海人酸诱导癫痫大鼠海马的病理学特征及睡眠时相的改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     利用立体定位技术在大鼠海马CA3中心区域微量注射海人酸(kainate acid,KA)建立大鼠颞叶癫痫动物模型,利用此种动物模型做慢性实验,观察其发作表现、脑电生理改变和致痫病理学依据,比较大鼠癫痫与人类癫痫的相似性;并以此动物模型模拟人类复杂部分性发作,探讨癫痫对睡眠的影响,为临床上寻找对癫痫相关睡眠障碍诊断和治疗提供基础资料。
     方法:
     1.动物分组将24只雄性Wistar大鼠随机分为两组:正常生理盐水假手术组(NS组)12只;KA致痫组(KA组)12只。
     2.模型建立利用立体定向仪在大鼠海马CA3区(AP:- 4.0 mm,ML:- 4.4 mm,DV:3.8 mm)缓慢注射2.5μl KA (0.04μg/μl)(约10 min注射完毕),留针3 min,缝合头皮,按照Racine分级法对发作进行分级,发作达4或5级的大鼠用于进一步的慢性实验。对照组注射等体积的生理盐水。
     3.动物体重测量:在大鼠模型建立后第1天/3天/5天/1周/ 2周/4周和8周,分别用电子计数天平称量大鼠体重,并做好记录。
     4.动物行为学观察:在KA注射两周后,将大鼠放置于有视频摄像头监控的实验室内饲养,每天于9:00~17:00视频监控,每周5天(8小时/天, 5天/周)。评价大鼠的行为及痫样发作情况。
     5.皮层电极和颈肌电极安装:动物行为学观察2月后,将大鼠用水合氯醛(350 mg/kg)腹腔麻醉后,4个铜质电极穿透颅骨接触硬脑膜(左右各2个),用于记录皮层脑电(EEG)活动。在双侧颈肌内插入银丝电极用于记录肌电(EMG)活动。皮层与颈肌电极分别连接一微型底座,均以牙科水泥固定。
     6.多导睡眠图( PSG )的描记:通过脑电图机同步记录脑电和肌电活动。为了尽可能避免大鼠24 h睡眠-觉醒周期的影响,每次描记均从9: 00开始,连续记录3~4 h。
     7.睡眠分期:采用25 s为一分段时间,将睡眠-觉醒周期分为:①觉醒期(W):以额-顶叶引导出低幅快波脑电和明显的肌电活动为特征;②慢波睡眠( SWS):以睡眠梭形波和高幅慢波为特征,肌电活动明显减少,其中δ波少于50%属浅慢波睡眠( SWS1 ) ,超过50%属深慢波睡眠( SWS2 );③异相睡眠( PS):以低幅快波为特征,除偶尔有肌肉抽动外,无明显肌电活动。
     8.形态学分析脑电记录完毕后,对大鼠进行内灌注取脑,选出有典型海马结构的脑组织脱水后利用冰冻切片机切片,连续切片4张,片厚20μm,分成2组,每组各2张。一组做Nissl染色,以评价各组实验大鼠海马各区神经元损伤情况;另一组做Timm染色,以评价各组实验大鼠苔状纤维发芽程度。
     9.统计学分析统计分析采用SPSS 13.0统计分析软件。统计数据用均数±标准误表示。
     结果:
     1.大鼠体重变化:术后癫痫组大鼠体重明显下降,3天后癫痫组和对照组体重无统计学差异。
     2.行为学结果:NS组(n = 12)未见一只实验动物有自发发作;KA组(n = 12)大鼠在麻醉清醒后均出现急性发作期,发作大约在KA注射24 h后减弱并消失。但在4周后又逐渐出现自发性发作(n = 10)。
     3.造模8周后PSG描记显示,与NS组相比,KA组大鼠深慢波睡眠时间和异相睡眠时间减少,癫痫大鼠睡眠时痫样放电比率比清醒时升高。
     4.形态学结果:
     4.1. Nissl染色结果显示与NS组大鼠(n = 6)相比,KA组大鼠海马CA1区、CA3区以及齿状回的门区均有大量的神经元丢失(n = 6)。
     4.2. Timm染色结果显示NS组大鼠海马的黑色颗粒全部位于齿状回门区和CA3区辐射层(n = 6);KA组大鼠的海马除了在DG门区和CA3区锥体细胞辐射层能观察到Timm阳性颗粒外,在颗粒细胞内分子层和CA3区锥体细胞分子层可观察到大量Timm阳性颗粒(n = 6)。
     结论:
     1. KA诱导的癫痫大鼠出现类似人类颞叶癫痫发病行为学改变及神经电生理改变。
     2. KA诱导的癫痫大鼠出现类似人类颞叶癫痫的海马神经元丢失和苔状纤维发芽的病理学特征,可作为人类颞叶癫痫研究的可靠动物模型。
     3.癫痫发作能引起癫痫大鼠睡眠结构的改变,主要表现为觉醒次数增加,深慢波睡眠减少,异相睡眠减少。
Objective:
     The rats were induced temporal lobe epilepsy (TLE) by kainate acid (KA) injected to the center site of CA3 region of right hippocampus with the stereotaxic technology. The following chronic experiments were carried on this model. The epileptic model effects were analysesed via three levels: behavior monitoring, intracalvarium electrocorticographic recording and histological analyses. The changes of the configuration of sleep architecture were detected in epilepsic model rats.
