竹叶挥发油化学成分及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物资源的综合利用一直是人们研究开发的重点,对植物中化学成分及功能物质的合理开发利用具有重要的现实意义。许多植物挥发油由于其特殊的化学组成,表现出了很好的生物活性,成为开发高效低毒天然香料、抗氧化剂和杀菌剂的重要来源。我国竹子种类多,面积广,经济价值高。竹叶挥发油具有典型的绿叶特征,接近瓜、果、茶的香气,是一种良好的天然香料。竹叶挥发油中含有多种生理活性成分,有可能通过一系列技术加工制备成香料、化妆品、天然抗氧化剂、天然杀菌剂等高附加值产品。
     为了全面描述竹叶挥发油化学组分的种类、含量,总结禾本科竹亚科竹叶挥发油成分组成规律;揭示竹叶挥发油的抗氧化活性和抗菌活性,同时探讨竹叶挥发油成分与其生物活性间关系,为将来竹叶挥发油在日化领域中的应用提供参考依据。本研究选取橄榄竹、粉单竹、孝顺竹、银丝竹、青皮竹、佛肚竹、黄金间碧竹、短穗竹、香糯竹、方竹、香竹、绿竹、版纳甜龙竹、麻竹、花吊丝竹、云南龙竹、阔叶箬竹、箬竹、尖头青竹、罗汉竹、金镶玉竹、白哺鸡竹、淡竹、水竹、美竹、篌竹、毛竹、乌哺鸡竹、宜兴苦竹和福建茶竿竹等30种竹叶为研究对象,采用水蒸气蒸馏法提取竹叶挥发油,考察了提取时间对挥发油得率的影响;采用GC-MS方法对获得的竹叶挥发油化学成分进行了定性、定量分析;利用红外光谱技术,描述了竹叶挥发油的红外特征;采用清除DPPH自由基法和滤纸片法对竹叶挥发油的抗氧化、抗菌活性进行了测定,并探讨了竹叶挥发油生物活性与其化学成分间的关系。通过研究,得出以下结论:
     1.为保证竹叶挥发油成分的保真性,尽可能地排除其它因素干扰,本研究采用挥发油提取器提取竹叶挥发油并增加了对水溶性挥发组分的提取。研究表明,竹叶挥发油水蒸气蒸馏方法的工艺条件为:蒸馏时间6h、料液比1:8,以正己烷捕集馏出物,用无水乙醚萃取水溶性挥发性组分。水蒸气蒸馏方法设备简单、生产成本低,适宜竹叶挥发油的提取。竹叶挥发油得率范围为0.252%~0.921%(以干重计)。竹叶挥发油提取得率在0.2%~0.4%之间的竹种有12种,它们是毛竹、尖头青竹、淡竹、水竹、银丝竹、佛肚竹、金镶玉竹、篌竹、宜兴苦竹、香竹、乌哺鸡竹和福建茶竿竹;竹叶挥发油提取得率在0.4%~0.6%之间的竹种有短穗竹、青皮竹、白哺鸡竹、美竹、香糯竹、箬竹、孝顺竹、粉单竹、花吊丝竹、版纳甜龙竹和方竹,共计11种;竹叶挥发油提取得率在0.6%~0.8%之间的竹种有5种,分别是云南龙竹、麻竹、罗汉竹、绿竹和橄榄竹;竹叶挥发油得率高于0.8%的竹种有阔叶箬竹和黄金间碧竹。
     2.采用GC-MS联用技术分析30种竹叶挥发油化学成分的结果表明,竹叶挥发油主要以含氧化合物为主,醇、烃、酚、酮、醛及酸类化合物是竹叶挥发油的主要组成组分,其中醇类物质占有相当大的比重,相对含量达24.703%~78.524%。经GC-MS分析,不同竹叶挥发油主含化学成分大体一致,竹种间挥发油的差异主要表现在一些化合物种类上的不同,以及相同化合物含量上的不同。综合分析,竹叶挥发油含有的主要成分有叶醇、植物醇、橙花叔醇、2-辛醇、异植物醇、4-乙烯基-2-甲氧基-苯酚、植酮、β-紫罗兰酮、α-紫罗酮、法尼基丙酮、烟叶酮、反式-6,10-二甲基-5,9-十一烷二烯-2-酮、2-己烯醛、壬醛、苯乙醛、二氢猕猴桃内酯、邻苯二甲酸丁辛酯、甲酸二十一酯、2-二甲氨基-4-甲基-4-戊烯腈、十六烷酸、十八烷酸、2,3-二氢-苯并呋喃、十七烷基环氧乙烷、三十六烷和二十四烷等化合物。
     通过对参试竹种竹叶挥发油化学成分总结,竹叶挥发油含有17种共有成分,它们是叶醇、2-己烯醛、对二甲苯、苯乙醛、反式-1-(2,6,6-三甲基-1,3-环己二烯-1-基)-2-丁烯-1-酮、α-紫罗酮、反式-6,10-二甲基-5,9-十一烷二烯-2-酮、4-(2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基)-3-丁烯-2-酮、二氢猕猴桃内酯、十五烷、十六烷、十八烷、邻苯二甲酸二异丁酯、植酮、法尼基丙酮、1-(1,2-丙二烯)-环己醇、顺-9-二十三烯等化合物。
     对竹叶挥发油的17种共有成分进行主成分分析,结果表明竹叶挥发油共有特征成分以醇、酮和醛化合物为主,得出叶醇、植酮、苯乙醛、法尼基丙酮、反式-6,10-二甲基-5,9-十一烷二烯-2-酮、2-己烯醛和α-紫罗酮等7种化合物为竹叶挥发油主要共有特征成分。竹叶挥发油中叶醇含量范围为7.326%~ 69.364%,叶醇含量最高的淡竹叶挥发油约为含量最低的短穗竹叶挥发油的9.5倍;2-己烯醛占竹叶挥发油的0.671%~3.967%,在毛竹叶挥发油中含量最高;竹叶挥发油中植酮含量为0.983%~9.567%;苯乙醛在竹叶挥发油中含量为0.525%~4.131% ;法尼基丙酮含量为0.110%~2.943% ;α-紫罗酮含量为0.281%~2.008%;反式-6,10-二甲基-5,9-十一烷二烯-2-酮含量为0.152%~2.575%。叶醇、苯乙醛、2-己烯醛、α-紫罗酮、植酮和法尼基丙酮特征成分均有青叶香气和果香味,是竹叶挥发油致香化合物,对揭示竹叶挥发油的香气组成特征有重要参考价值。
     3.利用FT-IR法对30种竹叶挥发油进行了成分分析和比较。竹叶挥发油所含化学成分相对集中,红外光谱也显示出很高的特征性。由于处理方法通用,测试样品中的化学成分相对稳定,因此,其光谱具有很高的重复性和可比性。光谱差异是竹叶挥发油所含化学成分差异的客观反映。结合竹叶挥发油所含烃、醇、酚、酮、醛类化合物的红外特征,可将所得竹叶挥发油红外光谱图划分为五个区段:区段一(3400~3200cm~(-1))、区段二(3000~2800cm~(-1))、区段三(2200~1900cm~(-1))、区段四(1800~1350cm~(-1))、区段五(1300~800cm~(-1));区段内峰~3360cm~(-1)、~2950 cm~(-1)、~2918cm~(-1)、~2850 cm~(-1)、~1700 cm~(-1)、~1060cm~(-1)可从宏观上分别表征竹叶挥发油所含的醇类、酚类、烃类和羰基类化学成分,2100~1850cm~(-1)及1160~800cm~(-1)区段的非共有峰可表征各竹种之间化学成分的差异。红外图谱作为竹叶挥发油这类含有混合物质群的验证识别手段较为客观、可靠,为竹叶挥发油成分分析提供了有利补充。
     4.本实验研究表明,采用分光光度法测定竹叶挥发油清除DPPH自由基能力的测定波长为517 nm,反应体系为51.54 mg·mL~(-1)的DPPH 2.0 mL溶液中加0.5mL不同浓度样品溶液,反应时间40min,以IC50值和AE值作为评价竹叶挥发油清除DPPH自由基能力的指标。采用DPPH·法评价竹叶挥发油的抗氧化活性,可以较客观的表达竹叶挥发油的生物活性,是一种简单可行的竹叶挥发油抗氧化活性评价分析方法。
     以50%抑制浓度(IC50)比较,竹叶挥发油的IC50值越小其清除DPPH自由基能力就越强。竹叶挥发油的IC50值在2~4 mg?mL-1之间的竹种有黄金间碧竹、毛竹、麻竹、孝顺竹、银丝竹、金镶玉竹;竹叶挥发油的IC50值在4~6 mg?mL-1之间的竹种有尖头青竹、罗汉竹、绿竹、福建茶竿竹、水竹、橄榄竹、云南龙竹、乌哺鸡竹;竹叶挥发油的IC50值在6~8 mg?mL-1之间的竹种有版纳甜龙竹、青皮竹、白哺鸡竹、佛肚竹、美竹、篌竹、阔叶箬竹、宜兴苦竹、花吊丝竹、淡竹;竹叶挥发油的IC50值在8~10 mg?mL-1之间的竹种香竹和香糯竹;竹叶挥发油的IC50值大于10 mg?mL-1的竹种有粉单竹、方竹、短穗竹和箬竹。自由基清除能力AE值越大其清除自由基能力也越强,黄金间碧竹叶挥发油的AE值为0.370 mL·mg~(-1)是箬竹叶挥发油的6.379倍;毛竹、麻竹、孝顺竹、银丝竹和金镶玉竹叶的AE值分别达到了0.349 mL·mg~(-1)、0.303 mL·mg~(-1)、0.291 mL·mg~(-1)、0.277 mL·mg~(-1)和0.255 mL·mg~(-1),它们均表现出很强的抗氧化活性。
     黄金间碧竹和毛竹叶挥发油的抗氧化活性接近合成抗氧化剂TBHQ,1g黄金间碧竹和毛竹叶挥发油分别相当于0.309g、0.291g合成抗氧化剂TBHQ所具有的抗氧化能力。1g合成抗氧化剂TBHQ所具有的抗氧化能力分别相当于3.954g麻竹和4.117孝顺竹等竹叶挥发油的抗氧化能力。箬竹叶挥发油的抗氧化能力最低,20.655g箬竹叶挥发油才能达到1gTBHQ的抗氧化能力。
     竹叶挥发油是由醇类、酚类、酮类等具有各种官能团化合物组成的混合物,竹叶挥发油中化合物的酚基及环结构是其抗氧化作用的重要结构基础。通过30种竹叶挥发油对DPPH自由基捕集活性的比较,富含4-乙烯基-2-甲氧基-苯酚、植酮、异植物醇等成分的竹叶挥发油具有很强的清除DPPH自由基的能力并有剂量效应关系。黄金间碧竹、毛竹、麻竹等竹叶挥发油具有相当理想的抗氧化作用,是有效的外源性抗氧化剂,可通过直接或间接的途径,清除氧自由基,阻断体内脂质过氧化的进程,从而保护细胞免受过氧化损伤,维持细胞正常的生理功能。黄金间碧竹、毛竹、麻竹和孝顺竹叶挥发油具有开发天然源抗氧化剂的潜力。
     5.将提取的30种竹叶挥发油稀释成5个梯度浓度对6种测试菌种金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌、白色假丝酵母菌、黄曲霉和黑曲霉进行抗菌效果测定。处理24小时后,高浓度(25 mg·mL~(-1))的宜兴苦竹和阔叶箬竹叶挥发油对枯草芽孢杆菌具有高度抑制作用,云南龙竹和花吊丝竹叶挥发油对金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌具有较高抑制作用。高浓度(25 mg·mL~(-1))的云南龙竹、花吊丝竹、宜兴苦竹和阔叶箬竹叶挥发油对白色假丝酵母菌、黄曲霉和黑曲霉具有中度抑制作用。
     综合分析,不同竹叶挥发油对相同菌种抑制效果不同,同一竹叶挥发油对不同菌种抑制作用也不同。云南龙竹、花吊丝竹和阔叶箬竹叶挥发油对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌、白色假丝酵母菌、黄曲霉和黑曲霉均有体外抑制作用,宜兴苦竹叶挥发油对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和白色假丝酵母菌有抗菌作用,并且在一定剂量范围内随剂量增加而增强。4种竹叶挥发油对不同菌种的抑制作用存在差异,并具有一定的互补性。竹叶挥发油的抗细菌效果优于抗真菌。
