丙酯草醚胁迫下油菜与大麦耐性机制及其生理信息的光谱模型构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙酯草醚是我国具有自主知识产权的农药新品种,能有效防除油菜田间主要单、双子叶杂草。作为一种新型油菜田除草剂,研究其对油菜田阔叶杂草及禾本科杂草的防除效果,明确其作用机制及其对油菜和后茬作物的安全性问题等对该除草剂的田间推广应用具有重要意义。但国内目前对这些方面的研究还不够系统深入。本文即以甘蓝型油菜品种浙双758和大麦品种黄青裸为主要材料,采用生理生化分析方法和显微技术研究了丙酯草醚的作用机理及其胁迫下两种作物的耐性差异机制。为便于该新除草剂应用时对大田油菜生理信息进行活体、实时的监测,本课题将除草剂胁迫下的油菜生理信息与近红外光谱结合,尝试构建了相关生理参数的光谱模型。所取得的主要创新性结果如下:
     1、离体及活体条件下,分别研究了丙酯草醚对单双子叶作物及杂草乙酰乳酸合成酶(ALS)活力的影响。在离体条件下,丙酯草醚对ALS活力几乎无抑制效果;而在活体条件下,叶面喷施丙酯草醚对双子叶作物油菜ALS活力抑制作用最小,对单子叶作物大麦抑制作用最显著,对阔叶杂草牛繁缕和禾本科杂草看麦娘的抑制效果介于前两种作物之间。植株不同部位的ALS活力存在较大差异,越幼嫩的部位酶活力越高,因此在ALS活力分析中顶端新叶是合适的研究材料。100mg/L丙酯草醚处理下牛繁缕、油菜和大麦的不同叶位ALS活力变化趋势存在差异,牛繁缕与油菜下层叶的酶活力随处理时间延长而下降的程度比上层叶剧烈,在大麦中则相反;油菜上层叶酶活力随处理时间的延长而迅速恢复,而牛繁缕和大麦则无法恢复。三种不同类型油菜耐药性表现为,芥菜型油菜耐性最强,而白菜型油菜耐性最弱,甘蓝型油菜介于两者之间。
     2、探讨了丙酯草醚处理对发芽期油菜及大麦幼苗的生长发育及根细胞活性、有丝分裂、根叶细胞形态及超微结构的影响。种子发芽期是丙酯草醚处理的敏感时期;对发芽期油菜和大麦较为安全的临界浓度为1mg/L;10mg/L以上浓度处理下油菜和大麦幼苗的生长尤其是根系的伸长和发育及根尖细胞活性等方面受到了显著抑制,且抑制效果随处理浓度的升高和处理时间的延长而增大。100mg/L处理下油菜和大麦根尖细胞有丝分裂指数均下降,有丝分裂产生的细胞数量减少造成分生区和伸长区明显缩短;另一方面处理还抑制成熟区细胞的发育,导致如油菜侧根发育明显滞后等现象。100mg/L丙酯草醚处理对油菜和大麦根细胞膜造成较大的破坏并导致胞内电解质外渗;处理还对根细胞中的线粒体外膜造成了一定程度的破坏,并存在胞内微粒体数量增加的现象(推测该除草剂的代谢活化作用可能在微粒体中进行,而线粒体中可能存在其活化后的作用靶标);丙酯草醚处理显著影响细胞亚结构的发育,如抑制大麦根细胞壁、液泡、质体及其叶细胞中的叶绿体发育,但加速油菜子叶细胞中叶绿体的衰老(推测丙酯草醚具有两重性——加速成熟组织的衰老和延缓幼嫩组织的发育,故可尝试将其开发为一种新型的生长调节剂)。在生化检测及透射电镜(TEM)观察都未发现100mg/L丙酯草醚处理对油菜及大麦根尖细胞的核膜造成明显影响,压片法观察分裂细胞也未发现由处理引起的染色体异常和细胞分裂畸形现象。
     3、研究了营养生长期油菜及大麦在丙酯草醚胁迫下植株生物量积累、抗氧化系统和光合系统的差异表现及生理机制。发芽期油菜对丙酯草醚的耐性并不高于大麦,但5叶期油菜植株对丙酯草醚的耐性显著高于大麦,表现在:100 mg/L处理浓度对油菜各生理参数均无显著影响,高浓度处理对油菜植株造成显著影响但抑制作用随时间的延长而减弱:而5叶期大麦对100 mg/L处理浓度已敏感,且抑制效果随处理浓度的升高和时间的延长而加剧。在丙酯草醚胁迫下,大麦过氧化物酶(POD)和超氧化物歧化酶(SOD)活性先显著升高后迅速下降,而油菜却未表现出明显的变化趋势,可见丙酯草醚对大麦的抗氧化系统造成的影响大于油菜;在光合系统方面,丙酯草醚对油菜净光合速率(Pn)几乎无影响但却导致大麦叶片SPAD值和Pn的显著下降,这可能与大麦光合系统Ⅱ(PSⅡ)的非光化学耗散能力(NPQ)受到较大抑制有关;丙酯草醚对大麦光合系统造成较大破坏最终导致其更显著地影响大麦的生物量积累。
     4、分析了苗期和抽薹期分别喷施丙酯草醚对油菜产量和种子品质等的影响。明确了在苗期喷施100mg/L丙酯草醚可促进油菜增产且对种子品质无显著影响,但1000mg/L高浓度处理对产量和品质(尤其是蛋白质积累方面)有明显抑制;而油菜抽薹期则是对丙酯草醚处理的敏感时期,即使是100mg/L田间推荐浓度喷施处理也会造成减产并影响种子品质,且处理对产量的影响比对品质的影响更显著,1000mg/L高浓度处理几乎导致颗粒无收。以上不同时期作物间的敏感性差异一方面与作物本身对丙酯草醚的活化和相关代谢途径、能力等存在差异,另一方面也可能与处理方式(根部添加和叶面喷施处理)以及丙酯草醚以根茎吸收为主的特性等原因有关。因此在生产上,作物和杂草的苗龄控制及田间施用方式等都将对丙酯草醚的除草效果及对作物的安全性等方面造成影响,应引起足够重视。
     5、将近红外光谱技术用于丙酯草醚胁迫下油菜不同叶位生理信息的监测。成功地对油菜叶片中ALS活力,可溶性蛋白、非可溶性蛋白、总蛋白含量和总氨基酸含量等生理参数进行了光谱建模,模型的预测相关系数皆高于0.9:通过不同光谱预处理、有效波长选择和建模方法筛选等技术手段构建的改良模型预测相关系数高达0.95~0.99。
     本研究取得的创新性结果对丙酯草醚对单、双子叶植物抑制机制差异有了更全面深入的认识,这将为该新型油菜田除草剂对油菜及后茬作物大麦等安全性评价方面提供重要参考。本研究中对丙酯草醚处理下油菜叶片的光谱数据与不同生理参数进行建模的尝试,为近红外光谱技术应用于除草剂等各种胁迫下植物药害等的大田活体无损快速监测奠定了较好基础,具有显著的创新性和实践应用意义。
Propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273) is a novel herbicideused in the rapeseed field with the advantage of broad weeding spectrum. It is meaningful to study themode of action and tolerance mechanism of this new herbicide among crops and weeds for its extendedapplication. In this study, rapeseed (Brassica napus L. cv. ZS758) and barley (Hordeum vulgare L. cv.Huangqingluo) were investigated to clarify the tolerance mechanism within monocotyledon anddicotyledon species to ZJ0273 stress with various physiological measurements and microscopic analyses.In addition, several near-infrared spectroscopy (NIRS) models were developed to investigate for rapid andnon-destructive determination of physiological characters in rapeseed leaves under herbicide ZJ0273stress. The main results are as follows:
     1. The differential tolerance or susceptibility of four plant species viz. B. napus L. (rapeseed),Hordeum vulgare L. (barley), Malachium aquaticum (L.) Fries (water chickweed) and Alopecurusaequalis Sobol. (equal alopecurus), to various concentrations of ZJ0273, was studied based on the rate ofinhibition of acetolactate synthase (ALS) activity. B. napus was observed as the most tolerant among fourspecies in which ALS activity in vivo was hardly affected by ZJ0273 at 100 mg/L (recommended dose inthe rapeseed field). In contrast, Hordeum vulgare was found to be more susceptible while the two weedspecies exhibited moderate susceptibility as compared to Hordeum vulgare. However, ALS activity in vitrowas hardly inhibited by herbicide ZJ0273. In addition, there was a wide variation noted for in vivo ALSactivity among various parts of plants. The uppermost younger leaf seemed to be the most appropriatesample for evaluation, as it showed the highest level of ALS activity in the plant. Spatial and temporalvariations in ALS activity as affected by 100 mg/L ZJ0273 in water chickweed, rapeseed and barley alsosuggested that the synchronized sampling based on the tissue position is necessary to examine precisely,the difference in tolerance or susceptibility to ALS-inhibiting herbicide. The variant tendency of ALSactivity from different parts of plants within monocotyledons and dicotyledons to ZJ0273 treatmentsshowed differential response which revealed some possible mechanisms related to the altered absorptionand translocation of the herbicide. Furthermore, the tolerance among three species of Brassica suggestedthat B. rapa was the most susceptible and B. juncea was the most tolerant to the new herbicide ZJ0273.
