食物单宁和蛋白对小家鼠(Mus musculus)的母体效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
母体效应是指双亲除基因遗传之外的其它方式对其后代表型的影响,该效应对后代形态、生理及行为影响很大且持续终生。它是子代对环境异质性的一种表型反应,是种群进化的一种动力,也可能是种群调节的一种机制。本论文以活捕于河南新郑地区的野生小家鼠(Mus musculus)及其室内繁殖后代为研究对象,采用正、负营养因子双因素协同作用的方法,设置食物单宁酸浓度为0%和5%,蛋白质水平为15%、20%和25%,人工配制成6种饲料。向处于妊娠期和非繁殖期的成年健康个体分别投喂不同配制饲料2 W,测定小家鼠的蛋白质代谢、消化道形态、免疫、繁殖和社群行为等指标,探讨母体妊娠期营养对子代生长发育、消化道形态、免疫、繁殖及社群、筑巢行为的效应。本文还测定了年龄对小家鼠筑巢的影响。
     主要研究结果和结论如下:
     1)食物中添加单宁和蛋白对成年小家鼠摄食量均无显著影响,但与24 h粪便量及粪样N含量均呈显著正相关关系;食物添加单宁对小鼠体重具有显著抑制作用,而食物添加蛋白对小鼠体重作用不显著。结果表明,食物添加单宁对成年小家鼠蛋白质消化率和体重均有显著的抑制作用,食物中添加蛋白质的影响不明显。
     2)食物添加单宁对成年小家鼠小肠、结肠干重和小肠长度等具有显著抑制作用,食物蛋白水平则与小肠干重等呈正相关关系,而胃肠重量及长度与食物质量相关性不显著。在妊娠期投喂配制饲料小家鼠的消化系统重量明显高于非繁殖期。结果表明,动物消化道形态具有一定可塑性,能根据能量需求程度与食物质量进行相应调整。
     3)食物中添加单宁可显著增加小家鼠肾上腺指数及粪样皮质激素水平,对脾脏指数作用不显著;而食物添加蛋白对脾脏指数具有显著增加效应,对肾上腺指数及粪样皮质激素作用不显著;小家鼠妊娠期脾脏指数显著增高,而肾上腺指数及粪样皮质激素显著低于非繁殖个体。子宫指数、睾酮、雌二醇含量等均与食物质量和动物能量需求程度呈显著正相关关系。
     4)食物添加单宁对雌性与雄性间攻击行为(FMA)频次具有一定的抑制作用,雄性与雄性间防御行为(MMD)频次与食物蛋白水平负相关,其它的性别组合间攻击、防御、社会及非社会行为频次与食物质量均无显著相关性,且动物攻击、防御行为频次均处于较低水平;在妊娠期,同性或异性小鼠间攻击、防御行为频次与非繁殖期间攻击、防御行为频次间无显著性差异,而非社会行为频次明显高于非繁殖期间的非社会行为频次,同时社会行为频次低于非生育组。这可能是小家鼠通过减少活动以降低能量支出的一种行为调节机制。
     5)小家鼠母体妊娠期投喂配制饲料各组间子代性比无显著差异,组间体重、存活率在断奶后差异性存在增大趋势,且与母体妊娠期食物质量呈正相关关系,但均未达到显著性差异水平;母体妊娠期食物添加单宁或蛋白含量低,对子代形态发育、神经发育均具有显著的抑制作用;母体妊娠期食物添加单宁对平甲状腺激素含量均无显著影响,而母体妊娠期食物高蛋白组胎仔数显著高于中蛋白组胎仔数,其它蛋白组间胎仔数差异性均不显著,妊娠期食物蛋白水平与血清三碘甲状腺氨酸含量相一致,与甲状腺素含量相反。
     6)小家鼠母体妊娠期食物添加单宁对子代胃干重、结肠干重、小肠长度等具有显著的抑制作用,盲肠长度与母体食物蛋白质水平正相关;母体妊娠期食物添加单宁能增加子代肾上腺重量及皮质酮含量,抑制睾丸重量,而脾脏重量和粪样睾酮含量与蛋白质水平正相关;结果表明,母体妊娠期食物营养胁迫能通过母体效应对子代消化道形态、免疫及繁殖功能产生一定影响。
     7)小家鼠母体妊娠期食物添加单宁对子代雄性的筑巢能力具有显著抑制作用,而母体妊娠期食物蛋白质水平与雌性的筑巢能力呈一定正相关关系;母体妊娠期食物单宁和蛋白对子代社群行为影响均不明显。
     8)小家鼠在亚成年期已具备较强的筑巢能力,成年与亚成年小家鼠能够快速完成筑巢,24 h即可筑成稳定的杯状巢,而幼年组未能筑成稳定巢,小家鼠雄性与雌性筑巢能力相当,连续4d巢材获取重量表现为成年组>亚成年组,而4d后两组间筑巢等级无显著差异,这与两组间身体大小有关。
     综上所述,食物单宁和蛋白对小家鼠蛋白质消化率、消化道形态、免疫、繁殖功能和社群行为具有重要作用,并能通过母体效应对子代形态发育、神经发育、消化道形态、免疫、繁殖功能及筑巢行为产生重要影响。食物单宁和蛋白胁迫引起的母体效应可能是小家鼠种群动态的重要调节因素之一。
Maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and phenotype of its mother, and can be found in several aspects including morphology, physiology and behavior of offsprings. This effect is also a phenotype reaction of offsprings themselves to the environmental heterogeneity. It is an important source of evolutionary dynamics, and might be a mechanism of population regulation. In this research, the maternal effect of food quality on house mice (Mus musculus) was studied, and we aimed to understand how the nutritious conditions during gestation of parents influence its offspring. The experimental food with different tannin (0% and 5%) and protein (15%,20% and 25%) were provided to healthy adult breeding groups and nonbreeding groups respectively for two weeks. Then we studied the effect of food with different tannic and protein on protein metabolistic rate, digestive tract morphology, immunological status, reproductive and agonistic behaviors, maternal nutrition on growing development, digestive tract morphology, immunology, reproductive and agonistic, nesting behavior of offspring in house mice (Mus musculus). This paper also tested the effects of age on nest-building of house mice.
     The major results from this research are as follows:
     1) Food with different tannin or protein had no obvious effect on food-intake in mice, however, significant positive correlation between feces amount in 24 hours and protein content. Tannin-added food would inhibit the increase of bodymass of adult non-breeding individuals, but there is no significant difference among protein groups. This indicated that tannin-based food can inhibit the increase of bodyweight and impact protein digestibility.
     2) Fed with tannin-added food have a significant inhibition on the dry weight of small intestine or colon and the length of small intestine of house mice; while the protein content positively correlated to dry weight of small intestine; but there is no significant difference between the other length and mass of digestive tracts and food quality. The weight of digestive system during pregnancy is heavier than that in nonbreeding period. Animal can adjust their digestive tract to certain extent based on trade-off between energy need and food quality.
     3) Fed with tannin-added food can greatly increase adrenal gland index and cortin content, but there is no significant inhibition on the index of spleen; however, the protein content positively correlated to index of spleen, but there is no significant difference with adrenal gland index and cortin content; the index of spleen were greatly increase during breeding period. The uterine index, testosterone, estradiol levels all display a significant positive correlation with food quality and demand of energy.
     4) Tannin-added food would partly restrain aggressive behavior between female and male (FMA), while defending behavior between male and male (MMD) exhibited a negative relationship with protein level in food, but there is no significant difference between other agonistic behaviors frequence and food quality and the attacking behavior and the defensive behavior show a low level. The breeding has a positive relationhip with non-social behavior, but a negative relationship for social behavior. This may be a regulating mechanism of house mice to decrease the energy expenditure by reducing activity.
     5) During pregnant period fed with food of different tannin and protein have no significant influences on sex ratio, bodymass, and survival of offspring, but can greatly inhibit morphological and neurological development of offspring. The protein levels positively correlated to litter size and triiodothyronine content in serum, but a negative relationship for Thyroxine content.
     6) During pregnant period, tannin-added food has a significant inhibition on the dry weight of stomach, colon and length of small intestine, and testicular index; ehereas increase the weight of adrenal gland and the corticosterone levels in dejecta. However, the length of caecum and testosterone levels were both positively correlated with protein levels. This implied that deficient food nutrition during pregnancy would affect digestive tract traits, immunology and reproductive ability of offspring through maternal effect.
     7) Pregnant females fed tannin-added food would prohibit nesting ability of male offsprings; while the nesting ability of female offsprings was weakly and positively related to food proteinlevels. Food with different tannin and protein levels in during pregnant perriod exerted insignificant influence on agonistic behavior.