     Methods:
     1. Grouping. All the rats in the experiments were divided randomly into the following two groups: normal saline (NS) group and KA + vehicle solution (KA) group.
     2. KA-induced TLE model. Adult male Wistar rats (220-260 g and clean stage) were used in the experiments. Under chloral hydrate (350 mg/kg, i.p.) anesthesia, rats were placed on the stereotaxic apparatus and 2.5μl KA (0.04μg/μl) was slowly injected (about 10 min) to CA3 region of right hippocampus (4.0 mm posterior to bregma, 4.4 mm lateral to the midline, 3.8 mm below dura). The needle was left for 3 min and the rats’scalps were sutured. The behavioral progression of KA-induced seizures was scored according to Racine’s standard classification. Those rats that could reach at least the class 4 or 5 seizures were used in this study. The same volumes of normal saline to the same site were injected in the control group.
     3. Weight measure. The body weights of both groups were recorded on the 1st /3rd /5th /1st week/2nd week/ 4th week/8th week after KA injected.
     4. Behavior monitor. Two weeks after KA injection, the spontaneous seizures number of rats was recorded 5 days every week from 9:00 to 17:00 (8 h/d, 5 d/week) by video camera.
     5. Cortex electrodes and nuchal muscle electrodes install. After the behavior monitoring, under chloral hydrate (350 mg/kg, i.p.) anesthesia, four copper cortical electrodes were screwed into the skull (two on the left and two on the right) in order to record electroencephalogram (EEG). Two silver electrodes were placed under the nuchal muscles in order to record electromyogram (EMG). EEG/EMG electrodes were connected to a micropedestal socket. Dental cement was then used to affix all the leads and cannulaes to the skull.
     6. EEG record. The EEG/EMG signals were synchronously recorded by an EEG machine. In order to reduce the effect of sleep-wake cycle, the EEG record was started from 9:00 every day, and continuously recorded for 4~6 h.
     7. Sleep phases. The sleep-wake cycle was devided into four phases:①Wake (W) was identified by the presence of desynchronized-EEG and high-EMG activity;②Slow wave sleep (SWS) was identified by the presence of a high-amplitude slow-wave EEG and low-EMG activity, relative to that of W;③Paradoxical sleep (PS) was identified by the presence of regular theta activity on EEG, coupled with low-EMG activity relative to that of SWS and W.
     8. Morphological analysis. After the EEG recording, rats were deeply anesthetized by an overdose chloral hydrate and perfused transaorticly with the modified fixation procedure. The hippocampus was cut in 20μm thin for histological analyses. Nissl staining evaluated the degenerating neurons of CA1, CA3 and dentate gyrus. Timm staining evaluated mossy fiber reorganization in the inner molecular layer of dentate gyrus that accompanied epileptogenesis.
     9. Statistical analysis. The SPSS 13.0 software was performed in all statistical analyses. Values were expressed as mean±SEM.
     Results:
     1. Weight changes: The weight of epileptic rats lightened greatly after surgery versus the control rats. Three days after surgery, the weights of the two groups were no significant difference.
     2. Behavior results: In the NS group (n = 12), no rats appeared spontaneous seizures. In KA groups, the rats were appeared epileptic seizures when they sober up from anesthesia. The seizures disappeared spontaneously within 24 h after KA microinjection. The earliest spontaneous recurrent seizures were observed about 4 weeks after KA administration (n = 10).