     2. Response of seedling growth, root cell viability, mitosis, root and leaf cell structure andultrastructure of rapeseed and barley to herbicide ZJ0273 at germination stage was studied to define the action mechanism of this novel herbicide. The results indicated that both of rapeseed and barley seedlingsare very sensitive to ZJ0273 at germination stage and the application of 1 mg/L (optimum concentration) issafer for seedling growth. 10 mg/L ZJ0273 treatment can significantly inhibit seedling growth (especiallythe root elongation and development) and root viability. Besides, the inhibitive effects become intensifiedwith the increase of dosage and duration. Mitotic index of root-tip cells was declined and cell division wasstopped at metaphase after being treated by 100 mg/L ZJ0273, which shortened the meristematic zone andelongation zone in plant root tips. In addition, the cell development in maturation zone was also inhibited,which deferred the development of lateral root. ZJ0273 significantly inhibited the development of cell wall,vacuole, plastid and chloroplast in barley cells while induced the senescence (aging) of chloroplast inrapeseed cotyledon cells, which suggested that the effect of ZJ0273 on cell development is bifacial and itcould be exploited as a plant growth regulator. Furthermore, 100 mg/L ZJ0273 treatment obviouslyinhibited root cell viability and resulted in disintegration of cell and mitochondria membrane, as well asmore microbodies were observed in treated cells, which suggested that ZJ0273 might be activated withinthe microbodies and acting in mitochondria in plant cells. However, nucleus in root and leaf cells ofrapeseed and barley treated by ZJ0273 showed no significant change in comparison to that of control, asshown by the histochemical and transmission electron microscopy (TEM) demonstrations. Furthermore,chromosome number and shape in dividing cells treated by 100 mg/L ZJ0273 were also normal, whichindicated that this new herbicide hardly induced the tolerant weed mutants and it is helpful to itsapplication and commercialization in fields.
     3. The tolerance mechanism of rapeseed and barley to ZJ0273 stress was studied by measurements ofbiomass, antioxidants and photosynthetic characteristics. As above results shows, rapeseed is no moretolerant than barley at germination stage. In contrast, the tolerance of rapeseed seedlings at 5-leaf stage issignificantly higher than barley seedlings to ZJ0273, which showed that rapeseed seedlings were hardlyaffected by 100 mg/L treatment where as the inhibitive effect of ZJ0273 treatments at higherconcentrations on physiological characteristics recovered with the passage of time. However, barley wasmore susceptible which was reflected in lower biomass production even under at the lowest rate of 100mg/L of ZJ0273 and the enhanced inhibitive effect along with the increase of treatment concentrations anddurations. In the beginning, rapid increase and then sudden decline of leaf peroxidase (POD) andsuperoxide dismutase (SOD) activities under herbicide stress, indicated that ZJ0273 affected barleyantioxidant system more badly than rapeseed, as compared to the slight changes in rapeseed. In addition,ZJ0273 treatments hardly affected net photosynthesis (Pn) of rapeseed leaves but significantly inhibitedSPAD and Pn values of barley leaves, which indicated that the photosystemⅡof barley was paralyzed byinhibition effect of herbicide on non-photochemical quenching (NPQ) capability and finally, the biomass was reduced more significantly.
     4. Effect of herbicide ZJ0273 on plant agronomic characters, seed yield and quality of oilseed rapewas also compared in this study by treating at seedling stage and bolting stage, respectively. The resultsconfirmed that 100 mg/L ZJ0273 (recommended dose in the rapeseed field) promoted seed yield withslight effect on seed quality but significantly reduced rapeseed yield and affected seed quality whenapplied at seedling stage and bolting stage, respectively. The treatment at highest concentration of 1000mg/L applied at seedling stage mainly affected seed quality but badly reduced seed yield when was appliedat bolting stage, which indicated that rapeseed yield and seed quality are more sensitive to ZJ0273 atbolting stage than seedling stage. These results suggested that crop tolerance revealed some possiblemechanisms related to the altered absorption, translocation of the herbicide. In addition, treatmentapproach such as root application or leaf-spray was also possible reason that affected the herbicideinhibitive action according to its root-absorption trait. Thus, both of optimal leaf stage and treatmentapproach should be considered in field application of ZJ0273.