     8) House mice behaved good nesting capacity during sub-adulthood, the house mice nested well in both adult and subadult stages, because they could complete a stable cup-shaped nest, while the juvenile group could not establish stable nests, the difference of nesting capacity between male and female was not significant; and although the amount of cotton, nesting material, used by adults in four days were significantly higher than that in sub-adults, the nesting degree between the two groups was not significantly different after four days, which was related to the body size of experimental animals.
     In summary, the tannin and protein levels in food played important roles on protein digestibility, gastrointestinal morphology, immune, reproductive ability and social behavior, and showed great effects on morphological and neural development, digestive tract morphology, immunology, reproductive function and nesting behavior via maternal effects. We thus claimed that tannin and protein in food may be one of important regulators of population dynamics.
引文
[1]Bernardo J. Maternal effects in animal ecology [J]. American Zoologist,1996,36:83-105
    [2]Rossiter M C. Maternal effects hypothesis of herbivore outbreak [J]. Bioscience,1994,44 (11): 752-763
    [3]Mousseau T A, Fox C W. The adaptive significance of maternal effects [J]. Trends in Ecology & Evolution,1998,13(10):403-407
    [4]Boonstra R, Boag P T. A test of the Chitty hypothesis:Inheritance of life history traits in meadow voles Microtus pennsylvanicus [J]. Evolution,1987,41:929-947
    [5]Boonstra R, Hochachka W M. Maternal effects and additive genetic inheritance in the collared lemming Dicrostonyx groenlandicus [J]. Evolutionary Ecology,1997,11(2):169-182
    [6]Becherman A, Benton T G, Ranta E, et al. Population dynamic consequences of delayed life-history effects [J]. Trends Ecology & Evolution,2002,17(6):263-269
    [7]Oksanen T A, Jokinen Ⅰ, Koskela E, et al. Manipulation of offspring number and size:Benefits of large body size at birth depend upon the rearing environment [J]. Journal of Animal Ecology,2003,72:321-330
    [8]Arnold S J. Multivariate inheritance and evolution: A review of concepts. In: Boake CRB, (eds.) Quantitative Genetic Studies of Behavioral Evolution [C]. Chicago:University of Chicago Press,1994.17-48
    [9]Stearns S C. The Evolution of Life Histories [M]. New York:Oxford University Press,1992. 32-37
    [10]Clutton-Brock T H. The Evolution of Parental Care [M]. Princeton:Princeton University Press,1991.5-7
    [11]Nisbet I C T. Courtship-feeding, egg size and breeding success in common terns [J]. Nature, 1973,241:141-142
    [12]Howard R D. The influence of male defended oviposition sites on early embryo mortality in bullfrogs [J]. Ecology,1978,59:789-798
    [13]Cheverud J M, Moore A J. Quantitative genetics and the role of the environment provided by relatives in behavioral evolution. In:Boake CRB, (eds.) Quantitative Genetic Studies of Behavioral Evolution [C]. Chicago:University of Chicago Press,1994.67-100
    [14]Christian J J. The adrenopititary system and population cycles in small mammals [J]. Journal of Mammalogy,1950,31:247-259
    [15]Falconer D S. Introduction to Quantitative Genetics [M]. New York:Wiley and Sons Press, 1989
    [16]McEwen B S. Hormones as regulators of brain development: Life long effects related to health and disease [J]. Acta Paediatrica,1997,422(suppl.):41-44
    [17]Wang M H, VomSaal F S. Maternal age and traits in offspring [J]. Nature,2000,407: 469-470
    [18]印遇龙.猪氨基酸营养与代谢[M].北京:科学出版社,2008
    [19]Feeny P P. Plant apparency and chemical defense [J]. Recent Advances of Animal Ecology, 1976,61:79-91
    [20]Cork S J, Foley W J. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In:Palo R T, Robbins C T, (eds.) Plant Defenses Against Mammalian Herbivory [C]. Boca Raton, Florida: CRC Press, 1991.133-166
    [21]Cork S J, Hume ID, Dawson T J. Digestion and metabolism of natural foliar diet(Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus) [J]. Journal of Comparative Physiology,1983,152:443-451
    [22]Rhoades D F, Cates B. A general theory of plant anti-herbivore chemistry. In:Wallace J, Mansell R L, (eds.) Bio-chemical interaction between plants and insects. Recent Advanced in Phyto-chemistry [C]. New York: Plemum Press,1976.168-213
    [23]Clausen T P, Provenza F D, Burritt E A, et al. Ecological implication of condensed tannin structure:a case study [J]. Journal of Chemical Ecology,1990,16:2381-2391
    [24]Belovsky G E. Diet optimization in a generalist herbivore the moose [J]. Theoretical Population Biology,1978,14(1):105-134
    [25]McNaughton S T. Adaptation of herbivore to seasonal changes in nutrient supply. In:Hacker J B, Ternouth J H, (eds.) The Nutrition of Herbivores [C]. Sydney: Academic Press,1987. 391-408
    [26]Coley P D, Bryant J P, Chapin F S. Resource availability and plant anti-herbivore delesae [J]. Science,1985,230:895-899
    [27]Rhoades D F. Offensive defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory [J]. American Naturalist,1985,125: 205-238
    [28]Stenseth N, Ims R. The Biology of Lemmings [M], San Diego, California: Academic Press, 1993.74
    [29]Sadlier R M F S. The role of nutrition in the reproduction of wild mammals [J]. Journal of Reproduction & inFertility,1969,6(Suppl.):39-48
    [30]Lesage J, Blondeau B, Grino M, et al. Maternal undernutrition during late gestation induces fatal over exposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo pituitary adrenal axis in the newborn rat [J]. Endocrinology,2001,142: 1692~1702
    [31]Campbell M T, Slade N A. The effect of maternal mass on litter size and offspring survival in the hispid cotton rat (Sigmodon hispidus) [J]. Canadian Journal of Zoology.1995,73: 133-140
    [32]Nelson R J. Maternal diet influences reproductive development in male prairie vole offspring [J]. Physiology & Behavior,1991,50:1063-1066
    [33]Passos M C F, Ramos C F, Moura E G. Short and long term effects of malnutrition in rats during lactation on the body weight of offspring [J]. Nutrition Research,2000,20(11): 1603-1612
    [34]Li H Y, Wade N, Blaustein J D. Manipulations of metabolic fuel availability alter estrous behaviour and neural estrogen receptor immunocreactivity in syrian hamsters [J]. Endocrinology,1994,135:240-247
    [35]Hill J O, Fried S K, DiGirolamo M. Effects of fasting and restricted refeeding on utilization of ingested energy in rats [J]. American Journal of Physiology,1984,247(2):318-327
    [36]徐世侠,叶广俊,薛彬,等.早期限食对仔鼠胸腺凋亡的影响[J].营养学报.2000,22(1):55-58
    [37]Dickerman R W, Li H Y, Wade G N. Decreased availability of metabolic fuels suppresses estrous behavior in Syrian hamasters [J]. American Journal of Physiology,1993,264(3pt2): R568-R572
    [38]Woodside B, Abizaid A, Caporale M. The role of specific macronutrient availability in the effect of food restriction on length of lactational diestrus in rats [J]. Physiology & Behavior, 1998,64(3):409-414
    [39]Huck U W, Labov J B, Lisk R D. Food restricting young hamasters (Mesocricetus auratus) affects sex ratio and growth of subsequent offspring [J]. Biology of Reproduction,1986,35: 592-598
