups. J Clin Pathol.1991;44:516-517 doi:10.1136/jcp.44.6.516.
    27. Amundadottir, L., Kraft, P., Stolzenberg-Solomon,et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genet.2009; 41:986-990.
    28. HA Riscn, H Yu, L Lu, MS Kidd. ABO Blood Group, Helicobacter pylori Seropositivity, and Risk of Pancreatic Cancer:A Case-Control Study. J Natl Cancer Inst.2010; April 7; 102 (7):502-505.
    29. Nap M, Mollgard K, Burtin P,et al. Immuno histochemistry of carcino-embryonic antigen in the embryo, fetus and adult. Tumor Biol,2009,9:145-153.
    30. Stanners CP.Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell.1989;57:327-334.
    31. Kammerer, Zimmermann. Coevolution of Activating and inhibitory receptors within mammalian Carcinoembryonic antigen families. BMC Biology 2010; 8-12.
    32. Stanners CP.Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell.1989;57:327-334
    33. Sauter SL, Rutherford SM, Wagener C, Shively JE, Hefta SA Identification of the specific oligosaccharide sites recognized by type 1 fimbriae from Escherichia coli on nonspecific cross-reacting antigen, a CD66 cluster granulocyte glycoprotein. J Biol Chem.1993 268:15510-1 5516.
    34. Popp A, Dehio C, Grunert F, et al. Molecular analysis of neisserial Opa protein interactions with the CEA family of receptors:identification of determinants contributing to the differential specificities of binding[J]. Cellular Microbiology,1999,1(2):169-181.
    35. Hauck W, Stanners CP.Transcriptional regulation of the carci noembryonic antigen gene. Identification of regulatory elements and multiple nuclear factors. J Biol Chem.1995; 270:3602-3610.
    36. Chen CJ, Li LJ, Maruya A, Shively JE.. In vitro and in vivo footprint analysis of the promoter of carcinoembryonic antigen in colon carcinoma cells:effects of interferon gamma treatment. Cancer Res.1995; 55:3873-3882.
    37. Jessup JM, Gallick GE. The biology of colorectal carcinoma. Curr Probl Cancer,1992; 16:261-328.
    38. Mulder KM:Differential regulation of c-myc and transforming growth factor-a messenger RNA expression in poorly differentiated and well differentiated colon carcinoma cells during the establishment of a quiescent state. Cancer Res 1991,51:2256-2262.
    39. Williams GM, Stromberg K, Kroes R:Cytochemical and ultrastructural alterations associated with confluent growth in cell cultures of epithelial-like cells from rat liver. Lab Invest 1973,29:293-303.
    40. S-U Han, T-H Kwak, KH Her, Y-H Cho. CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-b signaling. Oncogene 200827:675-683.
    41. Chakrabarty S, Tobon A, Varani J, Brattain MG. Induction of carcinoembryonic antigen secretion andmodulation of protein secretion/expression and fibronectin/laminin expression in human colon carcinoma cells by transforming growth factor-b. Cancer Res.1998; 48: 4059-4064.
    1. Huxley RR, et al. The impact of dietary and lifestyle risk factors on risk of colorectal cancer:a quantitative overview of the epidemiological evidence. Int J Cancer.2009; 125(1):171-180.
    2. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis:a meta-analysis of population-based cohort studies. Clinical Gastroenterology and Hepatology,2012,10(6): 639-645.
    3. Taylor D P, Burt R W, Williams M S, et al. Population-Based Family History-Specific Risks for Colorectal Cancer:A Constellation Approach. Gastroenterology,2010,138(3):877-885.
    4. Chen LB, Tong JL, Song HZ, Zhu H, Wang YC. (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol 2007; 13:5025-5029.
    5. Richards C H, Platt J J, Anderson J H, et al. The impact of perioperative risk, tumor pathology and surgical complications on disease recurrence following potentially curative resection of colorectal cancer [J]. Annals of surgery,2011,254(1):83-89.
    6.Berger AC, Sigurdson ER, LeVoyer T, et al.Colon cancer survival is associated with decreasing ratio of metastatic to examined lymph nodes. J Clin Oncol 2005; 23:8706-8712
    7.McCall JL, Black RB, Rich CA, et al. The value of serum carcinoembryonic antigen in predicting recurrent disease following curative resection of colorectal cancer. Dis Colon Rectum 1994; 37:875-881.