     5. Near-infrared spectroscopy (NIRS) was investigated for rapid and non-destructive determination ofvarious physiological characters in rapeseed leaves from different leaf-positions under herbicide stress.NIRS models of ALS activity, soluble, non-soluble, total protein and total amino acid contents weresuccessfully developed and the correlation coefficients of all models were higher than 0.9. Furthermore,the improved models with spectra preprocessed and efficient wavelength selected were obtained and theircorrelation coefficients were between 0.95-0.99.
     In conclusion, the above results contribute a lot to understand the differential tolerance mechanismamong monocotyledonous and dicotyledonous species (both the crops and weeds) to ZJ0273 stress whichare the basis of safe use of this new herbicide in field. The development of NIRS models in this studywould be helpful for further field analysis of using NIRS to monitor the growing states and biologicalproperties of oilseed rape under herbicide stress.
引文
白瑞贤,杜文建,袁亚章,等.2002.连续免耕秸秆覆盖稻、麦(油)集约化高效栽培.湖北农业科学,2:21-22
    曹坳程.1997a.乙酰乳酸合成酶抑制剂开发中的问题及对策.植物保护,23(5):38-41
    曹坳程.1997b.抑制ALS的除草剂新品种及在我国的应用前景.农药科学与管理,(2):16-25
    陈杰,袁军,刘继东,等.新型除草剂丙酯草醚的作用机理.植物保护学报,2005,32(1):48-52
    陈仕高,谢雪梅,蒲正国,等.10%丙酯草醚EC防除油菜杂草效果及药害分析.农药,2007,6(3):199-201
    陈万义,薛振祥,王能武.1997.新农药研究与开发.北京:化学工业出版社,pp.48-52
    储全元,余龙生,肖满开,等.2006.油菜田杂草发生规律与化学防除技术.安徽农业科学,34(6):4075-4076
    崔海兰,陶岭梅,刘学,等.2007.ALS抑制剂的杂草抗性概述.农药科学与管理,28(10):47-52
    杜宇峰,叶央芳.2005.除草剂苯噻草胺对水稻田微生物种群的影响.应用与环境生物学报,11(6):747-750
    方慧,宋海燕,曹芳,等.2007.油菜叶片的光谱特征与叶绿素含量之间的关系研究.光谱学与光谱分析,27(9):1731-1734
    冯雷,方慧,周伟军,等.2006.基于多光谱视觉传感技术的油菜氮含量诊断方法研究.光谱学与光谱分析,26(9):1749-1752
    冯维卓,吴建良.2000.我国南方主要作物田的化学除草.农药,39(11):1-7
    付群梅,陈杰,王静华,等.10%丙酯草醚悬浮剂防除油菜田杂草试验.农药,2005,44(7):331-333
    傅廷栋,周永明.2006.油菜遗传改良与生物柴油.云南农业大学学报,21(增刊):25-28
    顾品强,汪祖国,王桂云.2003.上海地区油菜田不同年型杂草种群发生规律及判别分析.中国油料作物学报,25(1):59-62
    郭辉,刘贺平,王玲.2006.最小二乘支持向量机参数选择方法及其应用研究.系统仿真学报,18(7):2033-2036
    国家环保总局.1990.化学农药环境安全评价试验准则(续).农药科学与管理,(3):2-6
    郭青云.2002.青海春油菜田杂草化学防除技术.青海大学学报(自然科学版),20(1):31-33
    何国金,胡德永,金小华,等.2002.北京麦蚜虫害的光谱测量与分析.遥感技术与应用,17(3):119-124
    何利文,石利利,孔德洋.2006.呋喃丹和阿特拉津在土柱中的淋溶及其影响因素.生态与农村环境学报,22(2):71-77
    黄春艳,陈铁保,王宇,等.2002.除草剂对油菜的安全性及药害研究初报.中国油料作物学报,24(1):58-60
    黄木易,王纪华,黄文江,等.2003.冬小麦条锈病的光谱特征及遥感监测.农业工程学报,19(6):154-158
    胡林军.1999.油菜田杂草综合管理技术的初步探讨.杂草科学,2:37-39
    金继运,白由路.2001.精准农业与土壤养分管理.北京:中国大地出版社.pp.10-15
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社,pp.195-197
    李文秀,徐叮欣,汪腻.2004.蔬菜农药残留检测的红外光谱法研究.光谱学与光谱分析,24(10):1202-1204
    李勇,魏益民,张波,等.2005.近红外水分稳健分析模型研究.光谱学与光谱分析,25(12):1963-1967
    李永红,范志金,钱传范,等.2002.单嘧磺隆对不同小麦品种的耐药性研究.农药,41(1):32-33
    刘本坤,金晓马,阳树英.2000.不同生长调节剂对油菜生长发育的影响.湖南农业大学学报,26(4):255-257
    刘长令.1999.近几年开发的农药新品种(5).农药,38(7):40
    刘长令.2000.1999年英国Brighton植保会议公布的除草剂新品种.农药,39(2):41
    刘春明,赵永刚.2007.加快我国油菜产业能源化发展研究.生态经济,5:109-112
    刘飞,何勇,王莉.2007.黄酒糖度预测的可见-近红外光谱方法研究.光学学报,27(11):2054-2058
    刘飞,王莉,何勇,等.2008.应用可见/近红外光谱进行黄酒品种的判别.光谱学与光谱分析,28(3):586-589.