     3. After 8 weeks, all of rats were performed with PSG. The SWS1 and PS decreased, while the wake was enhanced in the epileptic animal models compared with control group. The frequency of epileptic discharges in epileptic animal models was increased during sleep.
     4. Morphological results:
     4.1. Lots of neurons were lost in the CA1, CA3, and hilus region detected by Nissl staining in KA group (n = 6), compared with NS group (n = 6).
     4.2. Mossy fibers abnormally invaded the granule cell layer and the third of inner molecular layer detected by Timm staining in KA group (n = 6). However, neither neurons lost nor mossy fiber sprouting (MFS) appeared in NS group (n = 6).
     Conclusion:
     1. KA-induced epileptic rat model appears similar behavior changes with human.
     2. KA-induced epileptic rat model appears similar pathological characters in hippocampus neurons lost and MFS with human.
     3. Epileptic seizures can alter the configuration of sleep architecture. The main representative characters are that the wake was enhanced, SWS1 and PS were declined, and the frequency of epileptic discharges was increased.
引文
1. ILAE Commission Report. The epidemiology of the epilepsies: future directions. International League Against Epilepsy. Epilepsia 1997;38(5):614~618.
    2李世绰,王忠诚,周树舜,等.中国六城市居民癫痫的流行病学调查.中华神经精神科杂志,1986,19:193~195
    3杨春露,曹克勇,朱雷,等.中国农村及少数民族地区癫痫流行病学调查.中华神经外科杂志,1989,5〔增刊〕:22~28
    4 Engel J, Jr . Seizures and epilepsy. Philadelphia: F. A. Davis, 1989.
    5 Mendez M, Radtke RA. Interactions between sleep and epilepsy[J]. J Clin N- europhysiol, 2001, 18(2):106~127
    6 Bazil CW, Castro LHM, Walczak TS. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy [J]. Arch Neurol, 2000, 57(3): 363~368.
    7童晓欣,Steven J.Weate.癫痫患者的睡眠障碍.中风与神经疾病杂志,2000,7(2):733~735
    8 Bazil CW. Sleep and epilepsy [J]. Semin Neuro1, 2002,22(3):321~327
    9 Salinsky MC, Oken BS, Binder LM. Assessment of drowsiness in epilepsy patients receiving chronic antiepileptic drug therapy [J]. Epilepsia, 1996, 37(2): 181~187.
    10 Malow BA, Vaughn BV. Treatment of sleep disorders in epilepsy [J]. Epilepsy Behav, 2002, 3(5): 35~37.
    11 Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 2006;119(Pt 2):339~349.
    12 Zhang X, Cui SS, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci 2002;22(14):6052~6061.
    13 Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 2002;22(15):6650~6658.
    14 Williams PA, Wuarin JP, Dou P, et al. Reassessment of the effects of cycloheximide on mossy fiber sprouting and epileptogenesis in the pilocarpine model of temporal lobe epilepsy. J Neurophysiol 2002;88(4):2075~2087.
    15 Golden GT, Smith GG, Ferraro TN, et al. Strain differences in convulsive response to the excitotox in kainic acid [J]. Neurol Report, 1991,2(3):141~145.
    16 Dawson RJ, Wallace DR. Kainic acid-induced seizures in aged rats: neurochemical correlates [J]. Brain Res Bull, 1992,29(7):459~566.
    17 Barnes G, Puranam RS, Luo Y, et al. Temporal specific pat-terns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus [J]. Hippocampus, 2003,13(1):1~20.
    18 Waston C, Paxinos G. The Rat Btain in stereotaxic coordinates. [M]. Imprint: Academic press, 2004.
    19 Racine R, Okujava V, Chipashvili S. Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogy Clin Neurophysiol 997; 132(3): 295~299
    20 Gao J, Zhang JX, Xu TL. Modulation of serotonergic projection from dorsal raphe nucleus to basolateral amygdala on sleep-waking cycle of rats. Brain Res, 2002; 945(1): 60~70.
    21 Kobau R, Pnce P Knowledge of epilepsy and familiamy with this disorder in the U. S population: results from the 2002 Healthstyles Survey Epilepsia, 2002,44 1449~1454
    22 Monaghan DT, Cotman CW, The distribution of kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 1982;252(1):91~100.
    23 Henshall DC, Simon RP, Epilepsy and apoptosis pathways. J Cereb Blood FlowMetab 2005; 25(12):1557~1572.
    24 Yin HZ, Sensi SL, Ogosh F, et al. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucoseuced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons.J Neurosci, 2002, 22:1273~1279.