    8. Dai Z, Xu Y C, Niu L. Obesity and colorectal cancer risk:a meta-analysis of cohort studies. World Journal of Gastroenterology,2007, 13(31):4199.
    9. Khan MR, Bari H, Zafar SN, Raza SA. Impact of age on outcome after colorectal cancer surgery in the elderly-a developing country perspective. BMC Surg.2011.11:17.
    10. Chen CQ, Fang LK, Ma JP, et al. Regression analysis of the characteristics and outcome of colorectal cancer 1995-2007. Zhonghua Yi Xue Za Zhi.2010.90(26):1804-7.
    11. Simkens LH, Koopman M, Mol L, et al. Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer.2011. 47(17):2560-7.
    12. Kim YJ, Park SC, Kim DY, et al. No correlation between pretreatment serum CEA levels and tumor volume in locally advanced rectal cancer patients. Clin Chim Acta.2012.413(3-4):511-5.
    13. Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg.1999.230(3):309-18; discussion 318-21.
    14. Ueno H, Mochizuki H, Hatsuse K, et al. Indicators for treatment strategies of colorectal liver metastases. Ann Surg.2000.231(1):59-66.
    15. Minami S, Furui J, Kanematsu T. Role of carcinoembryonic antigen in the progression of colon cancer cells that express carbohydrate antigen. Cancer Res.2001.61(6):2732-5.
    16. Samara RN, Laguinge LM, Jessup JM. Carcinoembryonic antigen inhibits anoikis in colorectal carcinoma cells by interfering with TRAIL-R2 (DR5) signaling. Cancer Res.2007.67(10):4774-82.
    17. Camacho-Leal P, Stanners CP. The human carcinoembryonic antigen (CEA) GPI anchor mediates anoikis inhibition by inactivation of the intrinsic death pathway. Oncogene.2008.
    18. Plotnikov, A.N., et al., Structural basis for FGF receptor dimerization and activation. Cell,1999.98(5):p.641-50.
    19. Petrick, A.T., G Steele, Jr., et al. Pentapeptide sequences bind to an 80kD Kupffer cell surface protein. Biochem Soc Trans,1993.21 (Pt 3)(3):p.264S.
    20. Ilantzis, C., et al., Cell-surface levels of human carcinoembryonic antigen are inversely correlated with colonocyte differentiation in colon carcinogenesis. Lab Invest,1997.76(5):p.703-16.
    21. Ilantzis, C., et al., Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia,2002.4(2):p.151-63.
    22. Lee, S.Y., et al., Carcinoembryonic antigen level of draining venous blood as a predictor of recurrence in colorectal cancer patient. J Korean Surg Soc,2011.81(6):p.387-93.
    23. Yang, X.Q., et al., Preoperative serum carcinoembryonic antigen, carbohydrate antigen 19-9 and carbohydrate antigen 125 as prognostic factors for recurrence-free survival in colorectal cancer. Asian Pac J Cancer Prev,2011.12(5):p.1251-6.
    24. Gobbi, P.G., et al., New insights into the role of age and carcinoembryonic antigen in the prognosis of colorectal cancer. Br J Cancer,2008.98(2):p.328-34.
    25. Konishi, M., et al., Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology,1996.111(2):p.307-17.
    26. Kanoh,T., et al. Extraction and analysis of carcino embryonic antigen in lymph nodes:a new approach to the diagnosis of lymph node metastasis of colorectal cancer. Dis Colon Rectum,2002.45(6):p. 757-63.
    27. Le Voyer, T.E., et al. Colon cancer survival is associated with increasing number of lymph nodes analyzed:a secondary survey of intergroup trial INT-0089. J Clin Oncol,2003.21(15):p.2912-9.
    28. Saltz, L.B., et al., Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer:results of CALGB 89803. J Clin Oncol,2007. 25(23):p.3456-61.
    29. Kuebler, J.P., et al., Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer:results from NSABP C-07. J Clin Oncol,2007. 25(16):p.2198-204.
    30. Baddi, L. and A. Benson,3rd, Adjuvant therapy in stage II colon cancer:current approaches. Oncologist,2005.10(5):p.325-31.