    刘金胜,胡钧.2006.磺酰脲类除草剂与杂草对其抗性的研究进展.杂草科学,4:1-3
    刘伟,王金信,杨广玲,等.2004.杂草对乙酰乳酸合成酶抑制剂抗药性研究进展.农药学学报,6(4):07-12
    刘兴旺,董丰明.2007.防除油菜田和麦田杂草的几种除草剂.四川农业科技,8:46
    刘学,魏福香,贾富勤,等.2003.磺酰脲类除草剂合理使用准则.农业部行业标准:12
    陆晓峰,张红玲,张维根.2006.油菜田杂草发生与防除技术研究.上海农业科技,1:125-126
    吕龙,陈杰,吴军,等.2002a.2-嘧啶氧基-N-芳基苄胺衍生物、制备方法及应用.世界PCT专利02/34724 A1
    吕龙,吴军,陈杰,等.2002b.2-嘧啶氧基苄基取代苯基胺类衍生物.中国专利,1348690A
    吕龙,吴军,陈杰,等.2003.2-嘧啶氧基苄基取代苯基胺类衍生物.中国专利,ZL00130735.5
    马超飞,马建文,韩秀珍.2001.微量元素在植物光谱中的响应机理研究.遥感学报,5(5):334-339
    梅安新.2001.遥感导论.北京:高等教育出版社,pp.240
    浦瑞良,宫鹏.2000.高光谱遥感及其应用.北京:高等教育出版社,PP.185-228
    芮玉奎,黄昆仑,王为民,等.2006.近红外光谱技术在检测转基因油菜籽中芥酸和硫甙上的应用研究.光谱学与光谱分析,26(12):2190-2192
    沈国强,周国军,施彩仙.等.2002.10%丙草醚乳油防除移栽油菜田杂草试验.浙江农业科学,1,33-34
    沈金雄,傅廷栋,涂金星,等.2007.中国油菜生产及遗传改良潜力与油菜生物柴油发展前景.华中农业大学学报,26(6):894-899
    沈掌泉,王珂,朱君艳.2002.叶绿素计诊断不同水稻品种氮素营养水平的研究初报.科技通报,18(3):174-176
    宋小玲,皇甫超,何强胜.2007.抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动.植物生态学报,31(4):729-737
    苏少泉,宋顺祖.1996.中国农田杂草化学防治.北京:中国农业出版社,pp.320
    苏少泉.2001.除草剂作用靶标与新品种创制.北京:化学工业出版社,pp.113-123
    苏少泉.2004.我国东北地区除草剂使用及问题.农药,43(2):53-55
    孙丙耀.1998.农田杂草抗药性及抗性作物的选育.世界农业,8:18-21
    唐庆红,陈杰,吕龙.2005.新型高效油菜田除草剂丙酯草醚创制研究.农药,44(11):496-502
    唐庆红,陈杰,沈国辉,等.2006.油菜田新型除草剂丙酯草醚的应用技术.植物保护学报, 33(3):328-332
    唐绍清,石春海,焦桂爱,等.2004.利用近红外反射光谱技术测定稻米中脂肪含量的研究初报.中国水稻科学,18(6):563-566
    唐延林,黄敬峰,王人潮.2004利用高光谱法估测稻穗稻谷的粗蛋白质和粗淀粉含量.中国农业科学,37(9):1282-1287
    王汉中.2005.发展油菜生物柴油的潜力、问题与对策.中国油料作物学报,27(2):74-76
    王纪华,赵春江,郭晓维.2000.利用遥感方法诊断小麦叶片含水量的研究.华北农学报,15(4):68-72
    王纪华,赵春江,郭晓维.2001.用光谱反射率诊断小麦叶片水分状况的研究.中国农业科学,34(1):104-107
    王珂,沈掌泉,王人潮.1999.植物营养胁迫与光谱特性.国土资源遥感,39(1):9-14
    王琳,梅红,佴注.2000.少花龙葵与三叶鬼针草对甲磺隆抗性的初步研究.云南农业大学学报,15(2):115-118
    王树东,刘素红,丁建丽,等.2006.叶片水分含量光谱响应变化研究.干旱区地理,29(4):510-515
    王伟,岳玲,丁炜,等.2007.[A环-U-(14)~C]丙酯草醚在土壤中的迁移和淋溶.核农学报,21(3):283-286
    王信群,钱付舟.2002.环己烯酮类除草剂防除冬油菜田禾本科杂草的药效试验.安徽农业科学,30(2):261-263
    王信群.2004.油菜田杂草看麦娘对不同除草剂交互抗性的监测.安徽农业科学,1:41
    王秀珍,王人潮,李云梅,等.2001.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版),27(3):301-306.
    魏良明,严衍禄,戴景瑞.2004.近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究.中国农业科学,37(1):630-633
    吴春,傅关英,陶国才.2001.直播油菜田化学除草.上海农业科技,5:63-65
    吴春江.1998.中国化工学会农药专业委员会第九届年会论文集.上海,pp.4-5
    吴建国,石春海,张小明,等.2003.用近红外反射光谱法分析稻米3种必需氨基酸含量的研究.作物学报,29(5):688-692
    吴建国,石春海,张海珍.2006.构建整粒油菜籽脂肪酸成分近红外反射光谱分析模型的研究.光谱学与光谱分析,26(12):259-262
    吴军,张培志,吕龙,等.2003.4-[2-(4,6-二甲氧基-2-嘧啶氧基)苄胺基)苯甲酸正丙酯的合成和晶体结构.结构化学,22(5):613-616
    吴曙雯,王人潮,陈晓斌,等.2002.稻叶瘟对水稻光谱特性的影响研究.上海交通大学学报(农业科学版),20(1):73-84
    肖昕,陈奕,罗文永,等.2003.单粒活体稻谷种子直链淀粉含量的近红外透射光谱分析.中国水稻科学,17(3):287-290
    徐桂转,张百良.2005.生物柴油的研究与进展.华中农业大学学报,24(6):644-650
    薛锦香.2007.油菜田杂草发生规律及防除对策.上海农业科技,1:101
    薛思佳,邹金山.2000.新型乙酰乳酸合成酶(ALS)抑制剂的研究进展.化学世界,(8):399-403
    颜启传.2000.种子检验原理和技术.杭州:浙江大学出版社,pp.56-57
    严衍禄,赵龙莲,韩东海,等.2005.近红外光谱分析基础与应用.北京:中国轻工业出版社.