    25 Araujo IM, Ambrosio AF, Leal EC, et al. Neuronal nitric oxide synthase proteolysis limits the involvment of nitric oxide in kainate-induced neurotoxicity in hippocampal neurons. J Neurochem 2003;85(3):791~800
    26 Bondy S, Lee D, Oxidative stress induced by glutamate receptor agonists. Brain Res 1993;610(2):229~233.
    27 Kashihara K, Marui K, et al. Kainic acid may enhance hippocampal NO generation of awake rats in a seizure stage-related fashion. Neurosci Res 1997;32(3):189~194
    28 Kesner RP. Behavioral functions of the CA3 subregion of the hippocampus. Learn Men 2007; 14(11):771~781.
    29 Lerma J. Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 2003;4(6):481~495.
    30 Hong JS, MeGinty JF, Lee PHK, et al. Relationship between hippocampal opioid peptides and seizures [J]. Prog Neurobiol, 1993, 40:507~528.
    31 Mathern GM, Pretorius JK. Babb TL. Quantified patterns of mossy fibre sprouting and neuron densitiers in hippocampal and lesional seizures.J Neurosurg, 1995, 82:211~219.
    32 Proper EA, Oesteicher AB, Jansen GH , et al. Immunohistochemicazation characteri of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain, 2000, 123:19~30.
    33 Rao MS, Hattiangady B, Reddy DS, et al. Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sproutiong in the F344 rat model of temporal lobe epilepsy. J Neurosci Res 2006;83(6);1008~1105.
    34 Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cellloss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 2005;93(1):437~453.
    35 Ben-Ari Y, Repreasa A, Brief seizure episodes induce long-term potentiation and mossy fiber sprouting in the hippocampus. Trends Neurosci 1990;13(8):312~318
    36 Nadler JV. The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 2003;28(11):1649~1658.
    37 Sato K, Abe K. An experimental study on the course of trans-synaptic propagation of neural activity and plasticity in the hippocampus in kainate-induced epilepsy [J]. Brain Res Bull,2001, 55 (3): 393~400.
    38 Loscher W. Animal models of intractable epilepsy[J]. Prog Neurobiol, 1997, 53(4): 239~258
    39陶庆玲,林月桥,沈玉青.自然夜间睡眠脑电图对癫痫的诊断价值.临床脑电学杂志,1998,7:98~99
    40王玉芝.儿童颞叶癫痫的动态脑电图检查.实用医技杂志,2004, 11:1868-1869
    41 Cen Q, He S, Hu XL, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epoleptogenesis. J Neurosci 2007;27(3):542~552
    42 Proper EA, Oestreicher AB, Jansen GH, et al. Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brian, 2000, 123:19~30.
    43 Toshinori H, Douglas K, Seung-in C, et al. Hippocampal neurotransplantatione valuated in the rat kainic acid epilepsy model. Neurosurgery , 2004 , 55 ( 1)∶191-20~0.),
    44 Mulle C, Sailer A, Perez-Otano I, et, al. Altered synnaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice.Nature 1998;392(6676):601~605.
    45丁成云,徐群渊,栾国明.难治性癫痈的病理学与多药耐药基因表达的研究.首都医科大学学报, 2005;26(6): 714~718
    46宋颖,孙异临,乔慧,等.难治性颞叶癫痫患者棘波灶及海马突触损伤的电镜观察.中国康复理论与实践,2008;14(1):26~28
    47 Bazil CW, Castro LH, Walczak TS. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy. Arch Neurol, 2000, 57: 363~368.
    48 Touchon J, Baldy-Moulinier M, Billiard M , et al. Sleep organization and epilepsy. Epilepsy Res Suppl, 1991, 2: 73~81.
    49 Bazil CW, Walczak TS. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia, 1997, 38: 56~62.
    50 Spouse MN, da Silva AM, Sanunaritano M. Circadian rhythm, sleep and epilepsy. J Clin Neurophysiol, 1996, 13(1); 32~50.
    51 Malow BA, Kushwaha R, Lin X, et al. Relationship of interictal epileptiform discharges to sleep depth in partial epilepsy. Electroencephalogr Clin Neurophysiol, 1997, 102: 20~26.
    52 Ferrillo F, Beelke M, Nobili L. Sleep EEG synchronization mechanisms and activation of interictal epileptic spikes. Clin Neurophysiol, 2000, 111: S65~73.