    [40]Perales J Q, Patricio F R, Amancio O M, et al. Effects of exercise and food restriction in pregnant and newborn rats: Pre-pregnancy maximum oxygen consumption [J]. Comparative Biochemistry and Physiology,1992,102(3):585-590
    [41]严志堂,李春秋,朱盛侃.小家鼠种群年龄研究及其对预测预报的意义[J].兽类学报,1983,3(1):532-621
    [42]侯希贤,董维惠,周延林,等.鄂尔多斯沙地草场小家鼠生物学特性观察[J].中国媒介生物学及控制杂志,1999,10(1):125-135
    [43]潘世昌,杨再学,杨秀群,等.小家鼠胴体重指标划分种群年龄的研究[J].贵州农业科学,2006,34:18-20
    [44]Dirckamer L C, Gowaty P A, Holmes C M. Free female mate choice in house mice affects reproductive success and offspring viability and performance [J]. Animal Behaviour,2000, 59:371-378
    [45]Jose M B, Enrique L, Maria J L, et al. Attraction to male pheromones and sexual behaviour show different regulatory mechanisms in female mice [J]. Physiology & Behavior,2004,81: 427-434
    [46]Louise A P, Peter B B. Foraging responses of wild house mice to accumulations of conspecific odor as a predation risk [J]. Behavioral Ecology and Sociobiology,2006,60(1): 101-107
    [47]Carter P A, Swallow J G, Davis S J, et al. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity [J]. Behavior Genetics,2000,30(2):85-94
    [1]印遇龙.猪氨基酸营养与代谢[M].北京:科学出版社,2008
    [2]Feeny P P. Plant apparency and chemical defense [J]. Recent Advances of Animal Ecology, 1976,61:79-91
    [3]Cork S J, Foley W J. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In: Palo R T, Robbins C T, (eds.) Plant Defenses Against Mammalian Herbivory [C]. Boca Raton, Florida: CRC Press, 1991.133-166
    [4]Rhoades D F, Cates B. A general theory of plant anti-herbivore chemistry. In:Wallace J, Mansell R L (eds.) Bio-chemical interaction between plants and insects. Recent advanced in phyto-chemistry [C]. New York: Plemum Press,1976,168-213
    [5]Clausen T P, Provenza F D, Burritt E A, et al. Ecological implication of condensed tannin structure:a case study [J]. Journal of Chemical Ecology,1990,16:2381-2391
    [6]Cork S J, Hume I D, Dawson T J. Digestion and metabolism of natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus) [J]. Journal of Comparative Physiology,1993,152:443-451
    [7]Swain T. Tannins and lignins [C]. In: Rosen G A, Janzen D H, eds. Herbivores: their interaction with secondary plant metabolism. New York: Academic Press,1979.657-682
    [8]Brett A D, Hagerman A E, Barrett W. Role of condensed tannin on salivary tannin-binding proteins, bioenergetics and nitrogen digestibility in Mictotus pnnsylvanicus [J]. Journal of Mammalogy,1994,75:880-889
    [9]Robbins C T, Hagerman A E, Austin P J, et al. Variation in mammalian physiological responses to a condensed tannin and its ecological implications [J]. Journal of Mammalogy, 1991,72:480-486
    [10]Hagerman A E, Bulter L G.Tannins and lignin [C]. In: Rosenthal Sed, eds. Herbivores:their interactions with secondary plant metabolites. The Chemical Participants. New York: Academic Press,1992,335-388
    [11]Lindroth R L, Batzli G O. Plant phenolics as chemical defense effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster) [J]. Journal of Chemical Ecology, 1984,10:229-244
    [12]Meyer B W, Karasov W H. Anti-herbivore chemistry of (Larrea tridentata):effects on woodrat (Neotoma lepida) feeding and nutrition [J]. Ecology,1989,70(4):953-962
    [13]李俊年,刘季科,陶双伦.单宁酸对根田鼠食物摄入量和蛋白质消化率的效应[J].兽类学报,2003,23(1):52-57
    [14]Harborne J B. Ecological chemistry and biochemistry of plant terpenoids [M]. Oxford: University Press,1991.234-276
    [15]Dietz B A, Hagerman A E, Barrett G W. Role of condensed tannin on salivary tannin-binding proteins, bioenergetics, and nitrogen digestibility in Microtus pennsylvanicus [J]. Journal of Mammalogy,1994,75 (4):880-889
    [16]Belovsky G E. Diet optimization in a generalist herbivore the moose [J]. Theoretical Population Biology,1978,14:105-134
    [17]McNaughton S T. Adaptation of herbivore to seasonal changes in nutrient supply. In:Hacker J B, Ternouth J H,(eds.) The Nutrition of Herbivores [C]. Sydney: Academic Press,1987. 391-408
    [18]Coley P D, Bryant J P, Chapin F S. Resource availability and plant anti-herbivore delesae [J]. Science,1985,230:895-899
    [19]Rhoades D F. Offensive defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory [J]. American Naturalist,1985,125: 205-238
    [20]Smith J M. Evolution and the Theory of Games [M]. Cambridge:Cambridge University Press.1982
    [21]Turner G F, Huntingford F A. A problem for game theory analysis:assessment and intention in male mouth brooder contests [J]. Animal Behaviour,1986,34:961-970
    [22]Dewsbury D A. Genes influence behaviour [J]. Animal Behaviour,1991,42:499-500
    [23]冯清泉,童敏,李或章.饲料营养对实验动物繁殖功能的影响[J].实验动物科学与管理,1996,13(4):11
    [24]Freel W J, Janzen D H. Strategy in herbivory by mammals:the role of plant secondary compounds [J]. American Naturalist,1974,108:269-289
    [25]Garcia J. Food for Tolman: Cognition and Cathexis in concert. In: Tarche A, Nirsson M, (eds.) Aversions, Avoidance and Anxiety [C]. New Jersey:Lawrence Erlbaum Association Nillsdale,1989.45-85
    [26]Provenza F D, Balph D F. Applicability of five-diet selection models to various foraging challenge ruminants encounter [J]. Journal of Chemical Ecology,1990,16:423-460
    [27]Mcleod M N. Plant tannins-their role in foraging quality [J]. Nutrition Abstracts and Reviews, 1974,44:803-815
    [28]Scotl T R, Giza B K. A measure of tastes intensity discrimination in the rat through conditioned taste aversions [J]. Physiology & Behavior,1987,41(4):315-320
    [29]Rorz C A. Management to reduce nitrogen losses in animal production [J]. Journal of Animal Science,2004,82(E. Suppl.):E119-E137
    [1]Wang D H, Pei Y X, Yang J C, et al. Digestive tract morphology and food habits in six species of rodents [J]. Folia Zoologica,2003,52(1):51-55
    [2]Mc Willimas S R, Katasov W H. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance [J]. Comparative Biochemistry and Physiology,2001,128(3):579-593
    [3]Perrin M R, Curtis B A. Comparative morphology of the digestive system of 19 species of Southern African myomorph rodents in relation to diet and evolution [J]. South African Journal of Zoology,1980,15:22-33
    [4]Schieck J O, Millar J S. Alimentary tract measurements as indicators of diets of small mammals [J]. Journal of Mammalogy,1985,49:93-104
    [5]王德华,王祖望,孙儒泳.根田鼠消化道长度和重量的变化及其适应意义[J].兽类学报,1995,15(1):53-59
    [6]王德华,王祖望.高寒地区高原鼠兔消化道形态的季节动态[J].动物学报,2001,47(5):495-501
    [7]王德华,王祖望.高寒地区高原鼢鼠消化道形态的季节变化[J].兽类学报,2000,20(4):270-276
    [8]Speakman J R, McQueen J. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate and morphology in reproducing mice, Mus musculus [J]. Physiological Zoology,1996,69:746-769
    [9]Hammond K A, Diamond J M. Maximal sustained energy budgets in humans and animals [J]. Nature,1997,386:457-462
    [10]Pigliucci M. Phenotypic plasticity: beyond nature and nuture [M]. Baltimore:Johns Hopkins University Press,2001.1
    [11]Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity [J]. Trends in Ecology & Evolution,2005,20(12):687-692
    [12]Hume I D. Digestive strategies of mammals[J]. Acta Zoologica Sinica,2002,48(1):1-19
    [13]李俊生,宋延龄,曾治高.7种荒漠啮齿动物食物组成与消化道长度的比较[J].动物学报,2003,49(2):171-178
    [14]Cant J P B, McBride W, Croom W J. The regulation of intestinal metabolism and its impact on whole animal energetics [J]. Journal of Animal Science,1996,74(10):2541-2553