     竹叶挥发油中含有许多不饱和的醇、醛、酮、酸和萜烯类化合物,在这些含量较高的物质结构中均含有不饱和双键,表现出一系列的生理活性。其中云南龙竹、花吊丝竹、宜兴苦竹和阔叶箬竹叶挥发油等富含叶醇、2-辛醇、植酮、紫罗兰酮、2-己烯醛、苯乙醛、壬醛化合物,对测试菌种有不同程度的抑制作用。竹叶挥发油中的叶醇、2-辛醇、植酮、紫罗兰酮、2-己烯醛、苯乙醛、壬醛是其抗菌作用的重要物质基础。竹叶挥发油中化合物的羟基及不饱和双键是其抗菌作用的重要结构基础。竹叶挥发油是粗提取物,是很多成分的混合体系,抗菌作用效果可能是多种成分协同、多靶点作用的结果。云南龙竹、花吊丝竹、阔叶箬竹和宜兴苦竹叶挥发油具有开发天然源杀菌剂的潜力。
The comprehensive utilization of plant resources has become the focus of research, it is very important to develop and utilize the effective components from plants. Many plant essential oils are composed of the special chemical compositions, displaying the strong biological activities, and become the important source of highly effective low poisonous natural perfume, the antioxidant and the fungicide. There are many kinds of bamboo species in our country that have broad area and the high economic value. The essential oil from bamboo leaves has the green leaf fragrance, the same as melon, fruit and the tea fragrance, which is a good natural perfume. The essential oils from bamboo leaves including the many kinds of active components may be made into the perfume, the cosmetics, the natural antioxidant and the natural fungicide through a series of technical processing.
     The purpose of this paper is to describe chemical components of essential oils from bamboo leaves, and summarize the composition law of chemical components of essential oils from bamboo leaves, and reveal the antioxidant activity, antibacterial activity and their action mechanism of essential oils, so as to provide reference for the future application of essential oils in the field of daily chemical industry. This study used Acidosasa gigantea, Bambusa chungii, Bambusa multiplex (Lour.)Raeuschel, Bambusa multiplex cv.Silvertripe, Bambusa textilis, Bambusa ventricosa, Bambusa vittata, Brachystachyum densiflorum, Cephalostachyum pergracile, Chimonobambusa quadrangularis, Chimonocalamus delicatus, Dendrocalamopsis oldhami, Dendrocalamus hamiltonii, Dendrocalamus latiflorus, Dendrocalamus amoenus, Dendrocalamus yunnanicus, Indocalamus latifolius, Indocalamus tessellatus, Phyllostachys acuta, Phyllostachys aurea, Phyllostachys spectabilis, Phyllostachys dulcis, Phyllostachys glauca, Phyllostachys heteroclada, Phyllostachys mannii, Phyllostachys nidularia, Phyllostachys pubescens, Phyllostachys vivax, Pleioblastus yixingensis and Pseudosasa convexa as the research object. The essential oils from bamboo leaves were extracted by steam distillation, the chemical components of the essential oil were separated and structurally identified by gas chromatography/mass spectrometry, the relative contents of these components by the peak-area normalization method adopted in gas chromatography; Infrared features of essential oils from bamboo leaves were described by infrared spectrum technology; The antioxidant activities of essential oils were evaluated using the DPPH assays, and antibacterial activities of essential oils were experimented by filter paper method. Through the research some conclusions were as follows:
     1. For the fidelity of chemical components of essential oils from bamboo leaves, the essential oils from the bamboo leaves were obtained by steam distillation, and water soluble components were also extracted. The results indicated that the conditons of steam distillation were: the distillation time was 6h, theratio of material was 1:8, analytically pure hexane and absolute ether were used as extraction solvents. The equipment of steam distillation method is suitable for extracting essential oils from bamboo leaves. The yield distribution of essential oils was 0.252% to 0.921% (dry weight basis). The yield range of essential oils from bamboo leaves was 0.2% to 0.4%, including P. pubescens, P. acuta, P. glauca, P. heteroclada, B. multiplex cv.Silvertripe, B.ventricosa, P. spectabilis, P. nidularia, P. yixingensis, C. delicatus, P. vivax and P. convexa; The bamboo species whose essential oil yield was between 0.4% and 0.6%, including B. densiflorum, B. textilis, P. dulcis, P. mannii, C. pergracile, I. tessellatus, B. multiplex (Lour.)Raeuschel, B. chungii, D. amoenus, D. hamiltonii and C. quadrangularis, sum to 11 kinds; The yield range of essential oils was between 0.6% and 0.8%, including D. yunnanicus, D. latiflorus, P. aurea, D. oldhami and A. gigantea; The yields of essential oils from I. latifolius and B. vittata were more than 0.8%.