    杨俐苹,白由路,王磊,等.2004.白菜苗期对不同硫处理的光谱反应.农业网络信息,(4):21-26
    姚艳丽,杨国正,宋峥,等.2008.壮苗素对油菜幼苗可溶性糖和蛋白质含量的影响.湖北农业科学,47(3):283-286
    余志扬,岳玲,汪海燕,等.2008.[A 环-U-(14)~C]-丙酯草醚在土壤中的吸附与解吸特性研究.核农学报,22(3):324-328
    曾庆平,郭勇.1999.化学应激对大蒜培养细胞SOD的诱导,药物生物技术,6(2):95-98
    张殿京,陈仁霖.1991.油菜田化学除草.农田杂草化学防除大全.上海:上海科学技术文献出版社,pp.812-814
    张桂生.2000.油菜田杂草综合防除技术.安徽农业,12:16
    张宏军,贾富勤,张佳,等.2003.杂草对灭生性除草剂百草枯的抗性问题.农药科学管理,24(12):26-29
    张宏军,刘学,张佳,等.2008.我国油菜田除草剂登记和使用情况.科技创新导报,15:252-253
    张泉,黄建中,杨征敏,等.2008.小麦微粒体对丙酯草醚的代谢作用初探.核农学报,22(1):84-87
    张瑞美,彭世彰,徐俊增.2006.光谱技术在农业领域的应用与展望.节水灌溉,5:1-5
    张喜杰,李民赞,张彦娥,等.2004.基于自然光照反射光谱的温室黄瓜叶片含氮量预测.农业工程学报,20(6):11-14
    张宪政.1992.作物生理研究方法.北京,中国农业出版社,pp.208-211
    张一宾.2004.杂草对ALS抑制剂的抗性及机理.世界农药,26(4):21-22
    张一宾.2005.抑制乙酰乳酸合成酶(ALS)除草剂世界市场及品种发展概述.现代农药,4(6):28-31
    张宇.2007.豆田除草剂对大豆根际土壤微生物及酶活性的影响(博士学位论文).东北农业大学
    张宗俭,李扬汉,张智敏.1995.除草通对玉米幼苗根尖细胞有丝分裂的影响.西北植物学报,15(6):32-35
    赵延存,娄远来,刘凤权,等.2006.21%油壮胶悬剂防除稻茬移栽油菜田杂草研究.江苏农业科学,2:66-69
    赵勇,龚丽农,黄存莲,等.2007.基于蔬菜农药残留-氯氰聚酯的红外光谱特性快速检测系统的研究.青岛农业大学学报,24(4):304-307
    周琴,孙小芳,江海东.2007.生长调节剂对油菜幼苗生理特性的影响.江苏农业科学,3:41-42
    周伟军.2001.油菜,作物栽培学(张国平,周伟军主编),杭州:浙江大学出版社,pp.153-178
    朱广廉.1990.植物生理学实验.北京:北京大学出版社,pp.161-165
    AGROW. 1999. ISO proposed names, No. 338, 26
    Alia KV, Prasad SK, Saradhi PP. 1995. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry 39, 45-47
    Anderson PC, Hibberd KA. 1985. Evidence for interaction of an imidazolinone herbicide with leueine, valine, and isolucine metabolism. Weed Sci. 33, 479-483
    Anderson JJ, Swain RS. 1992. Metabolism of sulfometron-methyl in wheat and its possible role in wheat intolerance. J. Agric. Food Chem. 40, 2279-2283
    Andrews CJ, Skipsey M, Townson JK, et al. 1997. Glutathione transferase activities toward herbicides used selectively in soybean. Pestic. Sci. 51,213-222
    Aqel WAQ, Duncan HJ. 2002. Herbicide safeners: uses, limitations, metabolism, and mechanisms of action. Chemosphere 48, 965-974
    Baily GW, White JL. 1970. Factor influencing the adsorption, desorption, and movement of pesticides in soils. Residue Reviews 32, 29-92
    Bar-Ilan A, Balan V, et al. 2001. Binding and acitivation of thiamin diphosphate in acetohydroxy-acid synthase. Biochemistry 40, 11946-11954
    Barberi P. 2002. Weed management in organic agriculture: are we addressing the right issue?Weed Res. 42, 177-193
    Bartels PG, Hilton JL. 1973. Comparasion of Tritluratin, Oryzatin, Pronamide and Colchicine treatments on microtubules. Pesti. Biochem. Physiol. 3, 462-472
    Belitz HD, Grosch W. 1999. Fruits and fruit products. In Food chemistry. Berlin: Springer, pp.748-757
    Beyer EM, Duffy MJ, Hay JV, et al. 1988. Sulfonylureas. In Herbicides: Chemistry, Degradation and Mode of Action (Kearney PC. et al., eds.), New York: Mareel Dekker Inc., Vol. 3, pp.117-189
    Blair AM, Martin TD. 1988. A review of the activity, fate and mode of action of sulfonylurea herbicides. Pestic. Sci. 22, 195-219
    Bradford MM. 1976. A rapid and sensitive method for the quantitative of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248-54
    Boggess SF, Steward CR, Aspinall D. 1976. Effect of water stress on proline synthesis from radioactive precursors. Plant Physiol. 58, 398-401
    Borisjuk L, Ngoyen TH, Neuberger T, et al. 2005. Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytol. 167, 761-776
    Bowler C, Van Montagu M, Inz(?) D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev.Plant Physiol. Plant Mol. Biol. 43, 83-116
    Brown HM. 1990. Mode of action, crop selectivity, and soil relations of sulfonylurea herbicides.Pestic. Sci. 29,263-281
    Ceccato P, Flasse S, Tarantola S. 2001. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sen. Enviton. 77, 22-33
    Chakraborty N, Tripathy BC. 1992. Involvement of singlet oxygen in 5-aminolevulinic acid-induced photodynamic damage of cucumber (Cucumis sativus L.) chloroplasts. Plant Physiol. 98, 7-11
    Champagne ET, Bett-Garber K.I, Grimm CC, et al. 2001. Near-infrared reflectance analysis for prediction of cooked rice texture. Cereal Chem. 78(3), 358-362
    Chauhan LKS, Gupta SK. 2005. Combined cytogenetic and ultrastructural effects of substituted urea herbicides and synthetic pyrethroid insecticide on the root meristem cells of Allium cepa. Pestic. Biochem. Physiol. 82: 27-35.