    [15]Derting T L, Noakes III E B. Seasonal changes in gut capacity in the white-footed mouse (Peromyscus leucopus) and meadow vole (Microtus pennsylvanicus) [J]. Canadian Journal of Zoology,1995,73:243-252
    [16]Hammond K A, Wunder B A. Effect of cold temperatures of the morphology of gastrointestinal tracts of two Microtine rodents [J]. Journal of Mammalogy,1995,76(1): 232-239
    [17]Bozinovic F F, Nova F, Claudio C. Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus(Cricetidae) in the Andes Range [J]. Physiological Zoology,1990, 63(6):1216-1231
    [18]Gross J E, Wang Z, Wunder B A. Effects of food quality and energy needs:changes in gut morphology and capacity of Microtus ochrogaster [J]. Journal of Mammalogy,1985,66: 661-667
    [19]裴艳新,王德华.化学反应器理论与食草动物的消化对策[J].兽类学报,2000,20(4):304-312
    [1]Schweiger S, Boutin S. The effects of winter food addition on the population dynamics of Clethrionomys rutilus [J]. Canadian Journal of Zoology,1995,73:419-426
    [2]Chandra R K. Protein-energy malnutrition and immunological responses [J]. Journal of Nutrition,1992,122(Suppl.3):597-600
    [3]唐祖明,赵凤举,郑纪山,等.蛋白质缺乏对小鼠胸腺细胞花生凝集素受体的影响[J].营养学报,1993,15(3):271-273
    [4]Hill J O, Fried S K, DiGirolamo M. Effects of fasting and restricted refeeding on utilization of ingested energy in rats [J]. American Journal of Physiology,1984,247(2):318-327
    [5]Dickerman R W, Li H Y, Wade G N. Decreased availability of metabolic fuels suppresses estrous behavior in Syrian hamasters [J]. American Journal of Physiology,1993,264(3Pt2): R568-R572
    [6]徐世侠,叶广俊,薛彬,等.早期限食对仔鼠胸腺凋亡的影响[J].营养学报.2000,22(1):55-58
    [7]Perales J Q, Patricio F R, Amancio O M, et al. Effects of exercise and food restriction in pregnant and newborn rats:Pre-pregnancy maximum oxygen consumption [J]. Comparative Biochemistry and Physiology,1992,102(3):585-590
    [8]Woodside B, Abizaid A, Caporale M. The role of specific macronutrient availability in the effect of food restriction on length of lactational diestrus in rats [J]. Physiology & Behavior, 1998,64(3):409-414
    [9]Oitzl M S, van Haarst A D, Sutanto W, et al. Cortiscosterone, brain mineralcorticoid rat as an example of central MR capacity and a hyperrespinsive HPA axis [J]. Psychoneuroendocrinology,1995,20:655-675
    [10]Selye H C. The general adaptation syndrome and the diseases of adaptation [J]. Journal of Clinical Endocrinology & Metabolism,1946,6:117-231
    [11]史小均,杜继曾,熊忠.低氧对雄性大鼠性腺的影响[J].中国病理生理杂志,1998,14(2):162-165
    [12]Arnold W, Dittami J. Reproductive suppression in male alpine marmots [J]. Animal Behaviour,1997,53(1):53-66
    [13]Haller J, Halasz J, Makara C A B, et al. Acute effects of glueocorticoids:behavioral and pharm acological perspectives [J]. Neuroscience and Biobehavior Review,1998,23: 337-344
    [14]Mo'stl E, Palme R. Hormones as indicators of stress [J]. Domestic Animal Endocrinology, 2002,23,67-74
    [15]Whitten P L, Brockman D K, Stavisky R C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions [J]. American Journal of Physical Anthropology, 1998,41:1-23
    [16]Schwarzenberger F, Mostl E, Palme R, et al. Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals [J]. Animal Reproduction Science,1996,42(1),515-526
    [17]Touma C, Sachser N, Mostl E, et al. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice [J]. General and Comparative Endocrinology,2003,130(3):267-278
    [18]Monfort S L, Schwartz C C, Wasser S K. Monitoring reproduction in moose using urinary and fecal steroid metabolites [J]. Journal of Wildlife Management,1993,57:400-407
    [19]朱长庚.免疫-神经-内分泌网络[J].解剖学报.1993,24:216-221
    [20]Gursoy E, Cardounel A, Hu Y, et al. Biological effects of long-term caloric restriction: adaptation with simultaneous administration of caloric stress plus repeated immobilization stress in rats [J]. Experimental Biology and Medicine,2001,226:97-102
    [21]Gustafsson L, Sutherland W J. The costs of reproductive in the collared flycatcher Ficedula albicollis [J]. Nature,1988,335:813-815
    [22]Sheldon B C, Verhulst S. Ecological immunology:costly parasite defences and trade-offs in evolutionary ecology [J]. Trends in Ecology & Evolution,1996,11:317-321
    [23]Bachman G C. Food supplements modulate changes in leucocyte numbers in breeding male ground squirrels [J]. Journal of Experimental Biology,2003,206:2373-2380
    [1]Doty R L. Odor-guided behavior in mammals [J]. Experientia,1986,42(3):257-271
    [2]Vandenbergh J G. Pheromones and mammalian reproduction In: Knobil E, (eds.) The Physiology of Reproduction [C]. New York:Raven Press,1988.1679-1686
    [3]Dallman M F. Stress by any other name? [J] Hormone and Behavior.2003,43(1):18-20
    [4]Creel S. Social dominance and stress hormones [J]. Trends in Ecology & Evolution,2001, 16(9):491-497
    [5]Bronson F H, Eleftheriou B E. Chronic physiological effects of fighting in mice [J]. General and Comparative Endocrinology,1964,4:9-14
    [6]Popova N K, Naumenko E V. Dominance relations and the pituitary adrenal system in rats [J]. Animal Behaviour,1972,20(1):108-111
    [7]Louch C D, Higginbotham M. The relation between social rank and plasma corticosteron levels in mice [J]. General and Comparative Endocrinology,1967,8(3):441-444
    [8]Faulkes C G, Abbott D H. The physiology of a reproductive dictatorship:regulation of male and female reproduction by a single breeding female in colonies of naked mole rats. In: Solomon N G, French J A, (eds.) Cooperative Breeding in Mammals [C]. Combridge: Cambridge University Press.1997,302-334
    [9]Arnold W, Dittami J. Reproductive suppression in male alpine marmots [J]. Animal Behaviour, 1997,53(1):53-66
    [10]Miczed K A. Ethopharm acology of aggression, defense, and defeat. In: Simmel E S, Hahn M E, Walters J K, (eds.) Aggressive Behavior:Genetic and Neural Approaches [C]. Hillsdale, New Jersey: Lawrence Erlbaum Associates,1983.147-166
    [II]Delville Y, Melloni R H, Ferris C F. Behavioral and neuro biological consequences of social subjugation during puberty in golden hamsters [J]. Journal of Neuroscience,1998,18(7): 2667-2672
    [12]Blanchard D C, Blanchard R J. Etho experimental approaches to the biology of emotion [J]. Annual Review of Psychology,1988,39:43-68
    [13]聂海燕,刘季科.根田鼠攻击行为模式及其进化稳定对策分析[J].生态学报,2004,24(7):1406-1412
    [14]Harper S J, Batzli G O. Are staged dyadic encounters useful for studying aggressive behavior of arvicoline rodents [J]. Canadian Journal of Zoology,1997,75:1051-1058
    [15]Simon N G. New strategies for aggression research [C]. In:Simmel E S, Hahn M E, Walters J K, (eds.) Aggressive Behavior:Genetic and Neural Approaches. Hillsdale, New Jersey: Lawrence Erlbaum Associates,1983.19-36
    [16]Huhman K L, Bunneil B N, Mougey E H, et al. Effects of social conflict on POMC-derived peptides and glucocorticoids in male golden hamsters [J]. Physiology & Behavior,1990, 47(5):949-956
    [17]张健旭,张知彬,王祖望.大仓鼠在繁殖期的行为关系及交配行为[J].兽类学报,1999,19(2):132-142
    [18]Albers H, Huhman K, Meisel R. Hormonal basis of social conflict and communication [J]. Hormones, Brain and Behavior,2002,391-429
    [19]Sapolsky R M. Neuroendocrinology of the stress response In:Becker J B, (eds.) Behavioral Endocrinology [C]. Massachusetts:Institute of Technology Press,1992.287-324.