    31. Benson, A.B.,3rd, New approaches to the adjuvant therapy of colon cancer. Oncologist,2006.11(9):p.973-80.
    32. Andre, T., et al., Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med,2004.350(23):p.2343-51.
    33. Gray, R., et al., Adjuvant chemotherapy versus observation in patients with colorectal cancer:a randomised study. Lancet,2007.370(9604):p. 2020-9.
    34. Kohne, C.H., Should adjuvant chemotherapy become standard treatment for patients with stage Ⅱ colon cancer? Against the proposal. Lancet Oncol,2006.7(6):p.516-7.
    35. Sargent, D.J., et al., Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies:individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol,2005. 23(34):p.8664-70.
    36. Pare G, Chasman D I, Kellogg M, et al. Novel association of ABO histo-blood group antigen with soluble ICAM-1:results of a genome-wide association study of 6,578 women. PLoS genetics,2008, 4(7):e1000118.
    37.Khalili H, Wolpin B M, Huang E S, et al. ABO blood group and risk of colorectal cancer. Cancer Epidemiology Biomarkers & Prevention, 2011,20(5):1017-1020.
    38. Urun Y, Ozdemir N Y, Utkan G, et al. ABO and Rh Blood Groups and Risk of Colorectal Adenocarcinoma. Asian Pacific Journal of Cancer Prevention,2012,13(12):6097-6100.
    39. Rahbari N, Bork U, Hinz U, et al. ABO blood group and prognosis in patients with pancreatic cancer. BMC cancer,2012,12(1):319.
    40. Edgren G, Hjalgrim H, Rostgaard K, et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type:a cohort study. American journal of epidemiology,2010,172(11):1280-1285.
    41. Cady B, Stone M D, Wayne J. Continuing trends in the prevalence of right-sided lesions among coloreetal carcinomas.-Archives of Surgery, 1993,128(5):505.
    42. Gervaz P, Bucher P, Morel P. Two colons-two cancers:paradigm shift and clinical implications. Journal of surgical oncology,2004,88(4): 261-266.、
    43. Weiss J M, Pfau P R, O'Connor E S, et al. Mortality by stage for right-versus left-sided colon cancer:analysis of surveillance, epidemiology, and end results-Medicare data. Journal of Clinical Oncology,2011,29(33):4401-4409.
    44. Weiss J M, Pfau P R, O'Connor E S, et al. Mortality by stage for right-versus left-sided colon cancer:analysis of surveillance, epidemiology, and end results-Medicare data. Journal of Clinical Oncology,2011,29(33):4401-4409.
    45. Malesci A, Laghi L, Bianchi P, et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clinical cancer research,2007,13(13):3831-3839.
    46. Tada S, Yao T, Lida M, et al. A clinicopathologic study of small flat colorectal carcinoma. Cancer,1994,74(9):2430-2435.
    1. Kanehisa M, Bork P:Bioinformatics in the post-sequence era. Nat Genet 2003,33 Supp1:305-310.
    2. Dunham I, Shimizu N, Roe BA, et al:The DNA sequence of human chromosome 22. Nature 1999,402(6761):489-495.
    3. Stoneking M:Single nucleotide polymorphisms. From the evolutionary past. Nature 2001,409(6822):821-822.
    4. Lockhart DJ, Winzeler EA:Genomics, gene expression and DNA arrays. Nature 2000,405(6788):827-836.
    5. Pandey A, Mann M:Proteomics to study genes and genomes. Nature 2000,405(6788):837-846.
    6. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO:Protem function in the post-genomic era. Nature 2000,405(6788):823-826.
    7. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D: A combined algorithm for genome-wide prediction of protein function. Nature 1999,402(6757):83-86.
    8. Patel M, Dorman KS, Zhang YH, Huang BL, Arnold AP, Sinsheimer JS, Vilain E, McCabe ER:Primate DAX1, SRY, and SOX9:evolutionary stratification of sex-determination pathway. Am J Hum Genet 2001, 68(1):275-280.
    9. Bohni R, Riesgo-Escovar J, Oldham S, et al:Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 1999,97(7):865-875.
    10. Dipple KM, McCabe ER:Phenotypes of patients with "simple" Mendelian disorders are complex traits:thresholds, modifiers, and systems dynamics. Am J Hum Genet 2000,66(6):1729-1735.