     2. The chemical components in the essential oils from bamboo leaves were analyzed by GC-MS. The oxygenated compounds composed of alcohols, hydrocarbon, phenols, ketones, aldehydes and acids are main fraction in essential oils. The alcohols hold about 24.703% to 78.524% of the total essential oils from bamboo leaves. After the GC-MS analysis, the essential oils from different bamboo leaves are basically identical with the main chemical components; The difference among the essential oils mainly display in some different compound types, as well as different amount of the same compound. The main components of essential oils from bamboo leaves were (z)-3-hexen-1-ol, phytol, 3,7,11-trimethyl-1,6,10-dodecatrien-3-ol, 2-octanol, isophytol, 2-methoxy-4-vinylphenol, 6,10,14-trimethyl-2-pentadecanone,β-ionone,α-ionone, farnesyl acetone, megastigmatrienone, (e)-6,10-dimethyl-5,9-undecadien-2-one, 2-hexenal, nonanal, benzeneacetaldehyde, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H) benzofuranone, 1,2-benzenedicarboxylic acid butyl octyl ester, 1-heneicosyl formate, 2-dimethylamino-4-methyl-pent-4-enenitrile, n-hexadecanoic acid, octadecanoic acid, 2,3-dihydro-benzofuran, heptadecyl oxirane, hexatriacontane and tetracosane.
     After a comprehensive analysis of chemical components in the essential oils from 30 species of bamboo leaves, the results showed that 17 kinds common components in essential oils from bamboo leaves were determined to (z)-3-hexen-1-ol, 2-hexenal, p-xylene, benzeneacetaldehyde, (e)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-one,α-ionone, (e)-6,10-dimethyl-5,9-undecadien-2-one,4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)-3-buten-2-one, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-2(4H) benzofuranone, pentadecane, hexadecane, octadecane, 1,2-benzenedicarboxylic acid bis(2-methylpropyl) ester, 6,10,14-trimethyl-2- pentadecanone, farnesyl acetone, 1-(1,2-propadienyl)-cyclohexanol and 1-octadecene.
     To reveal the characteristic components of 17 kinds common components in essential oils, principal component analysis was used to analyze the GC-MS data of the components in these samples. The characteristic components of the essential oils were determined to (z)-3-hexen-1-ol, 6,10,14-trimethyl-2-pentadecanone, benzeneacetaldehyde, farnesyl acetone, (e)-6,10-dimethyl-5,9-undecadien-2-one, 2-hexenal andα-ionone. The content range of (z)-3-hexen-1-ol was 7.326%~69.364% in essential oils, and the content of (z)-3-hexen-1-ol in essential oil of P. glauca leaves was about 9.5 times more than that of B. densiflorum leaves. The content range of 2-hexenal was 0.671%~3.967%, and P. pubescens leaves had the most content of 2-hexenal. The contents range of 6,10,14-trimethyl-2-pentadecanone, benzeneacetaldehyde, farnesyl acetone, (e)-6,10-dimethyl-5,9-undecadien-2-one andα-ionone were respectively 0.983%~9.567%, 0.525%~4.131%, 0.110%~2.943%, 0.152%~2.575%, 0.281%~2.008%. These characteristic components with the leaf fragrance and the fruit fragrance have the important reference value for revealing characteristics of aroma constituents of essential oils from bamboo leaves.
     3. The essential oils from 30 kind of bamboo leaves were scanned respectively by FT-IR. Based on infrared signature of chemical components of essential oils from bamboo leaves, the infrared spectrum of essential oil from bamboo leaves was divided into 5 sections: section one(3400~3200cm~(-1)), section two (3000~2800cm~(-1)), section three (2200~1900cm~(-1)), section four(1800~1350cm~(-1)), section five(1300~800cm~(-1)). There were the characteristic adsorption at~3360cm~(-1),~2950 cm~(-1),~2918cm~(-1),~2850cm~(-1),~1700 cm~(-1),~1060cm~(-1), which could charaterize the alcohols, phenols, hydrocarbon and carbonyl compounds of essential oils from bamboo leaves. The IR spectral which range from 2100~1850cm~(-1) and the 1160~400cm~(-1) could charaterize the difference of chemical constituents of essential oils. As the research shown, the FT-IR technique could be applied in component analysis of essential oils from bamboo leaves, and objectively reflect the global feature of essential oils. 4. By studying on absorption spectrum of DPPH solution and DPPH reaction system, the conclusion was drawn as follows, the wavelength for the determination of DPPH reaction system by spectrophotometric method was chosen to be 517nm, DPPH reaction system was 2.0mL of 51.54mg·L~(-1) DPPH + 0.5mL of the sample solution with the reaction time of DPPH reaction system of 40 min. IC50 value and AE value were used as the indexs to evaluate scavening capacity of essential oils from bamboo leaves. According to the median inhibition concentration( IC50 value) , the smaller the IC50 value of the essential oils have the stronger ability of scavenging DPPH free radicals. The IC50 value range of the essential oils from bamboo leaves was 2~4 mg·mL~(-1), including B. vittata, P. pubescens, D. latiflorus, B. multiplex (Lour.)Raeuschel, B. multiplex cv.Silvertripe, P. spectabilis; The IC50 value range of the essential oils was 4~6 mg·mL~(-1), including P. acuta, P. aurea, D. oldhami, P. convexa, P. heteroclada, A. gigantea, D. yunnanicus, P. vivax; The IC50 value range of the essential oils was 6~8 mg·mL~(-1), including D. hamiltonii, B. textilis, P. dulcis, B.ventricosa, P. mannii, P. nidularia, I. latifolius, P. yixingensis, D. amoenus, P. glauca; The IC50 value range of the essential oils was 8~10 mg·mL~(-1), including C. delicatus and C. pergracile; The IC50 values of B. chungii, C. quadrangularis, B. densiflorum and I. tessellatus were more than 10 mg·mL~(-1). The more the abilitiy of free radical elimination value(AE value), also the stronger ability of scavenging free radicals. The AE value of essential oils from B. vittata leaves was 0.370 mL·mg~(-1), which was 6.379 times more than that of I. tessellatus. The AE values of essential oils from P. pubescens, D. latiflorus, B. multiplex (Lour.)Raeuschel, B. multiplex cv.Silvertripe and P. spectabilis leaves were 0.349 mL·mg~(-1)、0.303 mL·mg~(-1)、0.291 mL·mg~(-1)、0.277 mL·mg~(-1)and 0.255 mL·mg~(-1), respectively. They all showed strong antioxidant activities.
     The antioxidant activities of B. vittata and P. pubescens leaves were close to that of TBHQ. The antioxidant activities of 1g essential oil from B. vittata and P. pubescens leaves were comparable with that of 0.309g、0.291g TBHQ, respectively. The antioxidant activity of 1g TBHQ was comparable with that of 3.954g essential oil from D. latiflorus and 4.117g B. multiplex (Lour.)Raeuschel leaves. The antioxidant activity of essential oil from I. tessellatus leaves was the lowest. The antioxidant activity of 20.655g essential oil from I. tessellatus leaves was comparable with that of 1g TBHQ.
     The phenolic group and the ring structure of essential oils were important structural basis of antioxidant activities of essential oils from bamboo leaves. The data indicated that essential oils obtained from B. vittata leaves, P. pubescens leaves, D. latiflorus leaves, and B. multiplex (Lour.)Raeuschel leaves may be used as natural antioxidant.