    [20]Pottinger T G. The impact of stress on animal reproductive activities In:Baum P H M, (eds.) Stress Physiology in Animals [C]. Boca Raton, Florida:CRC Press,1999,130-177
    [21]Chrousos G P, Gold P W. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis [J]. Journal of American Medical Association,1992, 267(9):1244-1252
    [22]Creel S, Sands J L. Is social stress a consequence of subord ination or a cost of dominance. In: de WaalF, Tyack P, (eds.) Animal Social Complexity [C]. Cambridge, Massachusetts: Harvard University Press,2003.153-179
    [1]Boonstra R, Hochachka W. Maternal effects and additive genetic inheritance in the collared lemming (Dicrostonyx groenlandicus) [J]. Evolutionary Ecology,1997,11(2):169-182
    [2]Mousseau T A, Fox C M. The adaptive significance of maternal effects [J]. Trends in Ecology & Evolution,1998,13(10):403-407
    [3]Passos M C F, Ramos C F, Moura E G. Short and long term effects of malnutrition in rats during lactation on the body weight of offspring [J]. Nutrition Research,2000,20(11): 1603-1612
    [4]Li H Y, Wade N, Blaustein J D. Manipulations of metabolic fuel availability alter estrous behaviour and neural estrogen receptor immunocreactivity in syrian hamsters [J]. Endocrinology,1994,135:240-247
    [5]Hill J O, Fried S K, DiGirolamo M. Effects of fasting and restricted refeeding on utilization of ingested energy in rats [J]. American Journal of Physiology,1984,247(2Pt2):R318~R327
    [6]Dickerman R W, Li H Y, Wade G N. Decreased availability of metabolic fuels suppresses estrous behavior in Syrian hamasters [J]. American Journal of Physiology,1993,264(3pt2): R568~R572
    [7]徐世侠,叶广俊,薛彬,等.早期限食对仔鼠胸腺凋亡的影响[J].营养学报.2000,22(1):55-58
    [8]Woodside B, Abizaid A, Caporale M. The role of specific macronutrient availability in the effect of food restriction on length of lactational diestrus in rats [J]. Physiology & Behavior, 1998,64(3):409-414
    [9]Perales J Q, Patricio F R, Amancio O M, et al. Effects of exercise and food restriction in pregnant and newborn rats:Pre-pregnancy maximum oxygen consumption [J]. Comparative Biochemistry Physiology,1992,102(3):585-590.
    [10]Huck U W, Labov J B, Lisk R D. Food restricting young hamasters (Mesocricetus auratus) affects sex ratio and growth of subsequent offspring [J]. Biology of Reproduction,1986,35: 592-598
    [11]Sadlier R M F S. The role of nutrition in the reproduction of wild mammals [J]. Journal of Reproduction & infertility,1969,6(Suppl.):39-48
    [12]Lesage J, Blondeau B, Grino M, et al. Maternal undernutrition during late gestation induces fatal over exposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo pituitary adrenal axis in the newborn rat [J]. Endocrinology,2001,142: 1692-1702
    [13]Stenseth N, Ims R. The Biology of Lemmings [M]. San Diego California:Academic Press. 1993.74
    [14]Smart J, Dobbing J. Vulnerability of developing brain:Effects of early nutritional deprivation on reflex ontogeny and development of behaviour in the rat [J]. Brain Research,1971,28: 85-95
    [15]Saste M D, Carver J D, Stockard J E, et al. Materal diet fatty acid composition affects neurodevelopment in rat pups [J]. Journal of Nutrition,1998,128:740-743
    [16]Luz J, Griggio M A. Distributionod energy between food-restricted dams and offspring [J]. Annals of Nutrition & Metabolism,1996,40(3):165-174
    [17]Abel P D, Foster C S, Tebbutt S, et al. A study of oligosaccharide determinants expressed by prostatic glandular epithelium of the normal adult rat[J]. Urological Research,1990,18(3): 233-237
    [18]Andreassen H P, Ims R A. Responses of female grey-sided voles Clethrionomys rufocanus to malnutrition:a combined laboratory and field experiment [J]. Oikos,1990,59:107-114
    [19]Meikle D B. Adult male house mice born to undernourished mothers are unattractive to oestrous females [J]. Animal Behaviour,1995,50:753-758
    [20]Zamenhof S, Van Marthens E. The sffects of chronic undernutrition over generation on rat development [J]. Journal of Nutrition,1978,108:1719-1723
    [21]施明,萧锦腾.蛋白质水平对大鼠胚胎期脑发育的影响[J].解放军预防医学杂志.1996,14(1):24-28
    [22]Clutton-Brock T H, Albon S D, Guinness F E. Great expectation:maternal dominance sex ration and offspring reproductive success in red deer [J]. Animal Behaviour,1986,34: 460-471
    [23]Clark A B. Sex ratio and local resource competition in a Prosimian primate [J]. Science,1978, 201:163-165
    [24]Simeonovska-nikolova D M. Spatial organization of the mound-building mouse Mus spicilegus in the region of northern Bulgaria[J]. Acta Zoologica Sinica,2007,53(1):22-28
    [25]McCarter R J, McGee J R. Transient reduction of metabolic rate by food restriction [J]. American Journal of Physiology,1989,257:175-179
    [27]Harris R B, Kasser T R, Martin R J. Dynamics of recovery of body composition after overfeeding, food restriction or starvation of mature female rats [J]. Journal of Nutrition, 1986,116(12):2536-2546
    [1]Holemans K, Aerts L, Van Assche F A. Fetal growth restriction and consequences for the offspring in animal models[J]. Journal of the Society for Gynecologic Investigation,2003,10: 392-399
    [2]Brzek P, Konarzewski M. Effect of food shortage on the physiology and competitive abilities of sand martin (Riparia riparia) nestlings [J]. Journal of Experimental Biology,2001,204(17): 3065-3074
    [3]Lesage J, Blondeau B, Grino M, et al. Maternal undernutrition during late gestation induces fatal over exposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo pituitary adrenal axis in the newborn rat [J]. Endocrinology,2001,142: 1692-1702
    [4]Yakovleva T V, Bazhan N M, Makarova E N. Effects of food deprivation in early pregnancy on the development of ovaries and adrenals in female progeny of the water vole (Arvicola terrestris) [J]. Comparative Biochemistry and Physiology Part C:Phyarmacology Toxicology Endocrinology,1997,116(1):103-109
    [5]Oluse S O, McFarlane H. Effects of early protein-carlorie malnutrition on the immune response [J]. Pediatric Research,1976,10(8):707-712
    [6]Dickerman R W, Li H Y, Wade G N. Decreased availability of metabolic fuels suppresses estrous behavior in Syrian hamasters [J]. American Journal of Physiology,1993,264(3pt2): R568-R572
    [7]Engelbregt M J T, Houdijk E C A M, Popp-Snijders C, et al. The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats [J]. Pediatric Research,2000,48:803-807
    [8]Meikle D B, Westberg M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus) [J]. Reproduction,2001,122(3):437-442
    [9]Rogers E H, Hunter E S, Rosen M B, et al. Lack of evidence for intergeneration reproduction effects due to prenatal and postnatal undernutrition in the female CD-1 mouse [J]. Reproductive Toxicology,2003,17:519-525
    [10]Meikle D B. Adult male house mice born to undernourished mothers are unattractive to oestrous females [J]. Animal Behaviour,1995,50:753-758
    [11]Egid K, Brown J L. The major histocompatibility complex and female mating preferences in mice [J]. Animal Behaviour,1989,38:548-549
    [12]Potts W K, Manning C J, Wakeland E K. Mating patterns in seminatural populations of mice influenced by MHC genotype [J]. Nature,1991,352:619-621
    [13]Ferkin M H, Sorokin E S, Johnston R E, et al. Attreactiveness of scents varies with protein content of the diet in meadow voles [J]. Ainmal Behaviour,1997,53(1):133-141
    [14]Ferkin M N, Sorokin E S, Renfroe M W, et al. Attreactiveness of male odors to female varies directly with plasma testosterone concentration in meadow voles [J]. Physiology & Bhavior, 1994,55:347-353
    [15]Williams G C. Adaptation and natural selection:a critique of some cureet evolutionary thought [M]. Princeton:Princeton University Press.1966
    [16]Stearns S C. The Evolution of Life Histories [M]. New York: Oxford University Press.1992