    Cheng Q, Huang JF, WangRC, et al. 2003. Analyses ofthe correlation between rice LAI and simulated MODIS vegetation indices, rededge position. Transact. Chin. Society Agric. Engin.19(5), 36-41
    Cheng XL, Wu JC, Ma F. 2003. Brown planthopper: occurrence and control. Beijing: China Agricultural Press, pp. 255-258
    Cobb AH, Kirkwood RC. 2000. Herbicides and their mechanism of action, Sheffield Academic Press, Sheffield, pp. 73-82
    Dastgheib F, Field RJ. 1998. Acetolactate synthase activity and chlorsulfuron sensitivity of wheat cultivars. Weed Sci. 38, 63-68
    Devine, Malcolm D. 1998. Mechanisms of resistance to Acetyl-coenzyme, a carboxylase inhibitors. Pestic. Sci. 51, 259-264
    Devos Y, Cougnon M, Vergucht S, et al. 2008. Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize. Transgenic Res. 17(6), 1059-1077
    Duggleby RG, Pang SS. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33, 1-36
    Erksson C, Busk L, Brittebo EB. 1996. 3-Aminobenzamide: Effects on cytochrome P450-dependent metabolism of chemicals and on the toxicity of dichlobenil in the Olfactory Mucosal. Toxicol. Appl. Pharmacolo. 136, 324-331
    Epelbaum S, Chipman DM, Ze'ev B. 1996. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmomnella typhimurium. J. Bacteriol. 178,1187-1196
    Fayez KA, Kristen U. 1996. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps. Environ. Exp. Bot. 36, 71-81
    Florence OG, Bastide J. 1997. Inhibition of Acetolactate Synthase Isozyme II from Escherichia coli by a New Azido-Photoaffinity Sulfonylurea. Bioorganic Chem. 25, 261-274
    Font R, Del Rio-Celestino M, Fernandez J M, et al. 2003. Acid Detergent Fiber Analysis in Oilseed Brassicas by Near-Infrared Spectroscopy. J. Agric. Food Chem. 51, 2917-2922
    Font R, Del Rio-Celestino M, Cartea E, et al. 2005a. Quantification of glucosinolates in leaves of leaf rape {Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66,175-185
    Font R, Wittkop B, Badani AG, et al. 2005b. The measurements of acid detergent fibre in rapeseed by visible and near-infrared spectroscopy. Plant Breeding 124, 410-412
    Friedman M, Gumbmann MR, Masters PM. 1984. Proteinalkali reactions: Chemistry, toxicol- ogy,and nutritional consequences. In Nutritional and Toxicotogical Aspects of Food Safety. New York: Plenum Press, pp. 367-412
    Gerwick BC, Subramanian MV, Loney-Gallant VI, et al. 1990. Mechanism of action of the 1,2,4-triazolo [1,5-a] pyrimidines. Pestic. Sci. 29, 357-364
    Guengerich FP. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611-650
    Guo DP, Guo YP, Zhao JP, et al. 2005. Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard {Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci.168, 57-63
    Haidar MA, Sidahmad MM. 2000. Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Prot. 19, 169-173
    Heap IM. 1997. The occurrence of herbicide-resistant weeds worldwide. Pesti. Sci. 51, 235-243
    Heap IM. 1999. International survey of herbicide-resistant weeds: lessons and limitations. In:Proceeding of the Brighton Crop Protection Conference-weeds. Farnham, UK: British Crop Protection Council, 3, 769-776
    Heim DR, Skomp JR, Tschabold EE. 1993. Isoxaben inhibits the synthesis of acid insoluble cell wall materials in Araidopsis thaliana. Plant Physiol. 93, 695-700
    Hofgen R, Laber B, Schuttke I, et al. 1995. Repression of acetolactate synthase activity through antisense inhibition: Molecular and biochemical analysis of transgenic potato (Solarium tuberosum L. cv Desiree) plants. Plant Physiol. 107, 469
    Hom NH, Becker HC, M(?)llers C. 2007. Non-destructive analysis of rapeseed quality by NIRS of small seed samples and single seeds. Euphytica 153, 27-34
    Hong S, Myung UC, Jung HS. 1997. Chemical modification and feedback inhibition of Arabidopsis thaliana acetolactate synthase. Agric. Chem. Biotechnol. 40, 277-282
    Incledon BJ, Hall JC. 1997. Acetyl-coenzyme A carboxylase: Quaternary structure and inhibition by graminicidal herbicides. Pestic. Biochem. Physiol. 57, 255-271
    Ishida H, Suzuno H, Sugiyama N. 2000. Nutritive evaluation on chemical components of leaves stalks and stems of sweet potatoes. Food Chem. 68, 359-367
    Ishikawa S, Wagatsuma T. 1998. Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant species. Plant Cell Physiol. 39, 516-525
    Jefreyd H, Dan Hess F. 1985. Comparision of the disruption of mitosis and cell plate formation in oat root, DCPA, Colchicine and Proham. J. Exp. Bot. 170 (36), 1504-1513
    James PG, Daniel AB, William MS, et al. 1989. Pre-emergence weed control in row middles of polyethylene mulched cauliflower (Brassica oleracae). Weed Technol. 3, 340-344
    Keeler SJ, Sanders P, Smith JK, et al. 1993. Regulation of tobacco acetolactate synthase gene expression. Plant Physiol. 102, 1009
    Khan SU. 1982. Bound residues in soil and plants. Residues Rev. 84, 1-25
    Khan SU, Behki RM, Dumrugs B. 1989. Fate of bound~14C residues in soil as affected by repeated treatment of prometryn. Chemosphere 18, 2155-2160
    Kim JS, Yun BW, Choi JS, et al. 2004. Death mechanisms caused by carotenoid biosynthesis inhibitors in green and in undeveloped plant tissues. Pestic. Biochem. Physiol. 78, 127-139
    Kleschick WA, Costaies MJ. 1990. New herbicide derivatives of l,2,4-trizaolo[l,5-α] primidine.Pestic. Sci. 29,341-355
    Koziolek C, Grams TEE, Schreiber U, et al. 2003. Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 161, 715-722
    Landstein D, Epelbaum S, Arad S, et al. 1995. Metabolic response of Chlorella emersonii to the herbicide sulfometuron methyl. Planta 197,219-224
    Langzagorta A, De la Torre JM, Aller P. 1988. The effect of butyrate on cell cycle progression in Allium cepa root meristems. Plant Physiol. 72, 775-781
    Lanini WT, Bell CE, Smith RF, et al. 2002. Weeds. University of California, Pest Management Guidelines: Cole Crops. Division of Agriculture and Natural Resources Publication, No. 3442
    LaRossa RA, Schloss JV. 1984. The Sulfonylurea herbicide sulfometuron methyl is an extremly potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Bio. Chem. 259, 8753-8757
    LaRossa RA, Van Dyk TK, Smulski DR. 1987. Toxic accumulation of a-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J. Bacteriol. 169, 1373-1378
    Leah JM., Caseley JC, Riches CR, et al. 1995. Age-related mechanisms of propanil tolerance in jungle-rice, Echinochloa colona. Pestic. Sci. 43, 347-54