    53钱伯初,史红,郑晓亮.新的失眠动物模型研究概述.中国新药杂志,2008年,17(1):1~4
    1 Michaels A. Sleep and epilepsy sleep medicine [M]. NewYork: Oxford University Press Inc, 1999.350~372.
    2 Spouse MN, da Silva AM, Sanunaritano M. Circadian rhythm, sleep and epilepsy. J Clin Neurophysiol, 1996, 13(1); 32~50
    3 Maloh BA, Kushwaha R, Lin X, et al. Relationship of interictal epileptiform discharges to leep depth in partial epilepsy. Electroencephalogy Clin Neurophysiol, 1997, 102(1):20~26
    4 Shouse MN. Differences between two feline epilepsy models in sleep and wakingstate disorders, state dependency of seizures and seizure susceptibility: amygdala kindling interferes with systemic penicillin epilepsy. Epilepsia, 1987, 28(4): 399~ 408.
    5 Nobili L, Baglietto MG, Beelke M, et al. Spindles inducing mechanism modulates sleep interictal epileptic discharges activation in the Landau–Kleffner syndrome. Epilepsia 2000, 41(2): 201~206.
    6 Ferrillo F, Beelke M,Cossu M, et al. Sleep-EEG modulation of interictal epileptiform discharges in adult partial epilepsy: a spectral analysis study. Clin Neurophysiol, 2000, 111(5): 916~923
    7 Steriade M, McConmick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused burin. Science, 1993,262(5134):679~685
    8 Achermann P, Dijk DJ. Brunner DP, et al. 4 model of human sleep homeostasis EEG slow-wave activity quantitative comparison old data and based on simulations. Brain Res Bull, 1993, 31(1~2): 97~113.
    9王华燕,徐国英,王宝婵,等.动态脑电图监测对癫痫诊断的价值[J].脑与神经疾病杂志, 2000, 8(6): 368~369.
    10吴立文,杨炼红,王立平,等.额叶癫痫发作录像脑电图特点分析[J].中华神经科杂志, 1999, 33(2): 71~72.
    11 Crespel A, Baldy-Moulinier M, Coubes P. The relationship between sleep and epilepsy in frontal and temporal lobe epilepsies practical and physiopathologic considerations [ J]. Epilepsia, 1998, 39(2): 150~157.
    12郑纪银,吴逊,响红军,等.204例儿童发作性癫痫的24小时脑电图监测[J].临床脑电学杂志,1995,4(3):131~133.
    13乔慧,谭郁玲.额叶癫痫患者睡眠EEG放电规律的探讨[J].临床脑电学杂志, 1998,7(3):155~158.
    14 Bazil CW, Walczak TS. Effects of sleep and sleep stage,epileptic and nonepileptic seizures. Epilepsia. 1997, 38 (1) : 56~62.
    15 Sammaritano M, Gigli GL, Gotman J. Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology, 1991,41(2): 290~297.
    16 Herman ST, Walczek TS, Bazil CW. Distribution of partial seizures during the sleep -wake cycle: differences by seizures onset site. Neurology, 2001,56(11):1453~ 1459.
    17 Hofle N, Pans T, Reutens D, et al. Regional cerebral blood flow changes as a function of delta and spindle activity doting slow wave sleep in human. J Neurosci, 1997, 17(12) : 4800~4808.
    18 Dalla Bernadine B, Beghini G. Rolandic spikes in children with and without epilepsy ( 20 subjects polygraphically studied during sleep ). Epilepsia, 1976, 17(2) :161~167.
    19 Clemens B, Majoros E. Sleep studies in benign epilepsia of childhood with rolandic spikes:Ⅱanalysis of discharge frequency and its relation to sleep dynamics. Epilepsia, 1987, 28(1): 24~27.
    20 Nobili L, Baglietto MG,Beelke M, et e1. Distribution of epileptiform discharges during nREM sleep in the CSWSS syndrome: relationship with sigma and delta activities. Epilepsia Res, 2001, 44(2~3): 119~128
    21 Adadi N, Alaroon G, Binnie GD, et al. Predictive value of interictal epileptiform discharges during Non-REM sleep on scale EEG recurdings for the lateralization of epileptogenesis. Epilepsia, 1998, 39(6): 628~632.