    [17]Lozano G A, Lank D B. Seasonal teade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax) [J]. Proceedings of the Royal Society of London,2003,270: 1203-1208
    [18]Gustafsson L, Sutherland W J. The costs of reproduction in the collared flycatcher Ficedula albicollis [J]. Nature.1988,335:813-815
    [19]Wedekind C, Folstad I. Adaptive or nonadptive immunosuppression by sex hormones [J]. American Naturalist,1994,143:936-938
    [20]Sheldon B C, Verhulst S. Ecological immunology:costly parasite defences and trad-offs in evolutionary ecology [J]. Trends in Ecology & Evolution,1996,11:317~321
    [21]Lochmiller R L, Vestey M R, Boren J C. Relationship between protein nutritional status and immunocompetence on northern bobwhite chickes [J]. Auk,1993,110:503-510
    [22]Saino N, Dallara P, Martinelli R, et al. Early maternal effects and antibacterial immune facters in the eggs, nestlings and adults of the barn swallow [J]. Journal of Evolutionary Biology,2002,15:735-743
    [23]Boonstra R, Hochachka W. Maternal effects and additive genetic inheritance in the collared lemming(Dicrostonyx groenlandicus) [J]. Evolutionary Ecology,1997,11(2):169-182
    [24]Boonstra R, Krebs C J, Stenseth N C. Population cycles in small mammals: the problem of explaning the low phase [J]. Ecology,1998,79:1479-1488
    [25]Mihok S, Boonstra R. Breeding performance in captivity of meadow voles (Microtus pennsylvanicus) from decline-and incress-phase population [J]. Canadian Journal of Zoology, 1992,70:1561-1566
    [26]Pigliucci M. Phenotypic plasticity:beyond nature and nuture[M] Baltimore:Johns Hopkins University Press,2001.1
    [27]Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity [J]. Trends in Ecology & Evolution,2005,20(12):687-692
    [28]Bateman A A, Singh T H, Solomon S. The immune-hypothalamic-pituitary-adrenal axis [J]. Endocrine Reviews,1989,10:92-112
    [29]Bush V L, Middlemiss D N, Marsden C A, et al. Implantation of a slow release corticosterone pellet induces long-term alteration in serotonergic neurochemistry in the rat brain [J]. Journal of Neuroendocrinology,2003,15(6):607-613
    [30]Breedlove S M. Sexual differentitation of the brain and behavior. In: Becker J B, Breedlove S M, Crews D, (eds.) Behavioral Endocrinology [C], Cambridge, Massachusetts: MIT Press, 1992,39-70
    [31]Hamilton G D, Bronson F H. Food restriction and reproductive development in house mice [J]. Biology of Reproduction,1985,32:773-778
    [32]Wingfield J C. Hormone-behavior interantions and mating systems in male and female birds. In:Short R V, Balaban E, (eds.) The Differences between the Sexs [C]. Cambridge: Cambridge University press,1994.303-330
    [33]Eloi-Santos S, Olsen N J, Correa-Oliveira R, et al. Schistosoma mansoni:mortality, pathophysiology, and susceptibility differences in male and female mice [J]. Experimental Parasitology,1992.75:168-175
    [34]Nakazawa M M R, Fantappie M R, Freeman G L, et al. Schistosoma mansoni: susceptibility difference between male and female mice can be mediated by testosterone during early infection [J]. Experimental Paresitology,1997,85:233-240
    [35]Humphries M M, Boutin S. The determinants of optimal litter size in free-ranging red squirrels [J]. Ecology,2000,81:2867-2877
    [36]Klein S L, Nelson R J. Adaptive immune response are linked to the mating system of arvicoline rodents [J]. American Naturalist,1998,151:59-67
    [1]Kinder E F.A study of the nest-building activity of the albino rat [J]. Journal of Experimental Zoology,1927,47(2):117-161
    [2]Lee C T, Wong, P T P. Temperature effect and strain differences in the nest-building behavior of inbred mice [J]. Psychonomic Science,1970,21:9-10
    [3]Lynch G R, Lynch C B, Dube M, et al. Early cold exposure:effects on behavioral and physiological thermoregulation in the house mouse, Mus musculus [J]. Physiological Zoology, 1973,49(2):191-199
    [4]Lee C T. Genetic analyses of nest building behavior in laboratory mice (Mus musculus) [J]. Behavior Genetics,1973,3:247-256
    [5]Meikle D B, Westberg M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus) [J]. Reproduction,2001,122(3):437-442
    [6]Lynch, C B. Response to divergent selection for nesting behavior in Mus musculus [J]. Genetics,1980,96:757-765
    [7]Huhman K L, Bunnell B N, Mougey E H, et al. Effects of social conflict on POMC-derived peptides and glucocorticoids in male golden hamsters [J]. Physiology & Behavior,1990,47(5): 949-956
    [8]Dirckamer L C, Gowaty P A, Holmes C M. Free female mate choice in house mice affects reproductive success and offspring viability and performance [J]. Animal Behaviour,2000, 59(2):371-378
    [9]Wunder B A. Strategies for and environmental cueing mechanisms of seasonal changes in thermoregulatory parameters of small mammals. In:Merritt J F, (eds.) Winter Ecology of Small Mammals [C]. Pittsburgh, Pennsylvania: Speccial Publication of Carnegie Museum of Natural History,1984.165-172
    [10]Vogt F D, Lynch G R. Influence of ambient temperature, nest availability, huddling, and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus [J]. Physiological Zoology,1982,55(1):56-63
    [11]Sun P, Xiong J L, Zhu W W, et al. Nest building promotes male offspring body weight development and survival in root vole (Microtus oeconomus) [J]. Acta Theriologica Sinica, 2010,30(2):127-132
    [12]Creel S. Social dominance and stress hormones [J]. Trends in Ecology & Evolution,2001, 16(9):491-497
    [13]Dallman M F. Stress by any other name [J]? Hormone and Behavior,2003,43(1):18-20.
    [14]Sapolsky R M. Neuroendocrinology of the stress response. In:Becker J B, (eds.) Behavioral Endocrinology [C]. Massachusetts:Institute of Technology Press,1992.287-324
    [15]Pottinger T G. The impact of stress on animal reproductive activities [C]. In: Baum P H M, (eds.) Stress Physiology in Animals. Boca Raton, Florida:CRC Press,1999,130-177
    [16]Chrousos G P, Gold P W. The concepts of stress and stress system disorders:overview of physical and behavioral homeostasis [J]. Journal of American Medical Association,1992, 267(9):1244-1252
    [17]Creel S, Sands J L. Is social stress a consequence of subord ination or a cost of dominance. In: de WaalF, Tyack P, (eds.) Animal Social Complexity [C]. Cambridge, Massachusetts: Harvard University Press,2003,153-179
    [1]Kinder E F. study of the nest-building activity of the albino rat [J]. Journal of Experimental Zoology,1927,47(2):117-161
    [2]Lee C T, Wong P T P. Temperature effect and strain differences in the nest-building behavior of inbred mice [J]. Psychonomic Science,1970,21:9~10
    [3]Lynch G R, Lynch C B, Dube M, et al. Early cold exposure: effects on behavioral and physiological hermoreguation in the house mouse, Mus musculus [J]. Physiological Zoology, 1976,49:191-199
    [4]Lee C T. Genetic analyses of nest building behavior in laboratory mice (Mus musculus) [J]. Behavior Genetics,1973,3:247-256
    [5]Sluyter F, Bult A, Lynch C B, et al. A comparison between house mouse lines selected for attack latency or nest-building:Evidence for a genetic basis of alternative behavioral strategies [J]. Behavior Genetics,1995,25(3):247-252
    [6]Carter P A, Swallow J G, Davis S J, et al. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity [J]. Behavior Genetics,2000,30(2):85-94
    [7]Bult A, Lynch C B. Nesting and fitness: lifetime reproductive success in house mice bidirectionally selected for thermoregulatory nest-building behavior [J]. Behavior Genetics, 1997,27(3):231-240
    [8]Lisk R D, Pretlow R A, Friedman S M. Hormonal stimulation necessary for elicitation of maternal nest building in the mouse (Mus musculus) [J]. Animal Behaviour,1969,17: 730-737