     5. The essential oils from bamboo leaves were diluted into a series of concentration of sample solutions: 5.0 mg·mL~(-1), 10.0mg·mL~(-1), 15.0mg·mL~(-1), 20.0mg·mL~(-1), 25.0mg·mL~(-1), and the antibacterial effects of sample solutions on Staphyloccocus aureus, Bacillus subtili, Escherichia coli, Candida albicans, Aspergillus flavus and Aspergillus niger were tested by using filter paper method. After 24 hours' culture, the essential oils from P. yixingensis leaves and I. latifolius leaves had strong inhibitory effect on B. subtilis, and the essential oils from D. yunnanicus leaves and D. amoenus leaves had better inhibition action to S. aureus, B. subtilis and E. coli at high concentration (25 mg·mL~(-1)). The essential oils from D. yunnanicus leaves, D. amoenus leaves, P. yixingensis leaves and I. latifolius leaves had moderate inhibitory effect on C. albicans, A. flavus and A. niger at 25 mg·mL~(-1).
     Based on a comprehensive analysis, The essential oils from D. yunnanicus leaves, D. amoenus leaves and I. latifolius leaves had inhibition action to S. aureus, B. subtili, E. coli, C. albicans, A. flavus and A. niger , and the essential oils from P. yixingensis leaves had inhibition action to S. aureus, B. subtili, E. coli and C. albicans. The higher the concentration of the essential oils, the better the antibacterial activity. The essential oils extracted from one kind of bamboo leaves have different inhibition action to six strains, and essential oils extracted from different species of bamboo leaves have different inhibition action to one kind of strain. The antibacterial effects of essential oils from bamboo leaves on bacteria are better than fungi.
     There were some unsaturated compounds in the essential oils from bamboo leaves, which could display a series of physiological activities, owing to unsaturated double bond. The essential oils from D. yunnanicus leaves, D. amoenus leaves, P. yixingensis leaves and I. latifolius leaves rich in (z)-3-hexen-1-ol, 2-octanol, 6,10,14-trimethyl-2-pentadecanone, ionone, 2-hexenal, benzeneacetaldehyde and nonanal showed inhibition action to six strains. The chemical components from essential oils, including (z)-3-hexen-1-ol, 2-octanol, 6,10,14-trimethyl-2-pentadecanone, ionone, 2-hexenal, benzeneacetaldehyde and nonanal, were important material base of antibacterial effects of essential oils from bamboo leaves. The hydroxy and the unsaturated double bond were important structural basis of antibacterial effects of essential oils from bamboo leaves. The essential oil from bamboo leaves was the crude extraction, which was composed of multi-ingredient. The antibacterial activities of essential oils from bamboo leaves were due to the synergistic effect of multi-ingredient. The data indicated that essential oils obtained from D. yunnanicus leaves, D. amoenus leaves, P. yixingensis leaves and I. latifolius leaves may be used as natural fungicide.
引文
[1]白雁,鲍红娟,陈志红,等.药用菊花不同提取部位的红外光谱分析.中成药,2007,29(3):401-406
    [2]毕和平,韩长日,梁振益,等.海南木莲叶挥发油化学成分研究.中国野生植物资源,2006,25(6):58-60
    [3]蔡建秀,尤祖卿,黄晓冬,等.天竺桂挥发油化学成分及抑菌活性研究.热带亚热带植物学报,2006, 14(5): 403-408
    [4]操海群,岳永德,花日茂,等.植物源农药研究进展.安徽农业大学学报,2000,27(1):40-44
    [5]操海群,岳永德,彭镇华,等.竹提取物对蚜虫生物活性的研究.植物保护,2003,29(2):33-36
    [6]操海群,岳永德,彭镇华,等.毛竹提取物的抑菌活性及其有效成分的初步分离.植物病理学报,2005, 35(5):428-433
    [7]操海群,岳永德,彭镇华,等.竹提取物对棉铃虫幼虫体内几种酶系活性的影响.林业科学,2006,42(7):145-148
    [8]操璟璟,陈凤美,龚玉霞,等.深山含笑叶片的挥发油成分及其生物活性研究.植物资源与环境学报, 2007,16(3): 27-30
    [9]曹华茹,毛燕,王学利. GC-MS法测定六月霜的挥发油成分.浙江林学院学报,2006,23(5):538-541
    [10]陈海峰,罗时玮,姚建华,等.红外谱图中特征峰与对应子结构相互关系的确定.计算机与应用化学,2000,17(2),183-184
    [11]陈红兵,宋炜,王金胜,等.气相色谱-质谱法分析万寿菊根挥发油化学成分.农药,2007, 46(2):114-115
    [12]陈华,郁志勇,朱国斌.中国白酒香型的化学模式识别(Ⅰ)—主成分分析和因子分析.食品科学,2000, 21(7):42-46
    [13]陈健,姜建国,郑艾初,等.水翁花挥发油提取工艺研究.食品科学,2006,27(10):409-411
    [14]陈健,姚成.中药材中挥发油化学成分的气相色谱-质谱研究.分析科学学报,2006,22(4):485-486
    [15]陈丽艳,崔志恒.植物精油抗菌活性的研究进展.黑龙江医药,2006,19(3):197-198
    [16]陈孟兰,赵钟祥,阮金兰.乌金草挥发油的化学成分研究.医药导报,2006,25(5):381-383
    [17]陈彦,林晓艳.箭竹叶提取物的抗微生物作用.食品科学,2006,27(5):64-67
    [18]程立超,迟德富. 10种杨属植物树皮挥发油的化学成分分析.林业科学研究,2007,20(2):267-271
    [19]邓兵,杜志云,唐煌,等.姜黄素类似物的合成及其清除自由基的研究.化学研究与应用,2006,18(9):1124-1126
    [20]丁玉强,陈春英,Elmahadi E A,等.箬竹叶水溶性多糖的色谱研究.色谱,1996,1l(6):470-472
    [21]董大钧. SAS统计分析应用.北京:电子工业出版社,2008,358-428
    [22]杜力.叶绿素铜钠.化工商品技术情报,1995, 2:47-48
    [23]方德秋,肖顺元.柠檬醛及香精油的抗菌性研究概述.天然产物研究与开发,1994,6(4):75-77
    [24]方允中,郑荣梁,沈文梅.自由基生命科学进展.北京:原子能出版社,1995,13-27
    [25]冯黎莎,付先龙,陈放,等.金荞麦提取物对植物病原菌的抑菌活性初探.四川大学学报(自然科学版), 2006,43(3):688-691
    [26]付晓春,王敏伟,李少鹏,等.竹叶提取物的抗缺氧作用.中药新药与临床药理,2005,16(2):100-102
    [27]高梦祥,吴守程.微波技术提取竹叶多糖的研究.陕西农业科学,2006,(3):22-24
    [28]郭雪飞,殷慧伟,严善春.植物挥发性气味物质成分的收集与分析.东北林业大学学报,1997, 25(5):105-109
    [29]郭雪峰,岳永德,汤锋,等.用清除有机自由基DPPH法评价竹叶提取物抗氧化能力.光谱学与光谱分析,2008,28(7):1578-1582.