    11. Rong YS, Golic KG:Gene targeting by homologous recombination in Drosophila. Science 2000,288(5473):2013-2018.
    12. Stoll M, Kwitek-Black AE, Cowley AW, et al:New target regions for human hypertension via comparative genomics. Genome Res 2000, 10(4):473-482.
    13. Lander ES, Linton LM, Birren B, et al:Initial sequencing and analysis of the human genome. Nature 2001,409(6822):860-921.
    14. Shapiro AK, Shapiro E:The Powerful Placebo:from ancient priest to modern physician. Baltimore and London:The Johns Hopkins University Press,1997.
    15. Conti F:Claude Bernard:primer of the second biomedical revolution. Nat Rev Mol Cell Biol 2001,2(9):703-08.
    16. McLeod HL, Evans WE:Pharmacogenomics:Unlocking the Human Genome for Better Drug Therapy. Annu Rev Pharmacol Toxicol 2001, 41(1):101-21.
    17. Marshall A:Laying the foundations for personalized medicines. Nat Biotechnol 1997,15(10):954-57.
    18. Walter Fierz:Challenge of personalized health care:To what extent is medicine already individualized and what are the future trends?. Med Sci Monit 2004,10(5):111-123. PMID:15114285.
    19. Guttmacher AE, Collins FS:Genomic medicine a primer. N Engl J Med 2002,347(19):1512-1520.
    20. Pirmohamed M:Pharmacogenetics and pharmacogenomics. J Clin Pharmacol 2001,52:345-347.
    21. Roses AD:Pharmacogenetics and drug development:the path to safer and more effective drugs. Nat Rev 2004,5:645-656.
    22. Nebert DW, Zhang G, Vesell ES:From human genetics and genomics to pharmacogenetics and pharmacogenomics:past lessons, future directions. Drug Metab Rev 2008,40:187-224.
    23. Fargher EA, Tricker K, Newman W, et al:Current use of pharmacogenetic testing:a national survey of thiopurine methyl-transferase testing prior to azathioprine prescription. J Clin Pharm Ther 2007,32:187-195.
    24. de Leon J, Arranz MJ, Ruano G:Products for pharmacogenetic testing in psychiatry:a review of features and clinical realities. Clin Lab Med 2008,28(4):599-617.
    25. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007,116:496-526.
    26. de Leon J, Armstrong SC, Cozza KL:Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP4502D6 and CYP450 2C19. Psychosomatics 2006; 47:75-85.
    27. Fodor SP:Massively parallel genomics. Science 1997,277:393-395.
    28. Steemers FJ, Gunderson KL:Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2007,2:41-49.
    29. Beverage JN, Sissung TM, Sion AM, et al:CYP2D6 polymorphisms and the impact on tamoxifen therapy. J Pharm Sci 2007,96:2224-2231.
    30. Auffray C, Charron D, Hood L:Predictive, preventive, personalized and participatory medicine:back to the future. Genome Med 2010,2(8): 57.
    31. Davies H, Bignell GR, Cox C et al:Mutations of the BRAF gene in human cancer. Nature 2002; 417:949-954.
    32. Velho S, Oliveira C, Ferreira A et al:The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 2005,41:1649-1654.
    33. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al:Oncogenic Activation of the RAS/RAF Signaling Pathway Impairs the Response of Metastatic Colorectal Cancers to Anti-Epidermal Growth Factor Receptor Antibody Therapies. Cancer Research 2007,67:2643-2648.
    34. Antonny B, Chardin P, Roux M, Chabre M:GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants. Biochemistry 1991; 30:8287-8295.
    35. Ura H, Obara T, Shudo R, Itoh A, et al:Selective cytotoxiciry of farnesylamine to pancreatic carcinoma cells and Ki-ras-transformed fibroblasts. Mol Carcinog 1998,21:93-99.
    36. Chang HW, Aoki M, Fruman D, et al:Transformation of chicken cells by the gene encoding the catalytic subunit of PI3-kinase. Science 1997, 276:1848-1850.
    37. Tol J, Punt C:Monoclonal antibodies in the treatment of metastaticcolorectal cancer:a review. Clin Ther 2010,32:437-53.
    38. Karapetis CS, Khambata-Ford S, Jonker DJ, et al:K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008,359:1757-1765.