    [9]Keisala T, Minasyan A, Jrvelin U, et al. Aberrant nest building and prolactin secretion in vitamin D receptor mutant mice [J]. The Journal of Steroid Biochemistry and Molecular Biology,2007,104:269-273
    [10]Broida J, Svare B. Strain typical patterns of nest building in mice:maternal and experiential influences [J]. Physiology & Behavior,1982,29:153-157
    [11]Gandelman R. Induction of maternal nest building in virgin female mice by the presentation of young [J]. Hormones and Behavior,1973,4(3):191-197
    [12]肖曾祜,于永久,王丕烈.辽宁动物志[M].沈阳:辽宁科学技术出版社,1988.99-104
    [13]Barnett S A, Manly B M. Breeding of mice at-3℃[J]. Nature,1954,173:355
    [14]Koller G. Hormonale und psychische Steuerung beim Nestbau weisser Mause [J]. ZoologischeAnzeiger,1956,19(Suppl.):123-132
    [15]van Oortmerssen G A. Biological significance, genetics and evolutionary origin of variability in behaviour within and between inbred strains of mice (Mus musculus):A behaviour genetic study [J]. Behaviour,1971,38:1-92
    [16]Lee C T. The nest-building behavior of inbred mice:Developmental and genetic studies [D]. Unpublished doctoral dissertation, Bowling Green State University, Ohio,1969
    [17]黄文几,陈延熹,温业新.中国啮齿类[M].上海:复旦大学出版社,1995.158-161
    [18]路纪琪,吕国强,李新民.河南啮齿动物志[M].郑州:河南科学技术出版社,1997.187-191
    [19]Lynch C B. Response to divergent selection for nesting behavior in Mus musculus [J]. Genetics,1980,96(3):757-765
    [20]洪朝长,陈小彬.小家鼠的年龄鉴定及种群年龄组成的研究[J].中国媒介生物学及控制杂志,1991,2(6):377-381
    [21]潘世昌,杨秀群,归贤祥,等.小家鼠种群年龄研究[J].西南农业学报,2003,16(3):832-851
    [22]Dirckamer L C, Gowaty PA, Holmes C M. Free female mate choice in house mice affects reproductive success and offspring viability and performance [J]. Animal Behaviour,2000, 59(2):371-378
    [23]Wunder B A. Strategies for and environmental cueing mechanisms of seasonal changes in thermoregulatory parameters of small mammals. In:Merritt J F, (eds.) Winter Ecology of Small Mammals [M]. Pittsburgh, Pennsylvania: Special Publication of Carnegie Museum of Natural History,1984.165-172
    [24]Vogt F D, Lynch G R. Influence of ambient temperature, nest availability, huddling, and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus [J]. Physiological Zoology,1982,55:56-63
    [25]Lynch C B. Genetic correlation between two types of nesting in Mus musculus:direct and indirect selection [J]. Behavior Genetics,1981,11(3):267-272
    [26]Sun P, Xiong J L, Zhu W W, et al. Nest building promotes male offspring body weight development and survival in root vole (Microtus oeconomus) [J]. Acta Theriologica Sinica, 2010,30(2):127-132
    [27]Simeonovska-nikolova D M. Spatial organization of the mound-building mouse Mus spicilegus in the region of northern Bulgaria [J]. Acta Zoologica Sinica,2007,3(1):22~28
    [1]Bernardo J. Maternal effects in animal ecology [J]. American Zoology,1996,36:83-105
    [2]Mousseau T A, Fox C W. The adaptive significance of maternal effects [J]. Trends in Ecology & Evolution,1998,13 (10):403-407
    [3]Benton T G, Ranta E. Maternal effects and the stability of population dynamics in noisy environment [J]. Journal of Animal Ecology,2001,70:590-599
    [4]Falconer D S. Introduction to Quantitative Genetics [M]. New York: Wiley and Sons Press, 1989
    [5]Wang D H, Pei Y X, Yang J C, et al. Digestive tract morphology and food habits in six species of rodents [J]. Folia Zoologica,2003,52(1):51-55
    [6]Rhoades D F, Cates B. A general theory of plant anti-herbivore chemistry. In:Wallace J, Mansell R L, (eds.) Bio-chemical Interaction between Plants and Insects. Recent Advanced in Phyto-chemistry [C]. New York: Plemum Press,1976.168-213
    [7]Clausen T P, Provenza F D, Burritt E A, et al. Ecological implication of condensed tannin structure: a case study [J]. Journal of Chemical Ecology,1990,16:2381-2391
    [8]Cork S J, Hume I D, Dawson T J. Digestion and metabolism of natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus) [J]. Journal of Comparative Physiology,1983,152:443-451
    [9]McWillimas S R, Katasov W H. Phenotypic flexibility in digestive system structure and function in migratory birds and its ecological significance [J]. Comparative Biochemistry and Physiology,2001,128(3):579-593
    [10]Perrin M R, Curtis B A. Comparative morphology of the digestive system of 19 species of Southern African myomorph rodents in relation to diet and evolution [J]. South African Journal of Zoology,1980,15:22-33
    [11]Schieck J O, Millar J S. Alimentary tract measurements as indicators of diets of small mammals [J]. Journal of Mammalogy,1985,49:93-104
    [12]王德华,王祖望,孙儒泳.根田鼠消化道长度和重量的变化及其适应意义[J].兽类学报,1995,15(1):53-59
    [13]王德华,王祖望.高寒地区高原鼠兔消化道形态的季节动态[J].动物学报,2001,47(5):495-501
    [14]王德华,王祖望.高寒地区高原鼢鼠消化道形态的季节变化[J].兽类学报,2000,20(4):270-276
    [15]Speakman J R, McQueen J. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate and morphology in reproducing mice, Mus musculus [J]. Physiological Zoology,1996,69:746-769
    [16]Hammond K. A, Diamond J M. Maximal sustained energy budgets in humans and animals [J]. Nature,1997,386:457-462
    [17]Pigliucci M. Phenotypic Plasticity:Beyond Nature and Nuture [M]. Baltimore:Johns Hopkins University Press,2001.1
    [18]Miner B G, Sultan S E, Morgan S G, et al. Ecological consequences of phenotypic plasticity [J]. Trends in Ecology & Evolution,2005,20(12):687-692
    [19]Hume I D. Digestive strategies of mammals [J]. Acta Zoologica Sinica,2002,48(1):1-19
    [20]Gross J E, Wang Z, Wunder B A. Effects of food quality and energy needs:changes in gut morphology and capacity of Microtus ochrogaster [J]. Journal of Mammalogy,1985,66: 661-667
    [21]裴艳新,王德华.化学反应器理论与食草动物的消化对策[J].兽类学报,2000,20(4):304-312
    [22]Passos M C F, Ramos C F, Moura E G Short and long term effects of malnutrition in rats during lactation on the body weight of offspring [J]. Nutrition Research,2000,20(11): 1603-1612
    [23]Trottier G, Koski K G, Brun T, et al. Increased fat intake during lactation modifies hypothalamic-pituitary-adrenal responsiveness in developing rat pups: A possible role for leptin [J]. Endocrinology,1998,139(9):3704-3711
    [24]Rasmussen K M. Effects of under- and over-nutrition on lactation in laboratory rats [J]. Journal of Nutrition,1998,128:390-393
    [25]Lanoue L, Liu X J, Koski K G. Postnatal profiles of glyx-ogenolysis and gluconeogenesis are modified in rat pups by maternal dietary glucose restriction [J]. Journal of Nutrition,1999, 129:820-827
    [26]Li H Y, Wade N, Blaustein J D. Manipulations of metabolic fuel availability alter estrous behaviour and neural estrogen receptor immunocreactivity in syrian hamsters [J]. Endocrinology,1994,135:240-247
    [27]Lesage J, Blondeau B, Grino M, et al. Maternal undernutrition during late gestation induces fatal over exposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo pituitary adrenal axis in the newborn rat [J]. Endocrinology,2001,142: 1692-1702
    [28]Zamenhof S, Van Marthens E. The sffects of chronic undernutrition over generation on rat development [J]. Journal of Nutrition,1978,108:1719-1723
    [29]施明,萧锦腾.蛋白质水平对大鼠胚胎期脑发育的影响[J].解放军预防医学杂志,1996,14(1):24-28
    [30]Sadlier R M F S. The role of nutrition in the reproduction of wild mammals [J]. Journal of Reproduction & Infertility,1969,6(Suppl.):39-48
    [31]Luz J, Griggio M A. Distributionod energy between food-restricted dams and offspring [J]. Annals of Nutrition & Metabolism.1996,40(3):165-174
    [32]Steeve D C, Marco F B. Offspring sex ratio in relation to maternal age and social rank in mountain goats(Oreamnos americanus) [J]. Behavioral Ecology and Sociobiology,2001,49: 260-265
    [33]Clutton-Brock T H, Albon S D, Guinness F E. Great expectation:maternal dominance sex ration and offspring reproductive success in red deer [J]. Animal Behaviour,1986,34: 460-471.