    [30]韩荣春,王冰.垂盆草挥发油成分研究.辽宁中医药大学学报,2007,9(3):75-76
    [31]郝晓丽,许申鸿,杭瑚. TBHQ与VE抗氧化协同作用的研究.青岛大学学报,2003,18(3):53-54
    [32]何春雷,罗学平,李丽霞,等.竹叶黄酮提取工艺的研究.四川农业大学学报,2006,24(4):409-412
    [33]何坚,孙保国.香料化学与工艺学.北京:化学工业出版社, 2002,57-89
    [34]何开跃,李晓储,张双全.观光木叶片挥发油成分及其对超氧阴离子抑制与清除活性研究.林业科学研究,2007,20(1):58-62
    [35]何培青,柳春燕,郝林华,等.植物挥发性物质与植物抗病防御反应.植物生理学通讯,2005,41 (1):105-110
    [36]何跃君,岳永德.竹叶提取物的有效成分及其应用研究进展.生物质化学工程,2008,42(3):31-38
    [37]贺近格,李启基.林产化学工业全书(第3卷).北京:中国林业出版社,2001,1965
    [38]贺莉娟,梁逸曾,赵晨曦.唇形科植物挥发油化学成分的GC/MS研究.化学学报,2007,65 (3):227-232
    [39]滑艳,邓雁如,汪汉卿.各种挥发油的药理活性及在医学方面的应用.天然产物研究与开发,2003,14 (5):467-469
    [40]黄春燕,吴卫,郑有良.鱼腥草不同部位挥发油化学成分的比较.药物分析杂志, 2007,27(1):40-44
    [41]黄昊,李静,秦竹,等.中药配方颗粒红外指纹图谱研究.分析化学,2003,31(7):828-832
    [42]黄文,王益.竹叶的化学成分及应用进展.中国林副特产,2002(3):65-66
    [43]黄文,王益.竹叶提取物抑菌特性的研究.林产化学与工业,2002,22(1):68-70
    [44]黄占旺,邹双双,熊水波.毛竹叶提取物抑茵作用的初步研究.江西农业大学学报,2005,27(6):960-963
    [45]贾红丽,张丕鸿,计巧灵,等.新疆阿勒泰百里香挥发油化学成分GC-MS分析及抗氧化活性测定.食品科学,2009,30(4):224-229
    [46]江苏新医学院编.中药大辞典.上海:上海科学技术出版社,1990,898
    [47]江琰,刘克武,刘晓雯.几种植物芳香油对食用油脂抗氧化作用的研究.粮油加工,2000,66(2):14- l5
    [48]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002,3-5
    [49]金旭东,陈庆宏,康平利,等.竹叶挥发油的提取及成分分析.天然产物研究与开发,1999,11(4):71-73
    [50]瞿万云,余爱农,叶锐.超临界CO_2萃取月季花挥发油的工艺研究.中药材,2006,29(5):488-450
    [51]孔垂华,黄寿山,胡飞.胜红蓟化感作用研究V.挥发油对真菌、昆虫和植物的生物活性及其化学成份.生态学报,2001,21(4):584-587
    [52]赖椿根,马聿桓,张斌,等.箬竹叶水提取物化学成分研究.浙江林学院学报,1996,12(2):161-165
    [53]李春美,谢笔均.茶多酚及其氧化产物清除不同体系产生的活性氧自由基的分光光度法研究.精细化工,2000,17(4):241-244
    [54]李洪玉,孙静芸,戴诗文.竹叶黄酮提取物的生产工艺条件研究.中国现代应用药学杂志,2004,21(5):371-372
    [55]李洪玉,孙静芸.竹叶化学成分研究.中药材,2003,26(8):562-563
    [56]李京晶,籍保平,周峰,等.丁香和肉桂挥发油的提取、主要成分测定及其抗菌活性研究.食品科学,2006,27(8):64-68
    [57]李俊,陆园园,李甫,金柏峰,等. GC-MS分析南方红豆杉种子中的挥发油.分析试验室,2006,25 (9):35-37
    [58]李丽娜,纪明山,李艳丽,等. 4种植物提取物对植物病原菌的抑菌作用.农药, 2006, 45(1): 61-63
    [59]李荣,李俊.黄酮类化合物药理活性及其构效关系研究进展.安徽医药,2005,9(7):481-483
    [60]李水芳,文瑞芝,曾栋,等.阔叶箬竹叶和箬竹叶中挥发油的提取及成分分析.色谱,2007,25(1):53-57
    [61]李晓光,高勤,翁文,等.超临界CO_2萃取法与水蒸气蒸馏法提取广东海风藤挥发油成分的比较.暨南大学学报(自然科学版),2007,28(1):108-110
    [62]李瑶,齐晓丽,孟祥颖,等.竹叶中黄酮提取纯化工艺研究.东北师大学报,2006,38(1):91-94
    [63]李寅,陈燕忠.水杨酸甲酯搽剂的制备及临床应用.中国医院药学杂志,1999,19(3):186
    [64]李勇,宋慧.竹叶蛋白的分离提取及其副产物的利用.食品与发酵工业,2005,31(3):136-138
    [65]凌冰,张茂新,孔垂华,等.飞机草挥发油的化学组成及其对植物、真菌和昆虫生长的影响.应用生态学报,2003,14(5):744-746
    [66]刘波.毛竹发育过程中细胞壁的生物形成.中国林业科学研究院博士学位论文,2008,1-13
    [67]刘海燕,范婧,高微微.细辛挥发油对植物病原真菌的抑制作用研究.中草药,2008,38 (12):1878-1881
    [68]刘红霞,孙素琴.分子振动光谱在中药现代化中的应用.现代仪器,2005,11(5) :6
    [69]刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展.安徽农业大学学报,2002,29(3):265-270
    [70]刘丽梅,王瑞海,陈琳.RP-HPLC测定大蒜油中二烯炳基二硫和二烯炳基三硫的含量.中草药,2006, 37(9):1345-1348
    [71]刘霞.共轭亚油酸抗癌的安全性、有效异构体及其有效剂量.中国临床康复,2005,9(18):212-214
    [72]刘小琴,万福珠,郑世玲.紫苏挥发油抑制皮肤癣菌O2-的作用.天然产物研究与开发,2001,13(5):39
    [73]刘小香,陈秋波,王真辉,等.巨尾桉挥发油对真菌和昆虫的化感作用.生态学杂志,2007,26 (6):835-839
    [74]刘约权,李贵深.实验化学(上册).北京:高等教育出版社,1999,48-84
    [75]龙绛冒,曹福祥.洋葱挥发油的抗真菌作用及其机理.中南林学院学报,2006,26(5):89-92
    [76]陆占国,郭红转,孙胜敏.索式法提取芜荽茎叶精油的化学组成及其抗菌活性.化学研究,2007,18(1):70-73
    [77]陆志科,谢碧霞.大孔树脂对竹叶黄酮的吸附分离特性研究.经济林研究,2003,21(3):l-4
    [78]陆志科,谢碧霞.植物源天然食品防腐剂的研究进展.食品工业科技,2003,24(1):94-96
    [79]陆志科,谢碧霞.竹叶化学成分的分析与资源的开发利用.林业科技开发,2003,17(1):6-9
    [80]陆志科,谢碧霞.不同种竹叶的化学成分及其提取物抗菌活性的研究.西北林学院报,2005,20(1):49-52
    [81]吕兆林,李月琪,秦娇,等.毛竹叶挥发油的提取方法.北京林业大学学报,2008,30(4):135-140
    [82]罗金岳,安鑫南.植物精油和天然色素加工工艺.北京:化学工业出版社,2007,5-70
    [83]罗金岳,陈小燕.从箬竹叶中提取茶多酚的研究.林产化工通讯,2003,37(6):l5-19
    [84]马乃训.我国的竹类科学研究.竹子研究汇刊,1989,8(1):76-83
    [85]马自超,吴伟志,彭洪斌,等.由竹叶制取叶绿素铜钠盐的研究.南京林业大学学报,1991,15(1):64-68
    [86]毛燕,刘志坤.毛竹叶挥发性成分的提取与GC-MS分析.福建林学院学报,2001,21(3):265-267
    [87]毛燕,王学利.毛竹叶、枝多糖提取的对比研究.林产化工通讯,2001,35(2):11-13
    [88]纳智.云南草蔻和长柄山姜挥发油的化学成分分析.植物资源与环境学报,2006,15(3):73-74
    [89]彭长连,陈少薇,林植芳,等.用清除有机自由基DPPH法评价植物抗氧化能力.生物化学与生物物理进展,2000,27(6):658-661
    [90]秦秋菊,高希武.昆虫取食诱导的植物防御反应.昆虫学报, 2005,48(1):125-134
    [91]宋国新,余应新,王林祥,等.香气分析技术与实例.北京:化学工业出版社,2008,12-56
    [92]宋仲容,江相兰,李树伟,等.竹叶提取物的抗氧化活性研究.化学研究与应用,2006,18(1):67-69
    [93]苏镜娱,张广文,李核,等.广藿香精油化学成分分析与抗菌活性研究(Ⅰ).中草药,2001,32(3): 204-205
    [94]孙爱东,葛毅强,蔡同一.水果制品的增香技术研究进展.食品与发酵工业,1999,1:44-49
    [95]孙存普.自由基生物学导论.合肥:中国科技大学出版社,1999:236
    [96]孙丽萍,王大仟,张智武. 11种天然植物提取物对DPPH自由基的清除作用.食品科学,2009,30 (1):45-47
    [97]孙凌峰.植物精油及萜类成分的生物活性.江西师范大学学报(自然科学版),2000,24(2):159-163
    [98]孙素琴,周群,刘军,等.真伪半夏二维相关红外光谱法的鉴别研究.光谱学与光谱分析,2004,24(4): 427-430