    22 Oldani A , Zucconi M , Ferini S, et al. Automal dominant nocturnal frontal lobe epilepsy: Electroclinical picture [J].Epilepsia,1996,37(10):964~966
    23刘晓燕,左启华,林庆,等.儿童失神性癫痫EEG放电昼夜规律的探讨[J].临床脑电学杂志,1996,5(1):41~43
    24 Mendez M, Radtke RA. Interactions between sleep and epilepsy[J]. J Clin N- europhysiol, 2001,18(2):106~127
    25 Bazil CW. Sleep and epilepsy[J]. Semin Neuro1, 2002,22(3):321~327
    26 Polomino A, Carballo M, Rodriguez E, et al. Analysis of the changes observed in the sleep EEG recording of patients with juvenile myoclonic epilepsy[J]. Rev N- euro1, 1998,27(159):801~804
    27 Gigh G, Calia E. Marciani ma sleep microstructure and EEG epileptiform activety in patients with juvenile myoclonic[J]. Epilepsia ,1996,33(5);799~804
    28 Darke ME Jr, Pakalnis A, Padamadan H, et al. Sleep spindles in epilepsy[J]. Clin Electroencephalography, 1997,22(3):144~149
    29 Bazil CW, Castro LHM, Walczak TS. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy [J]. Arch Neurol, 2000, 57(3): 363~368.
    30 Miranda F. Sleep apnea. Clin Electroencephalography 1993,24:101
    31 Dadmehr N, Congbalay DR, Pakalnis A, et al. Sleep and Waking disturbance epilepsy. Clinlectroencephalography, 1987,18:136
    32 Martin R, John R, Kim N. Evaluation and Management of Sleep Disorders. Washington DC: American PsychiatricPress, 1997,13
    33 Marsilio D,Foldvary N,Perry M,et al. Sleep disorders in epileptic patients with excessive daytime sleepiness[J]. Sleep Res, 1997,26:569.
    34 Manni R,Politine L,Ratti MT,et al. Sleepiness and its associated factors in epilepsy patients[J]. Sleep,2000,21:17.
    35 Cortesi F,Giannottl F. Ottaviano S.Sleep problems and daytime behavior in childhood idiopathic epilepsy[J]. Epilepsia,2001,40:1557~1565.
    36童晓欣,Steven J.Weate.癫痫患者的睡眠障碍.中风与神经疾病杂志,2000,7 (2):733~735
    37 Vaughn BV, D Cruz OF,Beach R,et al. Improvement of epileptic seizure control with treatment of obstructive sleep apnea[J].Seizure,2003,5:73~78.
    38 Lannon SL,Vaughn BV. Sleep hygiene in people with epilepsy[J].Epilepsia,1997,38:227.
    39 Wooten VD, Buysse DJ. Sleep in psychiatric disorders [M], Chokroverty S (ed). Sleep Disorders Medicine. Boston: Butter-worth Heinemann, 1999: 573~586.
    40 Fabio P, Anna S, Grazia MM, et al. Effect of antiepileptic drugs on sleep[J].Clinical Neurophysiology, 2000, 111(Suppl2):115~119
    41 Sammaritano MR, Sherwin A. Effects of anticonvulsants on sleep[M]//Bazil CW, Malow BA, Sammaritano MR (ed). Sleep and Epilepsy: The Clinical Spectrum. Amsterdam: Elsevier, 2002:187~194.
    42 Chokroverty S, Quinto C. Sleep and epilepsy [M]//Chokroverty S (ed). Sleep Disorders Medicine. Boston: Butterworth Heine-mann, 1999:697~727.
    43王薇薇,谢群慧,盛奉江,等.癫痫患者全夜自然睡眠结构的研究.中风与神经疾病杂志,2003,20(6):39~49
    44 Placidi F, Diomedi M, Scalise A, et al. Effect of anticonvulsants on nocturnal sleep in epilepsy [J]. Neurology, 2000, 54(Sup):S25~32.
    45 Hening WA, Allen R, Walters AS, et al. Motor functions and dysfunctions of sleep [M]// Chokroverty S (ed). Sleep Disorders Medicine. Boston: Butterworth Heinemann, 1999:441~507.
    46 Salinsky MC, Oken BS, Binder LM. Assessment of drowsiness in epilepsy patients receiving chronic antiepileptic drug therapy [J]. Epilepsia, 1996, 37(2): 181~187.
    47 Malow BA, Vaughn BV. Treatment of sleep disorders in epilepsy[J]. Epilepsy Behav, 2002, 3(5): 35~37.
    48 Miranda F. Sleepapnea. ClinElectroencephalography.1993,24:101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700