    [34]Clark A B. Sex ratio and local resource competition in a Prosimian primate [J]. Science,1978, 201:163-165
    [35]Sergeant M. Review of maternal personality, evolution and the sex ratio:do mothers control the sex of the infant [J]? Human Nature Review,2002,2:302-305
    [36]Boonstra R, Hochachka W M. Maternal effects and additive genetic inheritance in the collared lemming Dicrostonyx groenlandicus [J]. Evolutionary Ecology,1997,11(2):169~182
    [37]Boonstra R, Krebs C J, Stenseth N C. Population cycles in small mammals:the problem of explaning the low phase [J]. Ecology,1998,79:1479-1488
    [38]Mihok S, Boonstra R. Breeding performance in captivity of meadow voles(Microtus pennsylvanicus) from decline- and incress-phase population [J]. Canadian Journal of Zoology, 1992,70:1561~1566
    [39]Schwarzenberger F, Mo"stl E, Palme R, et al. Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals [J]. Animal Reproduction Science,1996,42(1),515-526
    [40]Chandra R K. Protein-energy malnutrition and immunological responses [J]. Journal of Nutrition,1992,122(Suppl.3):597-600
    [41]唐祖明,赵凤举,郑纪山,等.蛋白质缺乏对小鼠胸腺细胞花生凝集素受体的影响[J].营养学报,1993,15(3):271-273
    [42]Hill J O, Fried S K, DiGirolamo M. Effects of fasting and restricted refeeding on utilization of ingested energy in rats[J]. American Journal of Physiology,1984,247(2):318~327
    [43]Dickerman R W, Li H Y, Wade G N. Decreased availability of metabolic fuels suppresses estrous behavior in Syrian hamasters [J]. American Journal of Physiology,1993,264(3pt2): R568~R572
    [44]Woodside B, Abizaid A, Caporale M. The role of specific macronutrient availability in the effect of food restriction on length of lactational diestrus in rats [J]. Physiology & Behavior, 1998,64(3):409-414
    [45]Perales J Q, Patricio F R, Amancio O M, et al. Effects of exercise and food restriction in pregnant and newborn rats: Pre-pregnancy maximum oxygen consumption [J]. Comparative Biochemistry and Physiology,1992,102(3):585-590
    [46]徐世侠,叶广俊,薛彬,等.早期限食对仔鼠胸腺凋亡的影响[J].营养学报,2000,22(1):55-58
    [47]Huck U W, Labov J B, Lisk R D. Food restricting young hamasters (Mesocricetus auratus) affects sex ratio and growth of subsequent offspring[J]. Biology of Reproduction,1986,35: 592~598
    [48]朱长庚.免疫-神经-内分泌网络[J].解剖学报,1993,24:216-221
    [49]Lochmiller R L, Vestey M R, Boren J C. Relationship between protein nutritional status and immunocompetence on northern bobwhite chickes [J]. Auk,1993,110:503~510
    [50]Saino N, Dallara P, Martinelli R, et al. Early maternal effects and antibacterial immune facters in the eggs, nestlings and adults of the barn swallow [J]. Journal of Evolutionary Biology,2002,15:735~743
    [51]Kriegsfeld L J. Proximate factors and mechanisms regulating seasonal adaptations and reproduction physiology in male and female prairie voles (Microtus ochrogaster) [D]. Ph D dissertations, The Johns Hopkins University.2000
    [52]Yakovleva T V, Bazhan N M, Makarova E N. Effects of food deprivation in early pregnancy on the development of ovaries and adrenals in female progeny of the water vole (Arvicola terrestris) [J]. Comparative Biochemistry and Physiology Part C: Phyarmacology Toxicology Endocrinology,1997,116(1):103-109
    [53]Engelbregt M J T, Houdijk E C A M, Popp-Snijders C, et al. The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats [J]. Pediatric Research,2000,48:803-807
    [54]Meikle D B, Westberg M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus) [J]. Reproduction,2001,122(3):437-442
    [55]Rogers E H, Hunter E S, Rosen M B, et al. Lack of evidence for intergeneration reproduction effects due to prenatal and postnatal undernutrition in the female CD-1 mouse [J]. Reproductive Toxicology,2003,17:519-525
    [56]Kotsuji F, Hosokawa K, Tominaga T. Effects of the daily administration of gonadotrophin-releasing hormone on the anteriorpituitary gland of rats restricted feeding [J]. Journal of Endocrinology,1992,116:241-246
    [57]Williams G C. Adaptation and natural selection: a critique of some cureet evolutionary thought [M]. Princeton:Princeton University Press.1996
    [58]Stearns S C. The Evolution of Life Histories [M]. New York:Oxford University Press.1992
    [59]Lozano G A, Lank D B. Seasonal teade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax) [J]. Proceedings of the Royal Society of London,2003,270: 1203-1208
    [60]Gustafsson L, Sutherland W J. The costs of reproduction in the collared flycatcher Ficedula albicollis [J]. Nature,1988.335:813~815
    [61]Sheldon B C, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology [J]. Trends in Ecology & Evolution,1996,11:317~321
    [62]Bachman G C. Food supplements modulate changes in leucocyte numbers in breeding male ground squirrels [J]. Journal of Experimental Biology,2003,206:2373-2380
    [63]Lochmiller R L, Vestey M R, Boren J C. Relationship between protein nutritional status and immunocompetence on northern bobwhite chickes [J]. Auk,1993,110:503~510
    [64]Saino N, Dallara P, Martinelli R, et al. Early maternal effects and antibacterial immune facters in the eggs, nestlings and adults of the barn swallow [J]. Journal of Evolutionary Biology,2002,15:735-743
    [65]Wedekind C, Folstad Ⅰ. Adaptive or nonadptive immunosuppression by sex hormones [J]. American Naturalist,1994,143:936-938
    [66]Doty R L. Odor-guided behavior in mammals [J]. Experientia,1986,42(3):257-271
    [67]Vandenbergh J G. Pheromones and mammalian reproduction[C]. In:Knobil E, (eds.)The Physiology of Reproduction. New York: Raven Press,1988.1679-1686
    [68]Egid K, Brown J L. The major histocompatibility complex and female mating preferences in mice [J]. Animal Behaviour,1989,38:548-549
    [69]Potts W K, Manning C J, Wakeland E K. Mating patterns in seminatural populations of mice influenced by MHC genotype [J]. Nature,1991,352:619-621
    [70]Ferkin M N, Sorokin E S, Renfroe M W, et al. Attreactiveness of male odors to female varies directly with plasma testosterone concentration in meadow voles [J]. Physiology & Behavior, 1994,55:347-353
    [71]Meikle D B. Adult male house mice born to undernourished mothers are unattractive to oestrous females [J]. Animal Behaviour,1995,50:753-758
    [72]Qvarnstrom A, Price T D. Maternal effects, paternal effects and sexual selection [J]. Trends in Ecology & Evolution,2001,16(2):95-100
    [73]Creel S. Social dominance and stress hormones [J]. Trends in Ecology & Evolution,2001, 16(9):491-497
    [74]Dallman M F. Stress by any other name [J]? Hormones and Behavior,2003,43(1):18-20
    [75]Sapolsky R M. Neuroendocrinology of the stress response. In:Becker J B, (eds.) Behavioral Endocrinology [C]. Massachusetts:Institute of Technology Press,1992.287-324
    [76]Pottinger T G. The impact of stress on animal reproductive activities. In:Baum P H M, (eds.) Stress Physiology in Animals[C]. Boca Raton, Florida:CRC Press,1999,130-177
    [77]Chrousos G P, Gold P W. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis [J]. Journal of American Medical Association,1992, 267(9):1244-1252
    [78]Creel S, Sands J L. Is social stress a consequence of subord ination or a cost of dominance. In: de WaalF, Tyack P, (eds.) Animal Social Complexity [C]. Cambridge, Massachusetts: Harvard University Press,2003,153-179
    [79]Reynolds J D, Cote L M. Direct selection on m ate choice-female red lip blennies pay more for better mates [J]. Ecology,1995,6:175-181
    [80]Wunder B A. Strategies for and environmental cueing mechanisms of seasonal changes in thermoregulatory parameters of small mammals. In: Merritt J F, (eds.) Winter Ecology of Small Mammals [C]. Pittsburgh, Pennsylvania: Speccial Publication of Carnegie Museum of Natural History,1984.165-172
    [81]Kinder E F.A study of the nest-building activity of the albino rat [J]. Journal of Experimental Zoology,1927,47(2):117-161
    [82]Lynch G R, Lynch C B, Dube M, et al. Early cold exposure:effects on behavioral and physiological thermoregulation in the house mouse, Mus musculus [J]. Physiological Zoology,1973,49(2):191-199
    [83]Lee C.T, Wong, P T P. Temperature effect and strain differences in the nest-building behavior of inbred mice [J]. Psychonomic Science,1970,21:9-10
    [84]Lee C T. Genetic analyses of nest building behavior in laboratory mice (Mus musculus) [J]. Behavior Genetics,1973,3:247-256
    [85]Vogt F D, Lynch G R. Influence of ambient temperature, nest availability, huddling, and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus [J]. Physiological Zoology,1982,55:56-63
    [86]Sluyter F, Bult A, Lynch C B, et al. A Comparison between house mouse lines selected for attack latency or nest-building:Evidence for a genetic basis of alternative behavioral strategies [J]. Behavior Genetics,1995,25(3):247-252
    [87]Carter P A, Swallow J G, Davis S J, et al. Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity [J]. Behavior Genetics,2000,30(2):85-94
    [88]Bult A, Lynch C B. Nesting and Fitness:Lifetime reproductive success in house mice bidirectionally selected for thermoregulatory nest-building behavior [J]. Behavior Genetics, 1997,27(3):231~240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700