    [99]唐莉莉,丁宵霖.竹叶多糖的分离提取及其生物活性研究.食品研究与开发,2000,21(1):8-10
    [100]唐莉莉,徐榕榕,丁宵霖.竹叶多糖对小鼠移植瘤的抑制作用.无锡轻工大学学报,1998,17(3):62-65
    [101]唐裕芳,张妙玲,陶能国,等.苍术挥发油的提取及其抑菌活性研究.西北植物学报,2008,28 (3):588-594
    [102]《天然香料加工手册》编写组.天然香料加工手册.北京:中国轻工业出版社,1997,37
    [103]田光辉,刘存芳,赖普辉.抱茎蓼花的挥发油成分及其抗菌活性的研究.时珍国医国药,2008,19(7):1643-1646
    [104]田光辉,刘存芳,危冲,等.糙苏花中挥发油组分分析及其抗菌活性的研究.药物分析杂志,2009,29 (3):390-394
    [105]田光辉,刘存芳.野生糙苏籽挥发油化学成分的分析.食品科学,2009,30(3):39-42
    [106]田玉红.广西桉叶挥发性成分分析及抗菌抗氧化性能研究.广西大学博士学位论文,2006,1-111
    [107]佟健.香叶中挥发性组分的超临界萃取及气相色谱-质谱分析.质谱学报,2007,27(2):94-98
    [108] Venant N,钱和,汪何雅,等. DPPH自由基比色法测定番石榴叶提取物抗氧化活性的研究.食品科学,2004,25(7):37-41
    [109]汪秋安.香料香精生产技术及其应用.北京:中国纺织出版社,2008,1-13
    [110]王冬梅,朱玮,张存莉,等.卷叶黄精对植物病原茵的抗菌活性研究.西北植物学报,2006,26 (7):1473-1477
    [111]王刚,祝诗平,阚建全,等.花椒挥发油含量的近红外光谱无损检测.农业机械学报,2008,39(3):79-85
    [112]王恒山,欧尚瑶,潘英明,等.毛两面针挥发油化学成分及其生物活性.天然产物研究与开发2006,18(2): 251-253
    [113]王晋,杜华,王鲁石.淡竹叶多糖的超声提取及含量测定.中成药,2004,26(12):1067-1068
    [114]王立娟,钱学仁.竹叶叶绿素铁钠的制备及性质研究.林产化学与工业,2005,25(3):89-92
    [115]王丽丽,Yasuyuki I,Hajime O,等.天然树脂紫胶的热裂解-气相色谱特性.浙江科技学院学报,2003,15:39-42
    [116]王晓峰,王天然,程远杰,等. Apriori算法在红外光谱数据挖掘中的应用.计算机与应用化学2001,18(5),477-483
    [117]王学利,吕健全,章一德.苦竹叶挥发油成分的分析.浙江林学院学报,2002,19(4):387-390
    [118]王学利,毛燕.箬竹叶挥发性成分的GC-MS分析.竹子研究刊,2001,30(3):36-38
    [119]王亚娟,魏玉辉,王晓华,等.光茎大黄挥发油成分分析及体外抑菌活性初步研究.中药材,2006,29(10):1072-1074
    [120]王焱,叶建仁.固相微萃取法和水蒸气蒸馏法提取马尾松枝条挥发物的比较.南京林业大学学报(自然科学版),2007,31(1):78-80
    [121]韦平英,王虎寅.苦参与百部提取物对几种植物病原菌的抑制作用研究.中国生态农业学报,2005,13(2); 54-55
    [122]吴传茂,吴周和,曾莹,等.从植物中提取天然防腐剂的研究.食品科学,2000,21(9):24-27
    [123]吴佳,周日宝,童巧珍,等.白术挥发油超临界CO_2萃取工艺优化及其成分分析.中国现代中药,2007, 9(4):14-19
    [124]吴立军.天然药物化学(第四版).北京:人民卫生出版社,2004,258
    [125]吴三林,李书华,弓加文.竹叶活性成分的研究进展.乐山师范学院学报,2005,20(5):53-54
    [126]吴寿金,赵泰,秦永祺.现代中草药成分化学.北京:中国医药科技出版社, 2002, 740
    [127]肖崇厚.中药化学.上海:上海科技出版社,1997,23-46
    [128]肖丽平,李临生,李利东.抗菌防腐剂(III)天然抗菌防腐剂.日用化学工业,2002,32(2):78-81
    [129]熊皓平,杨伟丽,张发胜,等.天然植物抗氧化剂的研究进展.天然产物研究与开发,2001,13(5):75
    [130]徐汉虹,赵善欢,周俊,等.芸香精油的化学成分和杀虫活性初探.天然产物研究与开发,1994, (4):59-64
    [131]徐金瑞,张名位,刘兴华,等.黑大豆种皮花色苷的提取及其抗氧化作用研究.农业工程学报,2005,21(8):161-164
    [132]徐彭.陈皮水提物和陈皮挥发油的药理作用比较.江西中医学学报,1998,10(4):173
    [133]徐顺,王林江,李瑞玲,等.白英全草中挥发油化学成分分析.时珍国医国药, 2006, 17(8): 1390
    [134]徐嵬,阿拉腾其木格,杨秀伟.红参正果挥发油的GC-MS分析.中国中药杂志,2009,34(5):591-594
    [135]许钢,张虹,胡剑.竹叶黄酮的提取方法.分析化学,2000,28 (8):1055-1057
    [136]杨国恩,吴志平,李坤平.竹叶叶绿素的提取及其性质的稳定性.中南林学院学报,2005,25(3):106-110
    [137]杨嘉,刘建华,高玉琼,等.慈竹叶精油化学成分研究.天然产物研究与开发,2002,14(6):31-32
    [138]杨涛,李静海.超临界流体萃取天热药特的研究现状应发展趋势.化工冶金,1997,18(4):377-383
    [139]杨卫东,费学谦,王敬文.不同溶剂对竹叶提取物抑菌作用的影响.食品工业科技,2006,27(1):77-79
    [140]杨扬,朱顺英,唐李斐,等.羽裂蟹甲草挥发油的化学成分分析及抗菌活性研究.武汉大学学报, 2007, 53(2):198-203
    [141]杨盈,严宝珍,聂舟,等.α-生育酚与自由基DPPH·的反应机理研究.波谱学杂志,2008,25(3):331-336
    [142]杨致年,曾超,朱宗良,等.植物精油的抗菌性.四川林业科技,2000,21(3):37-39
    [143]姚晓宝,刘银泉,吴晓琴,等.毛竹、杭白菊粗提物对桃蚜和小菜蛾的生物活性测定.浙江农业学报,2004,16(3):156-l58
    [144]姚新生.天然药物化学(第三版).北京:人民卫生出版社,2002,245-246
    [145]姚旌旗,李映红,刘红梅,等.竹叶提取液对H22肝癌细胞生长的影响.咸宁医学院报,2002,16(4):233-234
    [146]姚亚平,曹炜,陈卫军,等.不同品种荞麦提取物抗氧化作用的研究.食品科学,2006,27(11):49-52
    [147]叶诚业,王幸祥,俞视慧,等.竹类资源的综合利用.上海:上海科学技术文献出版社,1989,13-18
    [148]叶玲,杨远友,莫尚武,等.竹提取物的钙拮抗作用及对心肌缺血的影响.世界竹藤通讯,2005,3(4):34-36
    [149]殷宁.食用香料植物及其产品作食品添加剂的探讨(下).林产化工通讯,1997,(4):37-40
    [150]岳永德,操海群,汤锋.竹提取物的化学成分及其利用研究进展.安徽农业大学学报,2007,34(3):328-333
    [151]曾虹燕,苏杰龙,方芳,等.不同方法提取的荷叶挥发油化学成分分析.西北植物学报,2005 25(3):578-582
    [152]张桂芝,顾玲燕.山柰挥发油的红外光谱法与气相色谱质谱分析.时珍国医国药,2008,19 (9):2252-2254
    [153]张胜帮,赵玲玲.淡竹叶中黄酮类化合物的提取研究.食品科学,2006,27(10):255-258
    [154]张新申,刘福华,孙西征,等.竹叶中有效成分的分离研究.四川大学学报:工程科学版,2002,34(6):l16-l18
    [155]张英.竹叶提取物类SOD活性的邻苯三酚法测定.食品科学,1997,18(5):47-49
    [156]张英,唐莉莉.毛金竹叶提取物抗衰老作用的实验研究.竹子研究汇刊,1997,14(4):62-66
    [157]张英,汤竖,袁身淑.竹叶精油和头香的GC-MS-DS研究.天然产物研究与开发,1998,10(4):38-43
    [158]张英,吴晓琴,俞卓裕.竹叶黄酮和内酯的季节性变化规律研究.林产化学与工业,2002,22(2):65-69
    [159]章荣华,傅剑云,徐彩菊.竹叶提取物抗氧化作用研究.中药药理与临床,2004,20(2):22-23
    [160]赵晨,李蓉,邹国林.桂丁、花椒挥发油抗氧化活性及其方法研究.武汉大学学报,2008, 54(4):447-450
    [161]赵强,张彬,李岂凡,等.蜂胶挥发油抗氧化性能及其成分研究.天然产物研究与开发,2008, 20(1):82-86
    [162]赵兴杰,籍保平,赵磊,等.佛手挥发油不同提取方法的比较研究.食品科学,2007,28(4):167-170
    [163]郑德勇,安鑫南.丛生竹叶提取物的成分与清除自由基的能力.福建林学院学报,2004, 24(3):193-196
    [164]郑德勇,安鑫南.植物抗氧化剂研究展望.福建林学院学报,2004,24(1):88-91
    [165]郑德勇,安鑫南.竹叶提取物清除DPPH自由基的测定方法.福建农林大学学报(自然科学版) ,2005,34(1):59-62.