    Leyval D, Uy D, Delaunay S, et al. 2003. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J. Biotechnol. 104, 241-252
    Lisiewska Z, Kmiecik W, Korus A. 2008. The amino acid composition of kale (Brassica oleracea L. var. acephala), fresh and after culinary and technological processing. Food Chem. 108,642-648
    Lu L, Chen J, Wu J. 2004. 2-Pyrimidinyloxy-n-aryl-benzylamine derivatives, their processes and uses. US Patent 6,800,590 B2
    Maeda EE. 1985. Effect of solar dehydration on amino acid pattern and available lysine content in four tropical leafy vegetables. Ecol. Food Nutrit.15 (3), 273
    Mallory-Smith CA, Thill, Dial MJ. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuc (Lantuca serriola). Weed Technol. 4, 163-168
    Mark AS. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39,428-434
    Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence, a practicalguide. Exp. Bot. 51, 659-668
    McCourt JA, Pang SS, King-Scott J, et al. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA 103, 569-573
    Mersie W, Foy CL. 1986. Adsorption, desorption, and mobility of chlorsulfuron in soils. J. Agric.Food Chem. 34, 89-92
    Milliman LD, Riechers DE, Wax LM, et al. 2002. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade. Weed Sci. 51, 139-144
    Montes JM, Paul C, Melchinger AE. 2007. Quality assessment of rapeseed accessions by means of near-infrared spectroscopy on combine harvesters. Plant Breeding 126,329-330
    Nudelman A, Dana MM, Nudelman A, et al. 2004. Inhibitors of biotin biosynthesis as potential herbicides. Tetrahedron 60, 1731-1748
    Oberhauser V, Gaudin J, Raymonde FP, et al. 1998. New target enzyme(s) for bisphosphonates:Inhibition of geranylgeranyl diphosphate synthase. Pestic. Biochem. Physiol. 60, 111-117
    Owen M.J, Powles SB. 2009. Distribution and frequency of herbicide-resistant wild oat (Avena spp.) across the Western Australian grain belt. Crop Pasture Sci. 60(1), 25-31
    Pang SS, Ronald G, Duggleby, et al. 2002. Crystal structure of yeast acetohydroxyacid synthase:A target for herbicidal inhibitors. J. Mol. Biol. 317, 249-262
    Pang SS, Guddat LW, Duggleby RG. 2003. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol. Chem. 278, 7639-7644
    Park TS, Kim CS, Moon BS. 2001. Occurrence and control of Lindemia dubia (L.) Pennel var.dubia, sulfonylurea resistant biotype in paddy fields in southern area of Korea. Korean J.Weed Sci. 21(1), 33-41
    Pedro AMK, Ferreira MMC. 2005. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal. Chem. 77,2505-2511
    Perston C, Powles SB. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum.Heredity 88, 8-13
    Petersen IL, Hansen HCB, Ravn HW, et al. 2007. Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pestic. Biochem. Physiol. 89, 220-229
    Preston C, Stone LM, Rieger M.A, et al. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola. Pestic. Biochem. Physiol. 84, 227-235
    Pu DW, Zhao YH, Huang YJ, et al. 2003. The experiment on weed control using nominee in direct seeding rice fields. Pesticides 142 (12), 38-41
    Qasem JR. 2007. Weed control in cauliflower (Brassica oleracea van Botrytis L.) with herbicides.Crop Prot. 26, 1013-1020
    Ray TB. 1984. Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75, 827-831
    Raymond FK, Roger NC. 1999. Spectroscopic determination of leaf biochemistry using band depth analysis of absorption features and stepwise multiple linear regression. Remote Sens.67, 267-287
    Rebeiz CA, Montazer-Zouhoor A, Jopen HJ, et al. 1984. Photodynamic herbicides: Concepts and phenomenology. Enzyme Microb. Technol. 6, 390-401
    Reid RJ, Field LD, Pitman MS. 1985. Effects of external pH, fusicoccin and butyrate on the cytoplasmic pH in barley root tips measured by !P-nuclear magnetic resonance spectroscopy. Planta 166, 341-34
    Rendina AR, Felts JM. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-co a carboxylase from grasses. Plant Physiol. 86, 983-986
    Rhodes D, Hogan AL, Deal L, et al. 1987. Amino acid metabolism of Lemna minor L. II Response to chlorsulfuron. Plant Physiol. 84, 775-780
    Romero-Puertas MC, McCarthy I, Gomez M, et al. 2004. Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ. 27, 1135-1148
    Rost TL, Reynolds T. 1985. Reversal of chlorsulfuron-induced inhibition of mitotic entry by isoleucine and valine. Plant Physiol. 77, 481-482
    Royuela M, Gonzalez A, Gonzalez E.M, et al. 2000. Physiological consequences of continuous,sub lethal imazethapyr supply to pea plants. J. Plant Physiol. 157, 345-354
    Ryan. 1970. Resistance of common groudsel to simazine. Weed Sci. 18, 614-616
    Saari LL, Cotterman JC, Primiani MM. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol. 93, 55-61
    Saari LL, Eberlein LM. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed. Plant Physiol. 93, 55-61
    Saari LL, Josephine C. 1992. Mechanism of sulfonylurea herbicide resistance in Stellaria media, Loliam perenne and Salsola iberica. Plant Physiol. 97, 102-111
    Scarponi L, Younis ME, Standardard A, et al. 1997. Effects of chlorimuron-ethy1, imazethapyr,and propachlor on free Amino Acids and protein Formation in Vicia faba L. J. Agric. Food Chem. 45, 3652-3658
    Scheel D, Casida JE. 1985. Sulfonylurea herbicides: growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine or isoleucine,Pest. Biochem. Physiol. 23, 398-412
    Schloss JV, Ciskanik LM, Van Dyk DE. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331, 360-362
    Scholess JV. 1990. Acetolactate synthase, mechanism of action and its herbicide binding site.Pestic. Sci. 29, 283-292
    Schwass DE, Finley JW. 1984. Heat and alkaline damage to proteins: racemization and lysinoalanine formation. J. Agric. Food Chem. 32, 1377-1382
    Shaner DL, Reider ML. 1986. Physiological responses of corn (Zea mays) to AC 243,997 in combination with valine, leucine, and isoleucine. Pestic. Biochem. Physiol. 25, 248-257
    Shaner DL, Singh BK. 1993. Phytotoxicity of acetohydroxyacid synthase inhibitors is not due to accumulation of 2-ketobutyrate and/or 2-aminobutyrate. Plant Physiol. 103, 1221-1226
    Shim SI, Lee BM, Ryu EI, et al. 2003. Response of leaf acetolactate synthase from different leaf positions and seedling ages to sulfonylurea herbicide. Pestic. Biochem. Physiol. 75, 39-46
    Singh BK, Newhouse KE, Stidham MA, et al. 1990. Acetohydroxyacid synthase-imidazolinone interaction, in: Barak Z, Chipman DM, Schloss JV (Eds.), Biosynthesis of Branched Chain Amino Acids, VCH Publishers, Weinheim, pp. 357-372