    39. Frattini M, Saletti P, Romagnani E, Martin V, Molinari F, et al: PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer,2007,97:1139-1145.
    40. Chen Mao., Junhua Zhoul., Zuyao Yang, et al:KRAS, BRAF and PIK3CA Mutations and the Loss of PTEN Expression in Chinese Patients with Colorectal Cancer. PloS one 2012,7:e3665.
    41. Ludovic Barault, Nicolas Veyrie, Valerie Jooste, et al: Mutations in the RAS-MAPK, PI(3)K (phosphatidy linositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers.Int. J. Cancer 2008,122: 2255-2259.
    42. Sun Tian,1 Iris Simon, Victor Moreno, et al:A combined oncogenic pathway signature of BRAF, KRAS and PI3KCA mutation improves colorectal cancer classification and cetuximab treatment prediction. Gut 2013,62:540-549.
    43. Filip Janku, Apostolia M. Tsimberidou, et al:PIK3CA Mutations in Patients with Advanced Cancers Treated with PI3K/AKT/mTOR Axis Inhibitors. Mol Cancer Ther 2011,10(3):558-565.
    44. Carla Campanella, Marcella Mottolese, Anna Cianciulli, et al: Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab. Journal of Translational Medicine 2010,8:36.
    45. Italiano A, Follana P, Caroli FX et al:Cetuximab shows activity in colorectal cancer patients with tumors for which FISH analysis does not detect an increase in EGFR gene copy number. Ann Surg Oncol 2008,15: 649-654.
    46. Verstovsek S, Kantarjian H, Mesa R A, et al:Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. New England Journal of Medicine 2010,363(12):1117-1127.
    47. Dutt A, Salvesen H B, Chen T H, et al:Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proceedings of the National Academy of Sciences 2008,105(25):8713-8717.
    48. Curtin, J.A., Busam, K., Pinkel, D., Bastian, B.C:Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.2006,24: 4340-4346.
    49. Katie M. O'Brien, Irene Orlow, Cristina R. Antonescu, et al: Gastrointestinal Stromal Tumors, Somatic Mutations and Candidate Genetic Risk Variants. PLoS ONE 2013,8(4):e62119. doi:10.1371/ journal, pone.0062119.
    50. George D Demetri, Peter Reichardt, Yoon-Koo Kang, et al:Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID):an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381(9863):295-302.
    51. Van Raamsdonk C D, Bezrookove V, Green G, et al:Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2008, 457(7229):599-602.
    52. Stephens P, Hunter C, Bignell G, et al:Lung cancer:intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431:525-26.
    53. Perez E A, Romond E H, Suman V J, et al:Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer:joint analysis of data from NCCTG N9831 and NSABP B-31. Journal of Clinical Oncology 2011,29(25):3366-3373.
    54. Turnbaugh PJ, Backhed F, Fulton L, et al:Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008,3:213-223.
    55. Mandard S, Zandbergen F, van Straten E, et al:The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity [J]. Journal of Biological Chemistry 2006,281(2):934-944.
    56. Lee, Y.K., Menezes, J.S., Umesaki, Y., et al:Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 2011,108:(Suppl 1), 4615-4622.
    57. Lathrop S K, Bloom S M, Rao S M, et al:Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478(7368):250-254.
    58. Todd, J.A:Etiology of type 1 diabetes. Immunity 2010,32:457-467.
    59. Cooper, J.D., Smyth, D.J., Walker, N.M., et al:Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes 2011,60:1624-1631.
    60. Nejentsev, S., Walker, N., Riches, D., et al:Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009,324:387-389.
    61. Heinig M, Petretto E, Wallace C, et al:A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 2010; 467(7314):460-464.
    62. Smyth D J, Cooper J D, Howson J M M, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 2011; 60(11):3081-3084.
    63. Rockman MV:Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 2008; 456:738-744.
    64. Schadt EE:Molecular networks as sensors and drivers of common human diseases. Nature 2009; 461(7261):218-223
    65. Collins F:Has the revolution arrived? Nature 2010:464(7289): 674-675.
    66. Ziogas D, Roukos DH:Genetics and personal genomics for personalized breast cancer surgery:progress and challenges in research and clinical practice. Ann. Surg. Oncol.2009,16(7):1771-1782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700