    [166]郑君秀.叶绿素铜钠盐的制备探讨.福建林业科技,1997,24(1):19-21
    [167]钟爱国.鲜竹叶中叶绿素的超声波萃取.科学技术与工程,2006,6(21):3474-3475
    [168]周家华,崔英德,黎碧娜,等.食品添加剂.北京:化学工业出版社,2001,384-433
    [169]周静.近年来国内植物多糖生物活性研究进展.中草药,1994,25(1):40-44
    [170]周琦,王敏伟,王以美,等.竹叶提取物的抗血栓作用.沈阳药科大学, 2006,23(7):459-462
    [171]周荣琪.天然香料分离技术的研究.化工进展,1995,(6):21-25
    [172]周少川,李宏,王家生,等.华南籼稻晚造稻米蒸煮、外观和碾米品质与食味品质的相关性研究.杂交水稻,2002,17(2):53-55
    [173]周涛,黄璐琦,吉力.贵州特有植物大方油栝楼果皮挥发油的化学成分分析.中国中药杂志,2007, 32(4):344-355
    [174]周跃斌,王伟,李适,等.竹叶多糖提取条件的优化.湖南农业大学学报,2006,32(2):207-209
    [175]周兆祥,陈钢敏,王静儿.竹叶中矿物质元素的测定.林产化工通讯,1992,26 (3):22-25
    [176]朱宏莉,韦海洪,宋纪蓉,等.竹叶总黄酮的提取和纯化工艺的研究.食品科学,2005,26(8):158-160
    [177]朱淮武.有机分子结构波谱解析.北京:化学工业出版社,2005,29-56
    [178]朱俊洁,孟祥颖,乌垠,等.稠李果、茎、叶、皮及树干挥发油化学成分的分析.分析化学研究简报,2005, 33(11):1615-1618
    [179]竹类综合利用课题组.竹秆和竹叶的微量元素研究.竹子研究汇刊,1991,(10):57
    [180]邹磊,傅德贤,杨秀伟,等.芙蓉菊挥发油的成分分析.天然产物研究与开发,2007,19:250-253
    [181] Aburjai T, Natsheh F M.Plants used in cosmetics. Phytotherapy Research,2003,17(9):987-1000
    [182] Ayala R S,Luque de Castro M D. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chemistry,2001,75 (1):109-113
    [183] Baucard G R, Serth R W. A continuous steam stripping process for the distillation of essential oils. Perfumer and Flavorist, 1991,16:2-8
    [184] Chen W F,Deng S L,Zhou B,et a1.Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation:H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med, 2006, 40(3):526-535
    [185] Chuycn N V,Kurata T,Koto H,et a1. Antimierobial activity of kumazasa . Agric Biol Chem,l982,46(4):97l-978
    [186] Cotelle N,Bernier J L,Catteau J P, et al. Antioxidant properties of hydroxy-flavones. Free Radical Biology and Medicine,1996,20(1):35-43
    [187] Cox S D,Mann C M,Markham J L. Interactions between components of the essential oil of Melaleuca alternifolia. Journal of Applied Microbiology,2001,91(3):492-497
    [188] Danaher M,Keeffe M O,Glennon J D. Development and optimisation of a method for the extraction of benzimidazoles from animal liver using supercritical carbon dioxide. Analytica Chimica Acta,2003,483:313-324
    [189] De Moraes C M,Mescher M C,Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature,2001,410:577-580
    [190] Demirbas A, Akdeniz F. Fuel analyses of selected oilseed shells and supercritical fluid extraction inalkali medium.Energy Conversion and Management,2002,43(15):1977-1984
    [191] Denyer S P,Hugo W B. Mechanisms of action of chemical biocides:their study and exploitation. Oxford Blackwell Scientific Publication,Oxford,1991,171-188
    [192] Dubey N K,Tiwari T N,Mandin D,et al. Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype). Fitoterapia,2000,71(5):567-569
    [193] Frankel E N,Meyer AS. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture,2000,80(13): 1925-1941
    [194] Friedman M,Henika P R,Mandrell R E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot,2002, 65(10):1545-1560
    [195] Ghfir B,Fonvieille J L,Dargent R. Influence of essential oil of Hyssopus officinalis on the chemical composition of the walls of Aspergillus fumigatus (Fresenius). Mycopathologia,1997,138(1):7-12
    [196] Gordon M H,Paiva-Martins F,Almeida M. Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. J Agric Food Chem,2001,49(5): 2480-2485
    [197] Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med,1992,13(4):435-448
    [198] Guillen M D,Manzanos M J. Study of the composition of the different parts of a Spanish Thymus vulgaris L. plant. Food Chemistry,1998,63(3):373-383
    [199] Gustafson J E,Liew Y C,Chew S,et al. Effects of tea tree oil on Escherichia coli. Letters in Applied Microbiology,1998,26(3):194-198
    [200] Hammer K A,Carson C F,Riley T V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology,2003,95(4):853-860
    [201] Harumichi Sawada. Review:Functions of spices. (日)香料,1999,203:97-106
    [202] Hatano T,Edamatsu R,Hiramatsu M,et al. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chemical and pharmaceutical bulletin,1989,37(8):2018-2021
    [203] Helander I M,Alakomi H L,Latva Kala K,et al. Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem,1998,46(9):3590-3595
    [204] Ito N,Hirose M,Fukushima S,et al. Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem Toxicol,1986,24:1071-1082
    [205] Jain S C,Nowicki S, Eisner T, et al. Insect repellents from vetiver oil. Zizanol and epizizanal. Tetrahedron Lett,1982,23: 4639-4642
    [206] Jao C H,Ko W C. 1,1-Diphenyl-2-picrylhydrazyl (DPPH)radical scavenging by protein hydrolyzates from tuna cooking juice. Fish Sci,2002,68:430-435
    [207] Kalemba D,Kunicka A. Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry,2003,(10):813-829
    [208] Kitts D D. Toxicity and safety of fats and oils. In: Hui, Y.H.(Ed.), Baileys Industrial Oil and Fat Products, vol. 1. Wiley Interscience, New York,1996,pp. 215-280
    [209] Knudsen J T,Tollsten L,Bengstrom L G. Floral scents--a checklist of volatile compounds isolated by head-space techniques. Phytochemistry,1993,33(2):253-280
    [210] Kobaisy M,Tellez M R,Webber C L,et al. Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. Journal of agricultural and food chemistry,2001,49(8):3768-3771
    [211] Kovatcheva E G,Koleva I I,Ilieva M, et al. Antioxidant activity of extracts fromLavandula vera MM cell culture. Food Chem, 2001,7:1069–1077
    [212] Kulisic T,Radonic A,Katalinic V,Milos M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry,2004,85(4):633-640
    [213] Kumazawa S,Hamasaka T,Nakayama T,et al. Antioxidant activity of propolis of various geographic origins. Food Chem, 2004,84(3):329-339
    [214] Lam L K T,Zheng B L. Effects of essential oils on glutathione S-transferase activity in mice. J Agric Food Chem,1991,39(4):660-662
    [215] Lambert R J W,Skandamis P N,Coote P J,et al. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol,2001,91(3):453-462
    [216] Leopold J,Gerhard B,Albena S,et al. Composition quality control and antmicrobial activity of the essential oil of long-time Dill seeds from Bulgaria. Chemistry of Natural Compounds,2003,51:3854-3857
    [217] Manenzhe N J,Potgieter N,Ree T V. Composition and antimicrobial activities of volatile components of Lippia javanica. Phytochemistry,2004,65(16):2333-2336
    [218] Mangena T,Muyima N Y O.Comparative evaluation of the antimicrobial activities of essential oils of Artemisia afra, Pteronia incana and Rosmarinus officinalis on selected bacteria and yeaststrains.Letters in Applied Microbiology,1999,28(4):291-296