    Singh BK, Shaner DL. 1995a. Biosynthesis of branched chain amino acids: from test tube to field.Plant Cell 7, 935-944
    Singh BK, Tecle B, Shaner DL. 1995b. Determination of 2-keto acids and amino acids in plant extracts. J. Liq. Chromatogr. 17,44-69
    Smith AM, Mao J, Doane RA, et al. 1995. Metabolic fate of ~14C-acrolein under aerobic and anaerobic aquatic conditions. J. Agric. Food Chem. 43, 2497-2503
    Stefanis ED, Sgrulletta D. 1996. Use of NIT (near infrared transmission) spectroscopy for semolina analysis. Tecnica-Molitoria. 47(9): 861-866
    Stidham MA, Singh BK. 1991. The Imidazolinone Herbicides. In: Shaner DL, O'Connor SL (Eds.). CRC, Boca Raton, FL, pp. 71-90
    Strek HJ. 1998a. Fate of chlorsulfuron in the environment: 1. Laboratory evaluations. Pestic. Sci.53,29-51
    Strek HJ. 1998b. Fate of chlorsulfuron in the environment: 2. Field evaluations. Pestic. Sci. 53,52-70
    Subrahmaniyan K, Kalaiselvan P, Balasubramanian TN et al. 2008. Soil properties and yield of groundnut associated with herbicides, plant geometry and plastic mulch. Commun. Soil Sci.Plant Anal. 39, 1206-1234
    Subramanian MV, Vivian LG, Dias JM, et al. 1991. Acetolactate synthase inhibiting herbicides bind to the regulatory site. Plant Physiol. 96, 310-313
    Sweetser PB, Schow GS, Hutchison JM. 1982. Metabolism of chlorsulfuron by plants: biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17, 18-23
    Szamosi IT, Shaner DL, Singh BK. 1993. Identification and characterization of a biodegradative form of threonine dehydratase in senescing tomato leaf. Plant Physiol. 101, 999
    Tan S, Evans R, Singh B. 2006. Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops. Amino Acids 30, 195-204
    Tian QJ, Tong QX. Guo XW. 2001. Spectroscopic determination of wheat water status using 1650-1850nm spectral absorption features. Int. J. Remote Sens. 22(12), 2329-2338
    Tittmann KD, Proske M, et al. 1998. Activation of thiamin diphosphate and FAD in then phosphate-dependent pyruvate oxidase from Lactobacillus plantarum. J. Biochem. 273,12929-12934
    Tranel PJ, Wright TR. 2002. Resistance of weeds to ALS inhibiting herbicides: what have we learned? Weed Sci. 50, 700-712
    Turcsanyi E, Darko E, Borbely G. 1998. The activity of oxyradical-detoxifying enzymes is not correlated with paraquat resistance in Conyza canadensis (L.) Cronq. Pestic. Biochem.Physiol. 60, 1-11
    Vapnik VN. 1995. The Nature of Statistical Learning Theory, New York: Springer-Verlag
    Veal DA, Deere D, Ferrari B. 2000. Fluorescence staining and flow cytometry for monitoring microbial cells. J. Immunol. Methods 243, 191-210
    Walker KA, Lewis T, Harwood JL, et al. 1998. Fulazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitve plant species. J. Biochem. 254,307-310
    Wang HY, Liao YX, Guo YL. 2005. Interesting acid-catalyzed O-N-type Smiles rearrangement reactions of 2-pyrimidinyloxy-N-arylbenzylamine derivatives. Synletter 8, 1239-1242
    Wang JH, Huang WJ, Zhao CJ, et al. 2003. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Int. J. Remote Sens. 7,276-284
    Wang QA, Dong LR, Lou YL, et al. 2002. Review on the herbicide resistence of weeds in crop and its checking and determining methods. Weed Sci. 2, 1-5
    Wang WJ, Xu ZB, Lu WZ, et al. 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55, 643-663
    Whitcomb CE. 1999. An introduction to ALS-inhibiting herbicides. Toxic. Ind. Health 15,232-240
    Wiersma PA, Schmiemann MG, Condie JA, et al. 1989. Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napits. Mol. Gen. Genet. 219, 413
    Wittenbach VA, Abell LM. 1999. Inhibition of valine, leucine and isoleucine biosynthesis. In:Singh BK (Ed.), Plant Amino Acids: Biochemistry and Biotechnology, Marcel Dekker, Inc.,New York, pp. 385-416
    Wright TR, Bascomb NF, Penner D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections.Weed Sci. 46, 13-23
    Wu JG, Shi CH, Zhang XM, et al. 2002. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crop Res. 75 (1), 1-7
    Yang YT, Peredelchuk M, Bennet GN, San KY. 2000. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol. Bioeng. 69, 150-159
    Yang J, Yen HE. 2002. Early Salt Stress Effects on the changes in chemical composition in leaves of ice plant and Arabidopsis, studied by fourier transform infrared spectroscopy. Plant Physiol.130, 1032-1042
    Yang CH, Dong LY, Li J, et al. 2007. Identification of Japanese foxtail {Alopecurus japonicus) resistant to haloxyfop using three different assay techniques. Weed Sci. 55, 537-540
    Yemets A, Stelmakh O, Blume YB. 2008. Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action. Cell Biol. Internat. 32, 623-629
    Yoshiba Y, Kiyosue T, Nakashima K. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38, 1095-1102
    Zabalza A, Gaston S, Sandalio LM, et al. 2007. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase. Environ. Exp. Bot. 59,150-159
    Zaragoza C. 2003. Weed management in vegetables. In: Weed Management for Developing Countries (Addendum 1) (Labrada R, ed.), FAO Document Repository. FAO Plant Production and Protection paper 120 Add. 1. Agriculture Department, Food and Agriculture Organization of the United Nations, Rome, Italy
    Zhang WF, Zhang F, Raziuddin R, et al. 2008. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J. Plant Growth Regul. 27, 159-169
    Zhao DL, Reddy K, Kakani, et al. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthes, and hyperspectral reflectance properties of sorghum. Europ. J. Agron. 22,391-403
    Zhou QF, Shen ZQ, Wang RC. 2002. Fourier transform infrared spectral difference of leaf tips in rice related to nitrogen fertilizer rates. Acta Bot. Sinica 44 (5), 547-550
    Zhou QY, Liu WP, Zhang YS, et al. 2007. Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic. Biochem. Physiol. 89, 89-96
    Zhou W, Zhao D, Lin X. 1997. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). J. Plant Growth Regul. 16, 47-53
    Zhou WJ, Leul M. 1998. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul. 26, 41-47
    Zhou WJ, Leul M. 1999. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul.27, 99-104
    Zhou WJ, Yoneyama K, Takeuchi Y, et al. 2004. In vitro infection of host roots by differentiated calli of the parasitic plant Orobanche. J. Exp. Bot. 55, 899-907

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700