    [219] Marx J L. Oxygen free radicals linked to many diseases. Science,l987,235(4788):529-531
    [220] Mater Engineering, Ltd.. Oil of cedarwood from Juniperus virginiana L. In Opportunities for Rural Development Using Eastern Redcedar in Southwestern Iowa, 1992, pp: 4-17
    [221] Matsukawa R,Dubinsky Z,Kishimoto E, et al. A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol,1997, 9:29-35
    [222] Meepagala K M, Kuhajek J M, Sturtz G D, et al. Vulgarone B, the Antifungal Constituent in the Steam-Distilled Fraction of Artemisia douglasiana. Journal of Chemical Ecology,2003,29(8):l77l-1780
    [223] Miyazwa M,Shimamura H,Kameoka H. Antimutagenic activity of giganotolform Dendrobium nobile. J Agric Food Chem, 1997,45(8):2849
    [224] Nilsson T,Bjorklund E,Bowadt S. Comparison of two extraction methods independently developed on two conceptually different automated supercritical fluid extraction systems for the determination of polychlorinated biphenyls in sediments. Journal of Chromatography A,2000,891(1):195-199
    [225] Penchev P N,Varmuza K. Characteristic substructures in sets of organic compounds with similar infrared spectra. Computers & Chemistry,2001,25(3):231-237
    [226] Priyadarsini K I,Maity D K,Naik G H,et a1.Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology and Medicine,2003,35(5):475-484
    [227] Raffaella B,Francesco L C,Maria P T,et al. Antioxidant activity of the main bioactive derivatives from oleuropein hydrolysis by gyperthermophilic– glycosidase. J Agric Food Chem,2001,49(7):3198-3203
    [228] Rasooli I,Rezaei M B,Allameh A. Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control,2006,17(5): 359-364
    [229] Rein J,Cork C M,Furton K G. Extraction and chromatography of polycyclic aromatic hydrocarbons . Journal of Chromatography A,1991,545(1):149-160
    [230] Reinhard J,Srinivasan M V, Zhang S W. Scent-triggered navigation in honey bees. Nature,2004,427: 411
    [231] Ruberto G,Baratta M T,Biondi D M,et al. Antioxidant activity of extracts of the marine algal genus Cystoseira in a micellar model system. J Appl Phycol,2001,13:403-407
    [232] Ruther J,Hilker M. Attraction of forest cockchafer Melolontha hippocastani to (Z)-3-hexen-1-ol and1,4-benzoquinone:application aspects. Entomologia Experimentalis et Applicata,2003,107 (2):141-147
    [233] Safer A M,Al-Nughamish. Hepatotoxicity induced by theantioxidant food additive butylated hydroxytoluene (BHT) inrats: an electron microscopical study. Histol Histopathol,1999,14:391-406
    [234] Sang S M,Tian SY,Wang H,et al. Chemical studies of the antioxidant mechanism of tea catechins:radical reaction products of epicatechin with peroxyl radicals. Bioorganic & Medicinal Chemistry,2003.11(16): 3371-3378
    [235] Scott G. Antioxidants. Bull Chem Soc Jpn,1988,61(3):165-170
    [236] Sergio G A,Giuseppe F, Salvador D M,et al. Changes in Phenolic Composition and antioxidant activity of virgin olive oil during frying . J Agric Food Chem,2003,51(3):667-672
    [237] Sikkema J,de Bont J A,Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biological Chem,1994,269(11):8022-8028
    [238] Singh G,Singh B S, Kumar B R V. Antimicrobial activity of essential oil against keratinophilic fungi. Indian Drugs ,1978,16 (2): 43-45
    [239] Smith R M. Suprtcritical Fluid Chromatography[M].The Royal Society of Chemistry,London,1988
    [240] Smith R M. Extractions with superheated water. Journal of Chromatography A,2002,975 (1):31-46
    [241] Sun T, Ho C T. Antioxidant activities of buckwheat extracts. Food Chemistry, 2005,90(4):743-749
    [242] Swain T. Secondary compouds of protective agents. Annual Review of Plant Physiology,1997,28:479-501
    [243] Sylvestre M, Pichette A, Longtin A, et al. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. Journal of Ethnopharmacology,2006,103(1):99-102
    [244] Takeda O, Miki E, Terabayashi S, et a1. A comparative study on essential oil components of wild and cultivated Atractylodes lancea and A. chinensid. Planta Medica,1996,62 (5):444-449
    [245] Tanaks S,Akimoto A,Tambe Y,et al. Volatile antiallergic principles from a traditional herbal prescription of kampo medicine. Phytotherapy Research,1996,10(3):238-241
    [246] Tedjo W, Eshtiaghi M N,Knorr D. Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. Journal of Food Science,2000,65(8):1284-1287
    [247] Tellez M,Estell R,Fredrickson E D,et al.Extracts of Flourensia cernua (L): volatile constituents and antifungal, antialgal, and antitermite bioactivities.Journal of Chemical Ecology,2001,27(11):2263-273
    [248] Tepe B, Daferera D, Sokmen A, Sokmen M,et al. Antimicrobial and antioxidant activities of theessential oil and various extracts of Salvia tomentosa Miller (Lamiaceae) . Food Chemistry,2005,90(3):333-340
    [249] Tetsuya N,Takashi O,Kentaro K,et al. Structures of the radical (DPPH) oxidation products of dihydrocapsaicin. Tetrahedron Letters, 2002, 43:8181-8183
    [250] Trevisan M T S,Silva M G V,Pfundstein B,et al. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the Genus Ocimum. J Agric Food Chem,2006,54(12):4378-4382
    [251] Tuck K L,Hayball P J,Stupans I. Structural characterization of the metabolites of hydroxytyrosol,the principal phenolic component in olive oil, in rats . J Agric Food Chem, 2002, 50 (8):2404-2409
    [252] Tucker J M,Townsend D M. Alpha-tocopherol:roles in prevention and therapy of human disease. Biomedecine & Pharmacotherapy,2005, 59(7): 380-387
    [253] Ultee A, Kets E P W, Smid E J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 1999,65(10):4606-4610
    [254] Valero E,Varon R,Garcia-carmona F. Inhibition of grape polyphenol oxidase by several natural aliphatic alcohols. J Agric Food Chem,1990,38(4):1097-1100
    [255] Wichi C M,Kendall C W C,Stamp D, et al. Thermally oxidized dietary fat on coloncarcinogenesis in rodents. Nutr Cancer,1998,30: 69-73
    [256] Yoshimura T,Shimoda M,Ishikawa H, et al. Inactivation kinetics of enzymes by using continuous treatment with microbubbles of supercritical carbon dioxide. Journal of Food Science,2001, 66(5):694-697
    [257] Yu J Q,Lei J H,Yu H D,et al. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata [J]. Phytochemistry,2004,65(7):881-884
    [258] Zhu N Q,Wang M F,Wei G J,et al. Identification of reaction products of (?)-epigallocatechin, (?)-epigallocatechin gallate and pyrogallol with 2,2-diphenyl-1-picrylhydrazyl radical. Food Chemistry,2001,73(3):345-349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700